vmscan.c 105.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142
#else
143 144 145 146
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
147 148
#endif

149
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150
{
151
	if (!mem_cgroup_disabled())
152
		return mem_cgroup_get_lru_size(lruvec, lru);
153

154
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 156
}

L
Linus Torvalds 已提交
157 158 159
/*
 * Add a shrinker callback to be called from the vm
 */
160
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
161
{
162
	atomic_long_set(&shrinker->nr_in_batch, 0);
163 164 165
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
166
}
167
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
168 169 170 171

/*
 * Remove one
 */
172
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
173 174 175 176 177
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
178
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
179

180 181 182 183 184 185 186 187
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
197
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
198 199 200 201 202 203 204
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
205 206
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
207
 */
208
unsigned long shrink_slab(struct shrink_control *shrink,
209
			  unsigned long nr_pages_scanned,
210
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
211 212
{
	struct shrinker *shrinker;
213
	unsigned long ret = 0;
L
Linus Torvalds 已提交
214

215 216
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
217

218 219 220 221 222
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
223 224 225

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
226 227
		long total_scan;
		long max_pass;
228
		int shrink_ret = 0;
229 230
		long nr;
		long new_nr;
231 232
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
233

234 235 236 237
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

238 239 240 241 242
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
243
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 245

		total_scan = nr;
246
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
247
		delta *= max_pass;
L
Linus Torvalds 已提交
248
		do_div(delta, lru_pages + 1);
249 250
		total_scan += delta;
		if (total_scan < 0) {
251 252
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
253 254
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
255 256
		}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

272 273 274 275 276
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
277 278
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
279

280
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 282 283
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

284
		while (total_scan >= batch_size) {
285
			int nr_before;
L
Linus Torvalds 已提交
286

287 288
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
289
							batch_size);
L
Linus Torvalds 已提交
290 291
			if (shrink_ret == -1)
				break;
292 293
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
294 295
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
296 297 298 299

			cond_resched();
		}

300 301 302 303 304
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
305 306 307 308 309
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 311

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
312 313
	}
	up_read(&shrinker_rwsem);
314 315
out:
	cond_resched();
316
	return ret;
L
Linus Torvalds 已提交
317 318 319 320
}

static inline int is_page_cache_freeable(struct page *page)
{
321 322 323 324 325
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
326
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
327 328
}

329 330
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
331
{
332
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
356
	lock_page(page);
357 358
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
359 360 361
	unlock_page(page);
}

362 363 364 365 366 367 368 369 370 371 372 373
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
374
/*
A
Andrew Morton 已提交
375 376
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
377
 */
378
static pageout_t pageout(struct page *page, struct address_space *mapping,
379
			 struct scan_control *sc)
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
388
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
404
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
405 406
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
407
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
408 409 410 411 412 413 414
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
415
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
416 417 418 419 420 421 422
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
423 424
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
425 426 427 428 429 430 431
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
432
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
433 434 435
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
436

L
Linus Torvalds 已提交
437 438 439 440
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
441
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
443 444 445 446 447 448
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

449
/*
N
Nick Piggin 已提交
450 451
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
452
 */
N
Nick Piggin 已提交
453
static int __remove_mapping(struct address_space *mapping, struct page *page)
454
{
455 456
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
457

N
Nick Piggin 已提交
458
	spin_lock_irq(&mapping->tree_lock);
459
	/*
N
Nick Piggin 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
483
	 */
N
Nick Piggin 已提交
484
	if (!page_freeze_refs(page, 2))
485
		goto cannot_free;
N
Nick Piggin 已提交
486 487 488
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
489
		goto cannot_free;
N
Nick Piggin 已提交
490
	}
491 492 493 494

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
495
		spin_unlock_irq(&mapping->tree_lock);
496
		swapcache_free(swap, page);
N
Nick Piggin 已提交
497
	} else {
498 499 500 501
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

502
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
503
		spin_unlock_irq(&mapping->tree_lock);
504
		mem_cgroup_uncharge_cache_page(page);
505 506 507

		if (freepage != NULL)
			freepage(page);
508 509 510 511 512
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
513
	spin_unlock_irq(&mapping->tree_lock);
514 515 516
	return 0;
}

N
Nick Piggin 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
550
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
551 552 553 554 555 556

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

557
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
558 559 560 561 562 563
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
564
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
565 566 567 568 569 570 571 572
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
573
		/*
574 575 576
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
577
		 * isolation/check_move_unevictable_pages,
578
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 580
		 * the page back to the evictable list.
		 *
581
		 * The other side is TestClearPageMlocked() or shmem_lock().
582 583
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
584 585 586 587 588 589 590
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
591
	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
L
Lee Schermerhorn 已提交
592 593 594 595 596 597 598 599 600 601
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

602 603 604 605 606
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
607 608 609
	put_page(page);		/* drop ref from isolate */
}

610 611 612
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
613
	PAGEREF_KEEP,
614 615 616 617 618 619
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
620
	int referenced_ptes, referenced_page;
621 622
	unsigned long vm_flags;

623 624
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
625
	referenced_page = TestClearPageReferenced(page);
626 627 628 629 630 631 632 633

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

634
	if (referenced_ptes) {
635
		if (PageSwapBacked(page))
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

653
		if (referenced_page || referenced_ptes > 1)
654 655
			return PAGEREF_ACTIVATE;

656 657 658 659 660 661
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

662 663
		return PAGEREF_KEEP;
	}
664 665

	/* Reclaim if clean, defer dirty pages to writeback */
666
	if (referenced_page && !PageSwapBacked(page))
667 668 669
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
670 671
}

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
}

L
Linus Torvalds 已提交
691
/*
A
Andrew Morton 已提交
692
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
693
 */
A
Andrew Morton 已提交
694
static unsigned long shrink_page_list(struct list_head *page_list,
695
				      struct zone *zone,
696
				      struct scan_control *sc,
697
				      enum ttu_flags ttu_flags,
698
				      unsigned long *ret_nr_unqueued_dirty,
699
				      unsigned long *ret_nr_writeback,
700
				      unsigned long *ret_nr_immediate,
701
				      bool force_reclaim)
L
Linus Torvalds 已提交
702 703
{
	LIST_HEAD(ret_pages);
704
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
705
	int pgactivate = 0;
706
	unsigned long nr_unqueued_dirty = 0;
707 708
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
709
	unsigned long nr_reclaimed = 0;
710
	unsigned long nr_writeback = 0;
711
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
712 713 714

	cond_resched();

715
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
716 717 718 719
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
720
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
721
		bool dirty, writeback;
L
Linus Torvalds 已提交
722 723 724 725 726 727

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
728
		if (!trylock_page(page))
L
Linus Torvalds 已提交
729 730
			goto keep;

N
Nick Piggin 已提交
731
		VM_BUG_ON(PageActive(page));
732
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
733 734

		sc->nr_scanned++;
735

736
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
737
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
738

739
		if (!sc->may_unmap && page_mapped(page))
740 741
			goto keep_locked;

L
Linus Torvalds 已提交
742 743 744 745
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

746 747 748
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

		/* Treat this page as congested if underlying BDI is */
		mapping = page_mapping(page);
		if (mapping && bdi_write_congested(mapping->backing_dev_info))
			nr_congested++;

767 768 769 770 771 772 773 774 775 776 777
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
778 779
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
804
		if (PageWriteback(page)) {
805 806 807 808
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
809 810
				nr_immediate++;
				goto keep_locked;
811 812 813

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
814 815 816 817 818 819 820 821 822 823 824 825 826
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
827
				nr_writeback++;
828

829
				goto keep_locked;
830 831 832 833

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
834
			}
835
		}
L
Linus Torvalds 已提交
836

837 838 839
		if (!force_reclaim)
			references = page_check_references(page, sc);

840 841
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
842
			goto activate_locked;
843 844
		case PAGEREF_KEEP:
			goto keep_locked;
845 846 847 848
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
849 850 851 852 853

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
854
		if (PageAnon(page) && !PageSwapCache(page)) {
855 856
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
857
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
858
				goto activate_locked;
859
			may_enter_fs = 1;
L
Linus Torvalds 已提交
860

861 862 863
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
864 865 866 867 868 869

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
870
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
871 872 873 874
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
875 876
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
877 878 879 880 881 882
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
883 884
			/*
			 * Only kswapd can writeback filesystem pages to
885 886
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
887
			 */
888
			if (page_is_file_cache(page) &&
889
					(!current_is_kswapd() ||
890
					 !zone_is_reclaim_dirty(zone))) {
891 892 893 894 895 896 897 898 899
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

900 901 902
				goto keep_locked;
			}

903
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
904
				goto keep_locked;
905
			if (!may_enter_fs)
L
Linus Torvalds 已提交
906
				goto keep_locked;
907
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
908 909 910
				goto keep_locked;

			/* Page is dirty, try to write it out here */
911
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
912 913 914 915 916
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
917
				if (PageWriteback(page))
918
					goto keep;
919
				if (PageDirty(page))
L
Linus Torvalds 已提交
920
					goto keep;
921

L
Linus Torvalds 已提交
922 923 924 925
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
926
				if (!trylock_page(page))
L
Linus Torvalds 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
946
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
947 948 949 950 951 952 953 954 955 956
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
957
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
958 959
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
976 977
		}

N
Nick Piggin 已提交
978
		if (!mapping || !__remove_mapping(mapping, page))
979
			goto keep_locked;
L
Linus Torvalds 已提交
980

N
Nick Piggin 已提交
981 982 983 984 985 986 987 988
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
989
free_it:
990
		nr_reclaimed++;
991 992 993 994 995 996

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
997 998
		continue;

N
Nick Piggin 已提交
999
cull_mlocked:
1000 1001
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1002 1003 1004 1005
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1006
activate_locked:
1007 1008
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1009
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1010
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1011 1012 1013 1014 1015 1016
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1017
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1018
	}
1019

1020 1021 1022 1023 1024 1025
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
1026
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1027
		zone_set_flag(zone, ZONE_CONGESTED);
1028

1029
	free_hot_cold_page_list(&free_pages, 1);
1030

L
Linus Torvalds 已提交
1031
	list_splice(&ret_pages, page_list);
1032
	count_vm_events(PGACTIVATE, pgactivate);
1033
	mem_cgroup_uncharge_end();
1034
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1035
	*ret_nr_writeback += nr_writeback;
1036
	*ret_nr_immediate += nr_immediate;
1037
	return nr_reclaimed;
L
Linus Torvalds 已提交
1038 1039
}

1040 1041 1042 1043 1044 1045 1046 1047
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1048
	unsigned long ret, dummy1, dummy2, dummy3;
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
				TTU_UNMAP|TTU_IGNORE_ACCESS,
1061
				&dummy1, &dummy2, &dummy3, true);
1062 1063 1064 1065 1066
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1077
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1078 1079 1080 1081 1082 1083 1084
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1085 1086
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1087 1088
		return ret;

A
Andy Whitcroft 已提交
1089
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1124

1125 1126 1127
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1152
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1153
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1154
 * @nr_scanned:	The number of pages that were scanned.
1155
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1156
 * @mode:	One of the LRU isolation modes
1157
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1158 1159 1160
 *
 * returns how many pages were moved onto *@dst.
 */
1161
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1162
		struct lruvec *lruvec, struct list_head *dst,
1163
		unsigned long *nr_scanned, struct scan_control *sc,
1164
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1165
{
H
Hugh Dickins 已提交
1166
	struct list_head *src = &lruvec->lists[lru];
1167
	unsigned long nr_taken = 0;
1168
	unsigned long scan;
L
Linus Torvalds 已提交
1169

1170
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1171
		struct page *page;
1172
		int nr_pages;
A
Andy Whitcroft 已提交
1173

L
Linus Torvalds 已提交
1174 1175 1176
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1177
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1178

1179
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1180
		case 0:
1181 1182
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1183
			list_move(&page->lru, dst);
1184
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1185 1186 1187 1188 1189 1190
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1191

A
Andy Whitcroft 已提交
1192 1193 1194
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1195 1196
	}

H
Hugh Dickins 已提交
1197
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1198 1199
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1200 1201 1202
	return nr_taken;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1214 1215 1216
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1232 1233
	VM_BUG_ON(!page_count(page));

1234 1235
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1236
		struct lruvec *lruvec;
1237 1238

		spin_lock_irq(&zone->lru_lock);
1239
		lruvec = mem_cgroup_page_lruvec(page, zone);
1240
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1241
			int lru = page_lru(page);
1242
			get_page(page);
1243
			ClearPageLRU(page);
1244 1245
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1246 1247 1248 1249 1250 1251
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1252
/*
F
Fengguang Wu 已提交
1253 1254 1255 1256 1257
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1258 1259 1260 1261 1262 1263 1264 1265 1266
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1267
	if (!global_reclaim(sc))
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1278 1279 1280 1281 1282 1283 1284 1285
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1286 1287 1288
	return isolated > inactive;
}

1289
static noinline_for_stack void
H
Hugh Dickins 已提交
1290
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1291
{
1292 1293
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1294
	LIST_HEAD(pages_to_free);
1295 1296 1297 1298 1299

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1300
		struct page *page = lru_to_page(page_list);
1301
		int lru;
1302

1303 1304
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1305
		if (unlikely(!page_evictable(page))) {
1306 1307 1308 1309 1310
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1311 1312 1313

		lruvec = mem_cgroup_page_lruvec(page, zone);

1314
		SetPageLRU(page);
1315
		lru = page_lru(page);
1316 1317
		add_page_to_lru_list(page, lruvec, lru);

1318 1319
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1320 1321
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1322
		}
1323 1324 1325
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1326
			del_page_from_lru_list(page, lruvec, lru);
1327 1328 1329 1330 1331 1332 1333

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1334 1335 1336
		}
	}

1337 1338 1339 1340
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1341 1342
}

L
Linus Torvalds 已提交
1343
/*
A
Andrew Morton 已提交
1344 1345
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1346
 */
1347
static noinline_for_stack unsigned long
1348
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1349
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1350 1351
{
	LIST_HEAD(page_list);
1352
	unsigned long nr_scanned;
1353
	unsigned long nr_reclaimed = 0;
1354
	unsigned long nr_taken;
1355
	unsigned long nr_unqueued_dirty = 0;
1356
	unsigned long nr_writeback = 0;
1357
	unsigned long nr_immediate = 0;
1358
	isolate_mode_t isolate_mode = 0;
1359
	int file = is_file_lru(lru);
1360 1361
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1362

1363
	while (unlikely(too_many_isolated(zone, file, sc))) {
1364
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1365 1366 1367 1368 1369 1370

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1371
	lru_add_drain();
1372 1373

	if (!sc->may_unmap)
1374
		isolate_mode |= ISOLATE_UNMAPPED;
1375
	if (!sc->may_writepage)
1376
		isolate_mode |= ISOLATE_CLEAN;
1377

L
Linus Torvalds 已提交
1378
	spin_lock_irq(&zone->lru_lock);
1379

1380 1381
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1382 1383 1384 1385

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1386
	if (global_reclaim(sc)) {
1387 1388
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1389
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1390
		else
H
Hugh Dickins 已提交
1391
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1392
	}
1393
	spin_unlock_irq(&zone->lru_lock);
1394

1395
	if (nr_taken == 0)
1396
		return 0;
A
Andy Whitcroft 已提交
1397

1398
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1399 1400
			&nr_unqueued_dirty, &nr_writeback, &nr_immediate,
			false);
1401

1402 1403
	spin_lock_irq(&zone->lru_lock);

1404
	reclaim_stat->recent_scanned[file] += nr_taken;
1405

Y
Ying Han 已提交
1406 1407 1408 1409 1410 1411 1412 1413
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1414

1415
	putback_inactive_pages(lruvec, &page_list);
1416

1417
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1418 1419 1420 1421

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1422

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1446
	if (nr_writeback && nr_writeback >=
1447 1448
			(nr_taken >> (DEF_PRIORITY - sc->priority))) {
		zone_set_flag(zone, ZONE_WRITEBACK);
1449
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1450
	}
1451

1452
	/*
1453 1454
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1455
	 */
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	if (global_reclaim(sc)) {
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1475
	}
1476

1477 1478 1479
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1480
		sc->priority,
M
Mel Gorman 已提交
1481
		trace_shrink_flags(file));
1482
	return nr_reclaimed;
L
Linus Torvalds 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1502

1503
static void move_active_pages_to_lru(struct lruvec *lruvec,
1504
				     struct list_head *list,
1505
				     struct list_head *pages_to_free,
1506 1507
				     enum lru_list lru)
{
1508
	struct zone *zone = lruvec_zone(lruvec);
1509 1510
	unsigned long pgmoved = 0;
	struct page *page;
1511
	int nr_pages;
1512 1513 1514

	while (!list_empty(list)) {
		page = lru_to_page(list);
1515
		lruvec = mem_cgroup_page_lruvec(page, zone);
1516 1517 1518 1519

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1520 1521
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1522
		list_move(&page->lru, &lruvec->lists[lru]);
1523
		pgmoved += nr_pages;
1524

1525 1526 1527
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1528
			del_page_from_lru_list(page, lruvec, lru);
1529 1530 1531 1532 1533 1534 1535

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1536 1537 1538 1539 1540 1541
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1542

H
Hugh Dickins 已提交
1543
static void shrink_active_list(unsigned long nr_to_scan,
1544
			       struct lruvec *lruvec,
1545
			       struct scan_control *sc,
1546
			       enum lru_list lru)
L
Linus Torvalds 已提交
1547
{
1548
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1549
	unsigned long nr_scanned;
1550
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1551
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1552
	LIST_HEAD(l_active);
1553
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1554
	struct page *page;
1555
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1556
	unsigned long nr_rotated = 0;
1557
	isolate_mode_t isolate_mode = 0;
1558
	int file = is_file_lru(lru);
1559
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1560 1561

	lru_add_drain();
1562 1563

	if (!sc->may_unmap)
1564
		isolate_mode |= ISOLATE_UNMAPPED;
1565
	if (!sc->may_writepage)
1566
		isolate_mode |= ISOLATE_CLEAN;
1567

L
Linus Torvalds 已提交
1568
	spin_lock_irq(&zone->lru_lock);
1569

1570 1571
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1572
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1573
		zone->pages_scanned += nr_scanned;
1574

1575
	reclaim_stat->recent_scanned[file] += nr_taken;
1576

H
Hugh Dickins 已提交
1577
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1578
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1579
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584 1585
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1586

1587
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1588 1589 1590 1591
			putback_lru_page(page);
			continue;
		}

1592 1593 1594 1595 1596 1597 1598 1599
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1600 1601
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1602
			nr_rotated += hpage_nr_pages(page);
1603 1604 1605 1606 1607 1608 1609 1610 1611
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1612
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1613 1614 1615 1616
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1617

1618
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1619 1620 1621
		list_add(&page->lru, &l_inactive);
	}

1622
	/*
1623
	 * Move pages back to the lru list.
1624
	 */
1625
	spin_lock_irq(&zone->lru_lock);
1626
	/*
1627 1628 1629 1630
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1631
	 */
1632
	reclaim_stat->recent_rotated[file] += nr_rotated;
1633

1634 1635
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1636
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1637
	spin_unlock_irq(&zone->lru_lock);
1638 1639

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1640 1641
}

1642
#ifdef CONFIG_SWAP
1643
static int inactive_anon_is_low_global(struct zone *zone)
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1656 1657
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1658
 * @lruvec: LRU vector to check
1659 1660 1661 1662
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1663
static int inactive_anon_is_low(struct lruvec *lruvec)
1664
{
1665 1666 1667 1668 1669 1670 1671
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1672
	if (!mem_cgroup_disabled())
1673
		return mem_cgroup_inactive_anon_is_low(lruvec);
1674

1675
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1676
}
1677
#else
1678
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1679 1680 1681 1682
{
	return 0;
}
#endif
1683

1684 1685
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1686
 * @lruvec: LRU vector to check
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1698
static int inactive_file_is_low(struct lruvec *lruvec)
1699
{
1700 1701 1702 1703 1704
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1705

1706
	return active > inactive;
1707 1708
}

H
Hugh Dickins 已提交
1709
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1710
{
H
Hugh Dickins 已提交
1711
	if (is_file_lru(lru))
1712
		return inactive_file_is_low(lruvec);
1713
	else
1714
		return inactive_anon_is_low(lruvec);
1715 1716
}

1717
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1718
				 struct lruvec *lruvec, struct scan_control *sc)
1719
{
1720
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1721
		if (inactive_list_is_low(lruvec, lru))
1722
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1723 1724 1725
		return 0;
	}

1726
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1727 1728
}

1729
static int vmscan_swappiness(struct scan_control *sc)
1730
{
1731
	if (global_reclaim(sc))
1732
		return vm_swappiness;
1733
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1734 1735
}

1736 1737 1738 1739 1740 1741 1742
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1743 1744 1745 1746 1747 1748
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1749 1750
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1751
 */
1752
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1753
			   unsigned long *nr)
1754
{
1755 1756 1757 1758
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1759
	unsigned long anon_prio, file_prio;
1760 1761 1762
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1763
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1764
	enum lru_list lru;
1765

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1776
	if (current_is_kswapd() && zone->all_unreclaimable)
1777
		force_scan = true;
1778
	if (!global_reclaim(sc))
1779
		force_scan = true;
1780 1781

	/* If we have no swap space, do not bother scanning anon pages. */
1782
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1783
		scan_balance = SCAN_FILE;
1784 1785
		goto out;
	}
1786

1787 1788 1789 1790 1791 1792 1793 1794
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1795
		scan_balance = SCAN_FILE;
1796 1797 1798 1799 1800 1801 1802 1803 1804
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1805
		scan_balance = SCAN_EQUAL;
1806 1807 1808
		goto out;
	}

1809 1810 1811 1812
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1813

1814 1815 1816 1817 1818 1819
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1820
	if (global_reclaim(sc)) {
1821
		free = zone_page_state(zone, NR_FREE_PAGES);
1822
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1823
			scan_balance = SCAN_ANON;
1824
			goto out;
1825
		}
1826 1827
	}

1828 1829 1830 1831 1832
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1833
		scan_balance = SCAN_FILE;
1834 1835 1836
		goto out;
	}

1837 1838
	scan_balance = SCAN_FRACT;

1839 1840 1841 1842
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1843
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1844
	file_prio = 200 - anon_prio;
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1857
	spin_lock_irq(&zone->lru_lock);
1858 1859 1860
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1861 1862
	}

1863 1864 1865
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1866 1867 1868
	}

	/*
1869 1870 1871
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1872
	 */
1873
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1874
	ap /= reclaim_stat->recent_rotated[0] + 1;
1875

1876
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1877
	fp /= reclaim_stat->recent_rotated[1] + 1;
1878
	spin_unlock_irq(&zone->lru_lock);
1879

1880 1881 1882 1883
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1884 1885
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1886
		unsigned long size;
1887
		unsigned long scan;
1888

1889
		size = get_lru_size(lruvec, lru);
1890
		scan = size >> sc->priority;
1891

1892 1893
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1916
		nr[lru] = scan;
1917
	}
1918
}
1919

1920 1921 1922 1923 1924 1925
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1926
	unsigned long targets[NR_LRU_LISTS];
1927 1928 1929 1930 1931
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
1932
	bool scan_adjusted = false;
1933 1934 1935

	get_scan_count(lruvec, sc, nr);

1936 1937 1938
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

1939 1940 1941
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
1942 1943 1944
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

1945 1946 1947 1948 1949 1950 1951 1952 1953
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
1954 1955 1956 1957

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

1958
		/*
1959 1960 1961 1962
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
1963
		 */
1964
		if (global_reclaim(sc) && !current_is_kswapd())
1965
			break;
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2023
/* Use reclaim/compaction for costly allocs or under memory pressure */
2024
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2025
{
2026
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2027
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2028
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2029 2030 2031 2032 2033
		return true;

	return false;
}

2034
/*
M
Mel Gorman 已提交
2035 2036 2037 2038 2039
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2040
 */
2041
static inline bool should_continue_reclaim(struct zone *zone,
2042 2043 2044 2045 2046 2047 2048 2049
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2050
	if (!in_reclaim_compaction(sc))
2051 2052
		return false;

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2075 2076 2077 2078 2079 2080

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2081
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2082
	if (get_nr_swap_pages() > 0)
2083
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2084 2085 2086 2087 2088
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2089
	switch (compaction_suitable(zone, sc->order)) {
2090 2091 2092 2093 2094 2095 2096 2097
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2098
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2099
{
2100
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2101

2102 2103 2104 2105 2106 2107 2108
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
		struct mem_cgroup *memcg;
2109

2110 2111
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2112

2113 2114 2115
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
			struct lruvec *lruvec;
2116

2117
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2118

2119
			shrink_lruvec(lruvec, sc);
2120

2121
			/*
2122 2123
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2124
			 * zone.
2125 2126 2127 2128 2129
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2130
			 */
2131 2132
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2133 2134 2135 2136 2137
				mem_cgroup_iter_break(root, memcg);
				break;
			}
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2138 2139 2140 2141 2142

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2143 2144
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2145 2146
}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2164
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2165 2166 2167 2168 2169 2170 2171 2172
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2173
	if (compaction_deferred(zone, sc->order))
2174 2175 2176 2177 2178 2179 2180 2181 2182
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2183 2184 2185 2186 2187
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2188 2189
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2190 2191
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2192 2193 2194
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2195 2196 2197
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2198 2199
 *
 * This function returns true if a zone is being reclaimed for a costly
2200
 * high-order allocation and compaction is ready to begin. This indicates to
2201 2202
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2203
 */
2204
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2205
{
2206
	struct zoneref *z;
2207
	struct zone *zone;
2208 2209
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2210
	bool aborted_reclaim = false;
2211

2212 2213 2214 2215 2216 2217 2218 2219
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2220 2221
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2222
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2223
			continue;
2224 2225 2226 2227
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2228
		if (global_reclaim(sc)) {
2229 2230
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2231 2232
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
2233
				continue;	/* Let kswapd poll it */
2234
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2235
				/*
2236 2237 2238 2239 2240
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2241 2242
				 * noticeable problem, like transparent huge
				 * page allocations.
2243
				 */
2244
				if (compaction_ready(zone, sc)) {
2245
					aborted_reclaim = true;
2246
					continue;
2247
				}
2248
			}
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2262
		}
2263

2264
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2265
	}
2266

2267
	return aborted_reclaim;
2268 2269 2270 2271 2272 2273 2274
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2275
/* All zones in zonelist are unreclaimable? */
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2288 2289
		if (!zone->all_unreclaimable)
			return false;
2290 2291
	}

2292
	return true;
L
Linus Torvalds 已提交
2293
}
2294

L
Linus Torvalds 已提交
2295 2296 2297 2298 2299 2300 2301 2302
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2303 2304 2305 2306
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2307 2308 2309
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2310
 */
2311
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2312 2313
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2314
{
2315
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2316
	struct reclaim_state *reclaim_state = current->reclaim_state;
2317
	struct zoneref *z;
2318
	struct zone *zone;
2319
	unsigned long writeback_threshold;
2320
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2321

2322 2323
	delayacct_freepages_start();

2324
	if (global_reclaim(sc))
2325
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2326

2327
	do {
2328 2329
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2330
		sc->nr_scanned = 0;
2331
		aborted_reclaim = shrink_zones(zonelist, sc);
2332

2333 2334 2335 2336
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2337
		if (global_reclaim(sc)) {
2338
			unsigned long lru_pages = 0;
2339 2340
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2341 2342 2343 2344 2345 2346
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2347
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2348
			if (reclaim_state) {
2349
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2350 2351
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2352
		}
2353
		total_scanned += sc->nr_scanned;
2354
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2355 2356
			goto out;

2357 2358 2359 2360 2361 2362 2363
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2364 2365 2366 2367 2368 2369 2370
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2371 2372
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2373 2374
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2375
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2376 2377 2378
		}

		/* Take a nap, wait for some writeback to complete */
2379
		if (!sc->hibernation_mode && sc->nr_scanned &&
2380
		    sc->priority < DEF_PRIORITY - 2) {
2381 2382 2383
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2384 2385
						&cpuset_current_mems_allowed,
						&preferred_zone);
2386 2387
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2388
	} while (--sc->priority >= 0);
2389

L
Linus Torvalds 已提交
2390
out:
2391 2392
	delayacct_freepages_end();

2393 2394 2395
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2396 2397 2398 2399 2400 2401 2402 2403
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2404 2405
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2406 2407
		return 1;

2408
	/* top priority shrink_zones still had more to do? don't OOM, then */
2409
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2410 2411 2412
		return 1;

	return 0;
L
Linus Torvalds 已提交
2413 2414
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2445 2446 2447 2448
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2449
 */
2450
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2465 2466 2467 2468 2469 2470 2471 2472
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2473 2474 2475 2476 2477

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2478
		goto out;
2479

2480 2481 2482
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2494 2495

		goto check_pending;
2496 2497 2498 2499 2500
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2501 2502 2503 2504 2505 2506 2507

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2508 2509
}

2510
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2511
				gfp_t gfp_mask, nodemask_t *nodemask)
2512
{
2513
	unsigned long nr_reclaimed;
2514
	struct scan_control sc = {
2515
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2516
		.may_writepage = !laptop_mode,
2517
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2518
		.may_unmap = 1,
2519
		.may_swap = 1,
2520
		.order = order,
2521
		.priority = DEF_PRIORITY,
2522
		.target_mem_cgroup = NULL,
2523
		.nodemask = nodemask,
2524
	};
2525 2526 2527
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2528

2529
	/*
2530 2531 2532
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2533
	 */
2534
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2535 2536
		return 1;

2537 2538 2539 2540
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2541
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2542 2543 2544 2545

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2546 2547
}

A
Andrew Morton 已提交
2548
#ifdef CONFIG_MEMCG
2549

2550
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2551
						gfp_t gfp_mask, bool noswap,
2552 2553
						struct zone *zone,
						unsigned long *nr_scanned)
2554 2555
{
	struct scan_control sc = {
2556
		.nr_scanned = 0,
2557
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2558 2559 2560 2561
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2562
		.priority = 0,
2563
		.target_mem_cgroup = memcg,
2564
	};
2565
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2566

2567 2568
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2569

2570
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2571 2572 2573
						      sc.may_writepage,
						      sc.gfp_mask);

2574 2575 2576 2577 2578 2579 2580
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2581
	shrink_lruvec(lruvec, &sc);
2582 2583 2584

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2585
	*nr_scanned = sc.nr_scanned;
2586 2587 2588
	return sc.nr_reclaimed;
}

2589
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2590
					   gfp_t gfp_mask,
2591
					   bool noswap)
2592
{
2593
	struct zonelist *zonelist;
2594
	unsigned long nr_reclaimed;
2595
	int nid;
2596 2597
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2598
		.may_unmap = 1,
2599
		.may_swap = !noswap,
2600
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2601
		.order = 0,
2602
		.priority = DEF_PRIORITY,
2603
		.target_mem_cgroup = memcg,
2604
		.nodemask = NULL, /* we don't care the placement */
2605 2606 2607 2608 2609
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2610 2611
	};

2612 2613 2614 2615 2616
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2617
	nid = mem_cgroup_select_victim_node(memcg);
2618 2619

	zonelist = NODE_DATA(nid)->node_zonelists;
2620 2621 2622 2623 2624

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2625
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2626 2627 2628 2629

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2630 2631 2632
}
#endif

2633
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2634
{
2635
	struct mem_cgroup *memcg;
2636

2637 2638 2639 2640 2641
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2642
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2643

2644
		if (inactive_anon_is_low(lruvec))
2645
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2646
					   sc, LRU_ACTIVE_ANON);
2647 2648 2649

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2650 2651
}

2652 2653 2654 2655 2656 2657 2658
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2659 2660
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2661 2662 2663 2664 2665
		return false;

	return true;
}

2666
/*
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2677 2678 2679 2680
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2681
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2682 2683 2684 2685
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2686
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2687
{
2688
	unsigned long managed_pages = 0;
2689
	unsigned long balanced_pages = 0;
2690 2691
	int i;

2692 2693 2694
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2695

2696 2697 2698
		if (!populated_zone(zone))
			continue;

2699
		managed_pages += zone->managed_pages;
2700 2701 2702 2703 2704 2705 2706 2707 2708

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
		if (zone->all_unreclaimable) {
2709
			balanced_pages += zone->managed_pages;
2710 2711 2712 2713
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2714
			balanced_pages += zone->managed_pages;
2715 2716 2717 2718 2719
		else if (!order)
			return false;
	}

	if (order)
2720
		return balanced_pages >= (managed_pages >> 2);
2721 2722
	else
		return true;
2723 2724
}

2725 2726 2727 2728 2729 2730 2731
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2732
					int classzone_idx)
2733 2734 2735
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2751

2752
	return pgdat_balanced(pgdat, order, classzone_idx);
2753 2754
}

2755 2756 2757
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2758 2759
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2760 2761
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2762
 */
2763
static bool kswapd_shrink_zone(struct zone *zone,
2764
			       int classzone_idx,
2765
			       struct scan_control *sc,
2766 2767
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2768 2769
{
	unsigned long nr_slab;
2770 2771
	int testorder = sc->order;
	unsigned long balance_gap;
2772 2773 2774 2775
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2776
	bool lowmem_pressure;
2777 2778 2779

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2811 2812 2813 2814 2815 2816
	shrink_zone(zone, sc);

	reclaim_state->reclaimed_slab = 0;
	nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2817 2818 2819
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2820 2821
	if (nr_slab == 0 && !zone_reclaimable(zone))
		zone->all_unreclaimable = 1;
2822

2823 2824
	zone_clear_flag(zone, ZONE_WRITEBACK);

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
	if (!zone->all_unreclaimable &&
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2837
	return sc->nr_scanned >= sc->nr_to_reclaim;
2838 2839
}

L
Linus Torvalds 已提交
2840 2841
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2842
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2843
 *
2844
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2855 2856 2857 2858 2859
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2860
 */
2861
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2862
							int *classzone_idx)
L
Linus Torvalds 已提交
2863 2864
{
	int i;
2865
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2866 2867
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2868 2869
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2870
		.priority = DEF_PRIORITY,
2871
		.may_unmap = 1,
2872
		.may_swap = 1,
2873
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2874
		.order = order,
2875
		.target_mem_cgroup = NULL,
2876
	};
2877
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2878

2879
	do {
L
Linus Torvalds 已提交
2880
		unsigned long lru_pages = 0;
2881
		unsigned long nr_attempted = 0;
2882
		bool raise_priority = true;
2883
		bool pgdat_needs_compaction = (order > 0);
2884 2885

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2886

2887 2888 2889 2890 2891 2892
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2893

2894 2895
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2896

2897 2898
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2899
				continue;
L
Linus Torvalds 已提交
2900

2901 2902 2903 2904
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2905
			age_active_anon(zone, &sc);
2906

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2918
			if (!zone_balanced(zone, order, 0, 0)) {
2919
				end_zone = i;
A
Andrew Morton 已提交
2920
				break;
2921
			} else {
2922 2923 2924 2925
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2926
				zone_clear_flag(zone, ZONE_CONGESTED);
2927
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2928 2929
			}
		}
2930

2931
		if (i < 0)
A
Andrew Morton 已提交
2932 2933
			goto out;

L
Linus Torvalds 已提交
2934 2935 2936
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2937 2938 2939
			if (!populated_zone(zone))
				continue;

2940
			lru_pages += zone_reclaimable_pages(zone);
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
2952 2953
		}

2954 2955 2956 2957 2958 2959 2960
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2973
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2974 2975
				continue;

2976 2977
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2978 2979 2980
				continue;

			sc.nr_scanned = 0;
2981

2982
			nr_soft_scanned = 0;
2983 2984 2985
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2986 2987 2988 2989
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
2990

2991
			/*
2992 2993 2994 2995
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
2996
			 */
2997 2998 2999
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3000
		}
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3011
		/*
3012 3013 3014 3015 3016 3017
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3018
		 */
3019 3020
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3021

3022 3023 3024
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3025

3026 3027 3028 3029 3030 3031 3032
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3033
		/*
3034 3035
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3036
		 */
3037 3038
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3039
	} while (sc.priority >= 1 &&
3040
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3041

3042
out:
3043
	/*
3044
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3045 3046 3047 3048
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3049
	*classzone_idx = end_zone;
3050
	return order;
L
Linus Torvalds 已提交
3051 3052
}

3053
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3064
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3065 3066 3067 3068 3069 3070 3071 3072 3073
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3074
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3086

3087 3088 3089 3090 3091 3092 3093 3094
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3095 3096 3097
		if (!kthread_should_stop())
			schedule();

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3108 3109
/*
 * The background pageout daemon, started as a kernel thread
3110
 * from the init process.
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3123
	unsigned long order, new_order;
3124
	unsigned balanced_order;
3125
	int classzone_idx, new_classzone_idx;
3126
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3127 3128
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3129

L
Linus Torvalds 已提交
3130 3131 3132
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3133
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3134

3135 3136
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3137
	if (!cpumask_empty(cpumask))
3138
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3153
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3154
	set_freezable();
L
Linus Torvalds 已提交
3155

3156
	order = new_order = 0;
3157
	balanced_order = 0;
3158
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3159
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3160
	for ( ; ; ) {
3161
		bool ret;
3162

3163 3164 3165 3166 3167
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3168 3169
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3170 3171 3172 3173 3174 3175
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3176
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3177 3178
			/*
			 * Don't sleep if someone wants a larger 'order'
3179
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3180 3181
			 */
			order = new_order;
3182
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3183
		} else {
3184 3185
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3186
			order = pgdat->kswapd_max_order;
3187
			classzone_idx = pgdat->classzone_idx;
3188 3189
			new_order = order;
			new_classzone_idx = classzone_idx;
3190
			pgdat->kswapd_max_order = 0;
3191
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3192 3193
		}

3194 3195 3196 3197 3198 3199 3200 3201
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3202 3203
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3204 3205 3206
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3207
		}
L
Linus Torvalds 已提交
3208
	}
3209 3210

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3211 3212 3213 3214 3215 3216
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3217
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3218 3219 3220
{
	pg_data_t *pgdat;

3221
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3222 3223
		return;

3224
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3225
		return;
3226
	pgdat = zone->zone_pgdat;
3227
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3228
		pgdat->kswapd_max_order = order;
3229 3230
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3231
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3232
		return;
3233 3234 3235 3236
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3237
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3238 3239
}

3240 3241 3242 3243 3244 3245 3246 3247
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3248
{
3249 3250 3251 3252 3253
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3254
	if (get_nr_swap_pages() > 0)
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

3268
	if (get_nr_swap_pages() > 0)
3269 3270 3271 3272
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3273 3274
}

3275
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3276
/*
3277
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3278 3279 3280 3281 3282
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3283
 */
3284
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3285
{
3286 3287
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3288 3289 3290
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3291
		.may_writepage = 1,
3292 3293 3294
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3295
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3296
	};
3297 3298 3299 3300
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3301 3302
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3303

3304 3305 3306 3307
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3308

3309
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3310

3311 3312 3313
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3314

3315
	return nr_reclaimed;
L
Linus Torvalds 已提交
3316
}
3317
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3318 3319 3320 3321 3322

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3323 3324
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3325
{
3326
	int nid;
L
Linus Torvalds 已提交
3327

3328
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3329
		for_each_node_state(nid, N_MEMORY) {
3330
			pg_data_t *pgdat = NODE_DATA(nid);
3331 3332 3333
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3334

3335
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3336
				/* One of our CPUs online: restore mask */
3337
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3338 3339 3340 3341 3342
		}
	}
	return NOTIFY_OK;
}

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3359 3360
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3361
		pgdat->kswapd = NULL;
3362 3363 3364 3365
	}
	return ret;
}

3366
/*
3367 3368
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3369 3370 3371 3372 3373
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3374
	if (kswapd) {
3375
		kthread_stop(kswapd);
3376 3377
		NODE_DATA(nid)->kswapd = NULL;
	}
3378 3379
}

L
Linus Torvalds 已提交
3380 3381
static int __init kswapd_init(void)
{
3382
	int nid;
3383

L
Linus Torvalds 已提交
3384
	swap_setup();
3385
	for_each_node_state(nid, N_MEMORY)
3386
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3402
#define RECLAIM_OFF 0
3403
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3404 3405 3406
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3407 3408 3409 3410 3411 3412 3413
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3414 3415 3416 3417 3418 3419
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3420 3421 3422 3423 3424 3425
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3468 3469 3470
/*
 * Try to free up some pages from this zone through reclaim.
 */
3471
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3472
{
3473
	/* Minimum pages needed in order to stay on node */
3474
	const unsigned long nr_pages = 1 << order;
3475 3476
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3477 3478
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3479
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3480
		.may_swap = 1,
3481
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3482
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3483
		.order = order,
3484
		.priority = ZONE_RECLAIM_PRIORITY,
3485
	};
3486 3487 3488
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3489
	unsigned long nr_slab_pages0, nr_slab_pages1;
3490 3491

	cond_resched();
3492 3493 3494 3495 3496 3497
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3498
	lockdep_set_current_reclaim_state(gfp_mask);
3499 3500
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3501

3502
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3503 3504 3505 3506 3507
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3508 3509
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3510
	}
3511

3512 3513
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3514
		/*
3515
		 * shrink_slab() does not currently allow us to determine how
3516 3517 3518 3519
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3520
		 *
3521 3522
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3523
		 */
3524 3525 3526 3527
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3528
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3529 3530 3531 3532 3533 3534 3535 3536
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3537 3538 3539 3540 3541

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3542 3543 3544
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3545 3546
	}

3547
	p->reclaim_state = NULL;
3548
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3549
	lockdep_clear_current_reclaim_state();
3550
	return sc.nr_reclaimed >= nr_pages;
3551
}
3552 3553 3554 3555

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3556
	int ret;
3557 3558

	/*
3559 3560
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3561
	 *
3562 3563 3564 3565 3566
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3567
	 */
3568 3569
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3570
		return ZONE_RECLAIM_FULL;
3571

3572
	if (zone->all_unreclaimable)
3573
		return ZONE_RECLAIM_FULL;
3574

3575
	/*
3576
	 * Do not scan if the allocation should not be delayed.
3577
	 */
3578
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3579
		return ZONE_RECLAIM_NOSCAN;
3580 3581 3582 3583 3584 3585 3586

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3587
	node_id = zone_to_nid(zone);
3588
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3589
		return ZONE_RECLAIM_NOSCAN;
3590 3591

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3592 3593
		return ZONE_RECLAIM_NOSCAN;

3594 3595 3596
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3597 3598 3599
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3600
	return ret;
3601
}
3602
#endif
L
Lee Schermerhorn 已提交
3603 3604 3605 3606 3607 3608

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3609
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3610 3611
 *
 * Reasons page might not be evictable:
3612
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3613
 * (2) page is part of an mlocked VMA
3614
 *
L
Lee Schermerhorn 已提交
3615
 */
3616
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3617
{
3618
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3619
}
3620

3621
#ifdef CONFIG_SHMEM
3622
/**
3623 3624 3625
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3626
 *
3627
 * Checks pages for evictability and moves them to the appropriate lru list.
3628 3629
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3630
 */
3631
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3632
{
3633
	struct lruvec *lruvec;
3634 3635 3636 3637
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3638

3639 3640 3641
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3642

3643 3644 3645 3646 3647 3648 3649 3650
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3651
		lruvec = mem_cgroup_page_lruvec(page, zone);
3652

3653 3654
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3655

3656
		if (page_evictable(page)) {
3657 3658 3659 3660
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3661 3662
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3663
			pgrescued++;
3664
		}
3665
	}
3666

3667 3668 3669 3670
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3671 3672
	}
}
3673
#endif /* CONFIG_SHMEM */
3674

3675
static void warn_scan_unevictable_pages(void)
3676
{
3677
	printk_once(KERN_WARNING
3678
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3679
		    "disabled for lack of a legitimate use case.  If you have "
3680 3681
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3682 3683 3684 3685 3686 3687 3688 3689 3690
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3691
			   void __user *buffer,
3692 3693
			   size_t *length, loff_t *ppos)
{
3694
	warn_scan_unevictable_pages();
3695
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3696 3697 3698 3699
	scan_unevictable_pages = 0;
	return 0;
}

3700
#ifdef CONFIG_NUMA
3701 3702 3703 3704 3705
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3706 3707
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3708 3709
					  char *buf)
{
3710
	warn_scan_unevictable_pages();
3711 3712 3713
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3714 3715
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3716 3717
					const char *buf, size_t count)
{
3718
	warn_scan_unevictable_pages();
3719 3720 3721 3722
	return 1;
}


3723
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3724 3725 3726 3727 3728
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3729
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3730 3731 3732 3733
}

void scan_unevictable_unregister_node(struct node *node)
{
3734
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3735
}
3736
#endif