vmscan.c 97.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
56 57 58 59
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

60 61 62
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

66 67
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70 71 72

	int may_writepage;

73 74
	/* Can mapped pages be reclaimed? */
	int may_unmap;
75

76 77 78
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83
	/* Scan (total_size >> priority) pages at once */
	int priority;

84 85 86 87 88
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
89

90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
131
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
132 133 134 135

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
136
#ifdef CONFIG_MEMCG
137 138
static bool global_reclaim(struct scan_control *sc)
{
139
	return !sc->target_mem_cgroup;
140
}
141
#else
142 143 144 145
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
146 147
#endif

148
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149
{
150
	if (!mem_cgroup_disabled())
151
		return mem_cgroup_get_lru_size(lruvec, lru);
152

153
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 155
}

L
Linus Torvalds 已提交
156 157 158
/*
 * Add a shrinker callback to be called from the vm
 */
159
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
160
{
161
	atomic_long_set(&shrinker->nr_in_batch, 0);
162 163 164
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
165
}
166
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
167 168 169 170

/*
 * Remove one
 */
171
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
172 173 174 175 176
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
177
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
178

179 180 181 182 183 184 185 186
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
187 188 189 190 191 192 193 194 195
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
196
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
197 198 199 200 201 202 203
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
204 205
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
206
 */
207
unsigned long shrink_slab(struct shrink_control *shrink,
208
			  unsigned long nr_pages_scanned,
209
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
210 211
{
	struct shrinker *shrinker;
212
	unsigned long ret = 0;
L
Linus Torvalds 已提交
213

214 215
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
216

217 218 219 220 221
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
222 223 224

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
225 226
		long total_scan;
		long max_pass;
227
		int shrink_ret = 0;
228 229
		long nr;
		long new_nr;
230 231
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
232

233 234 235 236
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

237 238 239 240 241
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
242
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243 244

		total_scan = nr;
245
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
246
		delta *= max_pass;
L
Linus Torvalds 已提交
247
		do_div(delta, lru_pages + 1);
248 249
		total_scan += delta;
		if (total_scan < 0) {
250 251
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
252 253
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
254 255
		}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

271 272 273 274 275
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
276 277
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
278

279
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 281 282
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

283
		while (total_scan >= batch_size) {
284
			int nr_before;
L
Linus Torvalds 已提交
285

286 287
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
288
							batch_size);
L
Linus Torvalds 已提交
289 290
			if (shrink_ret == -1)
				break;
291 292
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
293 294
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
295 296 297 298

			cond_resched();
		}

299 300 301 302 303
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
304 305 306 307 308
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
309 310

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
311 312
	}
	up_read(&shrinker_rwsem);
313 314
out:
	cond_resched();
315
	return ret;
L
Linus Torvalds 已提交
316 317 318 319
}

static inline int is_page_cache_freeable(struct page *page)
{
320 321 322 323 324
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
325
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
326 327
}

328 329
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
330
{
331
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
355
	lock_page(page);
356 357
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
358 359 360
	unlock_page(page);
}

361 362 363 364 365 366 367 368 369 370 371 372
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
373
/*
A
Andrew Morton 已提交
374 375
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
376
 */
377
static pageout_t pageout(struct page *page, struct address_space *mapping,
378
			 struct scan_control *sc)
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
387
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
403
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
404 405
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
406
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
407 408 409 410 411 412 413
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
414
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
415 416 417 418 419 420 421
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
422 423
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
424 425 426 427 428 429 430
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
431
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
432 433 434
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
435

L
Linus Torvalds 已提交
436 437 438 439
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
440
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
442 443 444 445 446 447
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

448
/*
N
Nick Piggin 已提交
449 450
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
451
 */
N
Nick Piggin 已提交
452
static int __remove_mapping(struct address_space *mapping, struct page *page)
453
{
454 455
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
456

N
Nick Piggin 已提交
457
	spin_lock_irq(&mapping->tree_lock);
458
	/*
N
Nick Piggin 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
482
	 */
N
Nick Piggin 已提交
483
	if (!page_freeze_refs(page, 2))
484
		goto cannot_free;
N
Nick Piggin 已提交
485 486 487
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
488
		goto cannot_free;
N
Nick Piggin 已提交
489
	}
490 491 492 493

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
494
		spin_unlock_irq(&mapping->tree_lock);
495
		swapcache_free(swap, page);
N
Nick Piggin 已提交
496
	} else {
497 498 499 500
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

501
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
502
		spin_unlock_irq(&mapping->tree_lock);
503
		mem_cgroup_uncharge_cache_page(page);
504 505 506

		if (freepage != NULL)
			freepage(page);
507 508 509 510 511
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
512
	spin_unlock_irq(&mapping->tree_lock);
513 514 515
	return 0;
}

N
Nick Piggin 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
549
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
563
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
564 565 566 567 568 569 570 571
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
572
		/*
573 574 575
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
576
		 * isolation/check_move_unevictable_pages,
577
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 579
		 * the page back to the evictable list.
		 *
580
		 * The other side is TestClearPageMlocked() or shmem_lock().
581 582
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

601 602 603 604 605
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
606 607 608
	put_page(page);		/* drop ref from isolate */
}

609 610 611
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
612
	PAGEREF_KEEP,
613 614 615 616 617 618
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
619
	int referenced_ptes, referenced_page;
620 621
	unsigned long vm_flags;

622 623
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
624
	referenced_page = TestClearPageReferenced(page);
625 626 627 628 629 630 631 632

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

633
	if (referenced_ptes) {
634
		if (PageSwapBacked(page))
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

652
		if (referenced_page || referenced_ptes > 1)
653 654
			return PAGEREF_ACTIVATE;

655 656 657 658 659 660
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

661 662
		return PAGEREF_KEEP;
	}
663 664

	/* Reclaim if clean, defer dirty pages to writeback */
665
	if (referenced_page && !PageSwapBacked(page))
666 667 668
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
669 670
}

L
Linus Torvalds 已提交
671
/*
A
Andrew Morton 已提交
672
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
673
 */
A
Andrew Morton 已提交
674
static unsigned long shrink_page_list(struct list_head *page_list,
675
				      struct zone *zone,
676
				      struct scan_control *sc,
677 678
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
679 680
{
	LIST_HEAD(ret_pages);
681
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
682
	int pgactivate = 0;
683 684
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
685
	unsigned long nr_reclaimed = 0;
686
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
687 688 689 690

	cond_resched();

	while (!list_empty(page_list)) {
691
		enum page_references references;
L
Linus Torvalds 已提交
692 693 694 695 696 697 698 699 700
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
701
		if (!trylock_page(page))
L
Linus Torvalds 已提交
702 703
			goto keep;

N
Nick Piggin 已提交
704
		VM_BUG_ON(PageActive(page));
705
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
706 707

		sc->nr_scanned++;
708

N
Nick Piggin 已提交
709 710
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
711

712
		if (!sc->may_unmap && page_mapped(page))
713 714
			goto keep_locked;

L
Linus Torvalds 已提交
715 716 717 718
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

719 720 721 722
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
723
			nr_writeback++;
724 725
			unlock_page(page);
			goto keep;
726
		}
L
Linus Torvalds 已提交
727

728
		references = page_check_references(page, sc);
729 730
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
731
			goto activate_locked;
732 733
		case PAGEREF_KEEP:
			goto keep_locked;
734 735 736 737
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
738 739 740 741 742

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
743
		if (PageAnon(page) && !PageSwapCache(page)) {
744 745
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
746
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
747
				goto activate_locked;
748
			may_enter_fs = 1;
N
Nick Piggin 已提交
749
		}
L
Linus Torvalds 已提交
750 751 752 753 754 755 756 757

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
758
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
759 760 761 762
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
763 764
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
765 766 767 768 769 770
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
771 772
			nr_dirty++;

773 774
			/*
			 * Only kswapd can writeback filesystem pages to
775 776
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
777
			 */
778
			if (page_is_file_cache(page) &&
779 780
					(!current_is_kswapd() ||
					 sc->priority >= DEF_PRIORITY - 2)) {
781 782 783 784 785 786 787 788 789
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

790 791 792
				goto keep_locked;
			}

793
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
794
				goto keep_locked;
795
			if (!may_enter_fs)
L
Linus Torvalds 已提交
796
				goto keep_locked;
797
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
798 799 800
				goto keep_locked;

			/* Page is dirty, try to write it out here */
801
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
802
			case PAGE_KEEP:
803
				nr_congested++;
L
Linus Torvalds 已提交
804 805 806 807
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
808
				if (PageWriteback(page))
809
					goto keep;
810
				if (PageDirty(page))
L
Linus Torvalds 已提交
811
					goto keep;
812

L
Linus Torvalds 已提交
813 814 815 816
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
817
				if (!trylock_page(page))
L
Linus Torvalds 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
837
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
838 839 840 841 842 843 844 845 846 847
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
848
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
849 850
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
867 868
		}

N
Nick Piggin 已提交
869
		if (!mapping || !__remove_mapping(mapping, page))
870
			goto keep_locked;
L
Linus Torvalds 已提交
871

N
Nick Piggin 已提交
872 873 874 875 876 877 878 879
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
880
free_it:
881
		nr_reclaimed++;
882 883 884 885 886 887

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
888 889
		continue;

N
Nick Piggin 已提交
890
cull_mlocked:
891 892
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
893 894 895 896
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
897
activate_locked:
898 899
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
900
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
901
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
902 903 904 905 906 907
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
908
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
909
	}
910

911 912 913 914 915 916
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
917
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
918
		zone_set_flag(zone, ZONE_CONGESTED);
919

920
	free_hot_cold_page_list(&free_pages, 1);
921

L
Linus Torvalds 已提交
922
	list_splice(&ret_pages, page_list);
923
	count_vm_events(PGACTIVATE, pgactivate);
924 925
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
926
	return nr_reclaimed;
L
Linus Torvalds 已提交
927 928
}

A
Andy Whitcroft 已提交
929 930 931 932 933 934 935 936 937 938
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
939
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
940 941 942 943 944 945 946
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Mel Gorman 已提交
947
	/* Do not give back unevictable pages for compaction */
L
Lee Schermerhorn 已提交
948 949 950
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
951
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
986

987 988 989
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1014
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1015
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1016
 * @nr_scanned:	The number of pages that were scanned.
1017
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1018
 * @mode:	One of the LRU isolation modes
1019
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1020 1021 1022
 *
 * returns how many pages were moved onto *@dst.
 */
1023
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1024
		struct lruvec *lruvec, struct list_head *dst,
1025
		unsigned long *nr_scanned, struct scan_control *sc,
1026
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1027
{
H
Hugh Dickins 已提交
1028
	struct list_head *src = &lruvec->lists[lru];
1029
	unsigned long nr_taken = 0;
1030
	unsigned long scan;
L
Linus Torvalds 已提交
1031

1032
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1033
		struct page *page;
1034
		int nr_pages;
A
Andy Whitcroft 已提交
1035

L
Linus Torvalds 已提交
1036 1037 1038
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1039
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1040

1041
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1042
		case 0:
1043 1044
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1045
			list_move(&page->lru, dst);
1046
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1047 1048 1049 1050 1051 1052
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1053

A
Andy Whitcroft 已提交
1054 1055 1056
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1057 1058
	}

H
Hugh Dickins 已提交
1059
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1060 1061
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1062 1063 1064
	return nr_taken;
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1076 1077 1078
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1094 1095
	VM_BUG_ON(!page_count(page));

1096 1097
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1098
		struct lruvec *lruvec;
1099 1100

		spin_lock_irq(&zone->lru_lock);
1101
		lruvec = mem_cgroup_page_lruvec(page, zone);
1102
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1103
			int lru = page_lru(page);
1104
			get_page(page);
1105
			ClearPageLRU(page);
1106 1107
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1108 1109 1110 1111 1112 1113
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1125
	if (!global_reclaim(sc))
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1139
static noinline_for_stack void
H
Hugh Dickins 已提交
1140
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1141
{
1142 1143
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1144
	LIST_HEAD(pages_to_free);
1145 1146 1147 1148 1149

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1150
		struct page *page = lru_to_page(page_list);
1151
		int lru;
1152

1153 1154 1155 1156 1157 1158 1159 1160
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1161 1162 1163

		lruvec = mem_cgroup_page_lruvec(page, zone);

1164
		SetPageLRU(page);
1165
		lru = page_lru(page);
1166 1167
		add_page_to_lru_list(page, lruvec, lru);

1168 1169
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1170 1171
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1172
		}
1173 1174 1175
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1176
			del_page_from_lru_list(page, lruvec, lru);
1177 1178 1179 1180 1181 1182 1183

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1184 1185 1186
		}
	}

1187 1188 1189 1190
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1191 1192
}

L
Linus Torvalds 已提交
1193
/*
A
Andrew Morton 已提交
1194 1195
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1196
 */
1197
static noinline_for_stack unsigned long
1198
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1199
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1200 1201
{
	LIST_HEAD(page_list);
1202
	unsigned long nr_scanned;
1203
	unsigned long nr_reclaimed = 0;
1204
	unsigned long nr_taken;
1205 1206
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1207
	isolate_mode_t isolate_mode = 0;
1208
	int file = is_file_lru(lru);
1209 1210
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1211

1212
	while (unlikely(too_many_isolated(zone, file, sc))) {
1213
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1214 1215 1216 1217 1218 1219

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1220
	lru_add_drain();
1221 1222

	if (!sc->may_unmap)
1223
		isolate_mode |= ISOLATE_UNMAPPED;
1224
	if (!sc->may_writepage)
1225
		isolate_mode |= ISOLATE_CLEAN;
1226

L
Linus Torvalds 已提交
1227
	spin_lock_irq(&zone->lru_lock);
1228

1229 1230
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1231 1232 1233 1234

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1235
	if (global_reclaim(sc)) {
1236 1237
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1238
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1239
		else
H
Hugh Dickins 已提交
1240
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1241
	}
1242
	spin_unlock_irq(&zone->lru_lock);
1243

1244
	if (nr_taken == 0)
1245
		return 0;
A
Andy Whitcroft 已提交
1246

1247
	nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1248
						&nr_dirty, &nr_writeback);
1249

1250 1251
	spin_lock_irq(&zone->lru_lock);

1252
	reclaim_stat->recent_scanned[file] += nr_taken;
1253

Y
Ying Han 已提交
1254 1255 1256 1257 1258 1259 1260 1261
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1262

1263
	putback_inactive_pages(lruvec, &page_list);
1264

1265
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1266 1267 1268 1269

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1294 1295
	if (nr_writeback && nr_writeback >=
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1296 1297
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1298 1299 1300
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1301
		sc->priority,
M
Mel Gorman 已提交
1302
		trace_shrink_flags(file));
1303
	return nr_reclaimed;
L
Linus Torvalds 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1323

1324
static void move_active_pages_to_lru(struct lruvec *lruvec,
1325
				     struct list_head *list,
1326
				     struct list_head *pages_to_free,
1327 1328
				     enum lru_list lru)
{
1329
	struct zone *zone = lruvec_zone(lruvec);
1330 1331
	unsigned long pgmoved = 0;
	struct page *page;
1332
	int nr_pages;
1333 1334 1335

	while (!list_empty(list)) {
		page = lru_to_page(list);
1336
		lruvec = mem_cgroup_page_lruvec(page, zone);
1337 1338 1339 1340

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1341 1342
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1343
		list_move(&page->lru, &lruvec->lists[lru]);
1344
		pgmoved += nr_pages;
1345

1346 1347 1348
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1349
			del_page_from_lru_list(page, lruvec, lru);
1350 1351 1352 1353 1354 1355 1356

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1357 1358 1359 1360 1361 1362
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1363

H
Hugh Dickins 已提交
1364
static void shrink_active_list(unsigned long nr_to_scan,
1365
			       struct lruvec *lruvec,
1366
			       struct scan_control *sc,
1367
			       enum lru_list lru)
L
Linus Torvalds 已提交
1368
{
1369
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1370
	unsigned long nr_scanned;
1371
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1372
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1373
	LIST_HEAD(l_active);
1374
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1375
	struct page *page;
1376
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1377
	unsigned long nr_rotated = 0;
1378
	isolate_mode_t isolate_mode = 0;
1379
	int file = is_file_lru(lru);
1380
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1381 1382

	lru_add_drain();
1383 1384

	if (!sc->may_unmap)
1385
		isolate_mode |= ISOLATE_UNMAPPED;
1386
	if (!sc->may_writepage)
1387
		isolate_mode |= ISOLATE_CLEAN;
1388

L
Linus Torvalds 已提交
1389
	spin_lock_irq(&zone->lru_lock);
1390

1391 1392
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1393
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1394
		zone->pages_scanned += nr_scanned;
1395

1396
	reclaim_stat->recent_scanned[file] += nr_taken;
1397

H
Hugh Dickins 已提交
1398
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1399
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1400
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1401 1402 1403 1404 1405 1406
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1407

L
Lee Schermerhorn 已提交
1408 1409 1410 1411 1412
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1413 1414 1415 1416 1417 1418 1419 1420
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1421 1422
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1423
			nr_rotated += hpage_nr_pages(page);
1424 1425 1426 1427 1428 1429 1430 1431 1432
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1433
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1434 1435 1436 1437
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1438

1439
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1440 1441 1442
		list_add(&page->lru, &l_inactive);
	}

1443
	/*
1444
	 * Move pages back to the lru list.
1445
	 */
1446
	spin_lock_irq(&zone->lru_lock);
1447
	/*
1448 1449 1450 1451
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1452
	 */
1453
	reclaim_stat->recent_rotated[file] += nr_rotated;
1454

1455 1456
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1457
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1458
	spin_unlock_irq(&zone->lru_lock);
1459 1460

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1461 1462
}

1463
#ifdef CONFIG_SWAP
1464
static int inactive_anon_is_low_global(struct zone *zone)
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1477 1478
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1479
 * @lruvec: LRU vector to check
1480 1481 1482 1483
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1484
static int inactive_anon_is_low(struct lruvec *lruvec)
1485
{
1486 1487 1488 1489 1490 1491 1492
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1493
	if (!mem_cgroup_disabled())
1494
		return mem_cgroup_inactive_anon_is_low(lruvec);
1495

1496
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1497
}
1498
#else
1499
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1500 1501 1502 1503
{
	return 0;
}
#endif
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1517
 * @lruvec: LRU vector to check
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1529
static int inactive_file_is_low(struct lruvec *lruvec)
1530
{
1531
	if (!mem_cgroup_disabled())
1532
		return mem_cgroup_inactive_file_is_low(lruvec);
1533

1534
	return inactive_file_is_low_global(lruvec_zone(lruvec));
1535 1536
}

H
Hugh Dickins 已提交
1537
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1538
{
H
Hugh Dickins 已提交
1539
	if (is_file_lru(lru))
1540
		return inactive_file_is_low(lruvec);
1541
	else
1542
		return inactive_anon_is_low(lruvec);
1543 1544
}

1545
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1546
				 struct lruvec *lruvec, struct scan_control *sc)
1547
{
1548
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1549
		if (inactive_list_is_low(lruvec, lru))
1550
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1551 1552 1553
		return 0;
	}

1554
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1555 1556
}

1557
static int vmscan_swappiness(struct scan_control *sc)
1558
{
1559
	if (global_reclaim(sc))
1560
		return vm_swappiness;
1561
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1562 1563
}

1564 1565 1566 1567 1568 1569
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1570 1571
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1572
 */
1573
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1574
			   unsigned long *nr)
1575 1576 1577 1578
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1579
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1580
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1581
	enum lru_list lru;
1582
	int noswap = 0;
1583
	bool force_scan = false;
1584
	struct zone *zone = lruvec_zone(lruvec);
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1596
	if (current_is_kswapd() && zone->all_unreclaimable)
1597
		force_scan = true;
1598
	if (!global_reclaim(sc))
1599
		force_scan = true;
1600 1601 1602 1603 1604 1605 1606 1607 1608

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1609

1610 1611 1612 1613
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1614

1615
	if (global_reclaim(sc)) {
1616
		free  = zone_page_state(zone, NR_FREE_PAGES);
1617 1618
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1619
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1620 1621 1622 1623
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1624
		}
1625 1626
	}

1627 1628 1629 1630
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1631
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1632
	file_prio = 200 - anon_prio;
1633

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1645
	spin_lock_irq(&zone->lru_lock);
1646 1647 1648
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1649 1650
	}

1651 1652 1653
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1654 1655 1656
	}

	/*
1657 1658 1659
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1660
	 */
1661
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1662
	ap /= reclaim_stat->recent_rotated[0] + 1;
1663

1664
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1665
	fp /= reclaim_stat->recent_rotated[1] + 1;
1666
	spin_unlock_irq(&zone->lru_lock);
1667

1668 1669 1670 1671
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1672 1673
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1674
		unsigned long scan;
1675

1676
		scan = get_lru_size(lruvec, lru);
1677 1678
		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
			scan >>= sc->priority;
1679 1680
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1681 1682
			scan = div64_u64(scan * fraction[file], denominator);
		}
H
Hugh Dickins 已提交
1683
		nr[lru] = scan;
1684
	}
1685
}
1686

M
Mel Gorman 已提交
1687
/* Use reclaim/compaction for costly allocs or under memory pressure */
1688
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
1689 1690 1691
{
	if (COMPACTION_BUILD && sc->order &&
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1692
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
1693 1694 1695 1696 1697
		return true;

	return false;
}

1698
/*
M
Mel Gorman 已提交
1699 1700 1701 1702 1703
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1704
 */
1705
static inline bool should_continue_reclaim(struct lruvec *lruvec,
1706 1707 1708 1709 1710 1711 1712 1713
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1714
	if (!in_reclaim_compaction(sc))
1715 1716
		return false;

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1739 1740 1741 1742 1743 1744

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1745
	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1746
	if (nr_swap_pages > 0)
1747
		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1748 1749 1750 1751 1752
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1753
	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1754 1755 1756 1757 1758 1759 1760 1761
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1762 1763 1764
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1765
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
L
Linus Torvalds 已提交
1766
{
1767
	unsigned long nr[NR_LRU_LISTS];
1768
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1769
	enum lru_list lru;
1770
	unsigned long nr_reclaimed, nr_scanned;
1771
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1772
	struct blk_plug plug;
1773

1774 1775
restart:
	nr_reclaimed = 0;
1776
	nr_scanned = sc->nr_scanned;
1777
	get_scan_count(lruvec, sc, nr);
L
Linus Torvalds 已提交
1778

1779
	blk_start_plug(&plug);
1780 1781
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1782 1783
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1784
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1785 1786
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1787

H
Hugh Dickins 已提交
1788
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1789
							    lruvec, sc);
1790
			}
L
Linus Torvalds 已提交
1791
		}
1792 1793 1794 1795 1796 1797 1798 1799
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1800 1801
		if (nr_reclaimed >= nr_to_reclaim &&
		    sc->priority < DEF_PRIORITY)
1802
			break;
L
Linus Torvalds 已提交
1803
	}
1804
	blk_finish_plug(&plug);
1805
	sc->nr_reclaimed += nr_reclaimed;
1806

1807 1808 1809 1810
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1811
	if (inactive_anon_is_low(lruvec))
1812
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1813
				   sc, LRU_ACTIVE_ANON);
1814

1815
	/* reclaim/compaction might need reclaim to continue */
1816
	if (should_continue_reclaim(lruvec, nr_reclaimed,
1817
				    sc->nr_scanned - nr_scanned, sc))
1818 1819
		goto restart;

1820
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1821 1822
}

1823
static void shrink_zone(struct zone *zone, struct scan_control *sc)
1824
{
1825 1826
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
1827
		.zone = zone,
1828
		.priority = sc->priority,
1829
	};
1830 1831 1832 1833
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
1834 1835 1836
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);

		shrink_lruvec(lruvec, sc);
1837

1838 1839 1840 1841 1842
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
1843 1844 1845 1846
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
1847 1848 1849 1850 1851 1852 1853
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
1854 1855
}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
1882
	if (compaction_deferred(zone, sc->order))
1883 1884 1885 1886 1887 1888 1889 1890 1891
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
1892 1893 1894 1895 1896
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1897 1898
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1899 1900
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1901 1902 1903
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1904 1905 1906
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
1907 1908
 *
 * This function returns true if a zone is being reclaimed for a costly
1909
 * high-order allocation and compaction is ready to begin. This indicates to
1910 1911
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
1912
 */
1913
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
1914
{
1915
	struct zoneref *z;
1916
	struct zone *zone;
1917 1918
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
1919
	bool aborted_reclaim = false;
1920

1921 1922 1923 1924 1925 1926 1927 1928
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

1929 1930
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1931
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1932
			continue;
1933 1934 1935 1936
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1937
		if (global_reclaim(sc)) {
1938 1939
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1940 1941
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
1942
				continue;	/* Let kswapd poll it */
1943 1944
			if (COMPACTION_BUILD) {
				/*
1945 1946 1947 1948 1949
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
1950 1951
				 * noticeable problem, like transparent huge
				 * page allocations.
1952
				 */
1953
				if (compaction_ready(zone, sc)) {
1954
					aborted_reclaim = true;
1955
					continue;
1956
				}
1957
			}
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
1971
		}
1972

1973
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
1974
	}
1975

1976
	return aborted_reclaim;
1977 1978 1979 1980 1981 1982 1983
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

1984
/* All zones in zonelist are unreclaimable? */
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
1997 1998
		if (!zone->all_unreclaimable)
			return false;
1999 2000
	}

2001
	return true;
L
Linus Torvalds 已提交
2002
}
2003

L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009 2010 2011
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2012 2013 2014 2015
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2016 2017 2018
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2019
 */
2020
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2021 2022
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2023
{
2024
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2025
	struct reclaim_state *reclaim_state = current->reclaim_state;
2026
	struct zoneref *z;
2027
	struct zone *zone;
2028
	unsigned long writeback_threshold;
2029
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2030

2031 2032
	delayacct_freepages_start();

2033
	if (global_reclaim(sc))
2034
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2035

2036
	do {
2037
		sc->nr_scanned = 0;
2038
		aborted_reclaim = shrink_zones(zonelist, sc);
2039

2040 2041 2042 2043
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2044
		if (global_reclaim(sc)) {
2045
			unsigned long lru_pages = 0;
2046 2047
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2048 2049 2050 2051 2052 2053
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2054
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2055
			if (reclaim_state) {
2056
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2057 2058
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2059
		}
2060
		total_scanned += sc->nr_scanned;
2061
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2071 2072
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2073 2074
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2075
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2076 2077 2078
		}

		/* Take a nap, wait for some writeback to complete */
2079
		if (!sc->hibernation_mode && sc->nr_scanned &&
2080
		    sc->priority < DEF_PRIORITY - 2) {
2081 2082 2083
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2084 2085
						&cpuset_current_mems_allowed,
						&preferred_zone);
2086 2087
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2088
	} while (--sc->priority >= 0);
2089

L
Linus Torvalds 已提交
2090
out:
2091 2092
	delayacct_freepages_end();

2093 2094 2095
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2096 2097 2098 2099 2100 2101 2102 2103
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2104 2105
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2106 2107
		return 1;

2108
	/* top priority shrink_zones still had more to do? don't OOM, then */
2109
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2110 2111 2112
		return 1;

	return 0;
L
Linus Torvalds 已提交
2113 2114
}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
 * when the low watermark is reached
 */
static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
		return;

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
		return;

2170 2171 2172
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
		return;
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
}

2192
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2193
				gfp_t gfp_mask, nodemask_t *nodemask)
2194
{
2195
	unsigned long nr_reclaimed;
2196 2197 2198
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2199
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2200
		.may_unmap = 1,
2201
		.may_swap = 1,
2202
		.order = order,
2203
		.priority = DEF_PRIORITY,
2204
		.target_mem_cgroup = NULL,
2205
		.nodemask = nodemask,
2206
	};
2207 2208 2209
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2210

2211 2212 2213 2214 2215 2216 2217 2218 2219
	throttle_direct_reclaim(gfp_mask, zonelist, nodemask);

	/*
	 * Do not enter reclaim if fatal signal is pending. 1 is returned so
	 * that the page allocator does not consider triggering OOM
	 */
	if (fatal_signal_pending(current))
		return 1;

2220 2221 2222 2223
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2224
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2225 2226 2227 2228

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2229 2230
}

A
Andrew Morton 已提交
2231
#ifdef CONFIG_MEMCG
2232

2233
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2234
						gfp_t gfp_mask, bool noswap,
2235 2236
						struct zone *zone,
						unsigned long *nr_scanned)
2237 2238
{
	struct scan_control sc = {
2239
		.nr_scanned = 0,
2240
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2241 2242 2243 2244
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2245
		.priority = 0,
2246
		.target_mem_cgroup = memcg,
2247
	};
2248
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2249

2250 2251
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2252

2253
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2254 2255 2256
						      sc.may_writepage,
						      sc.gfp_mask);

2257 2258 2259 2260 2261 2262 2263
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2264
	shrink_lruvec(lruvec, &sc);
2265 2266 2267

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2268
	*nr_scanned = sc.nr_scanned;
2269 2270 2271
	return sc.nr_reclaimed;
}

2272
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2273
					   gfp_t gfp_mask,
2274
					   bool noswap)
2275
{
2276
	struct zonelist *zonelist;
2277
	unsigned long nr_reclaimed;
2278
	int nid;
2279 2280
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2281
		.may_unmap = 1,
2282
		.may_swap = !noswap,
2283
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2284
		.order = 0,
2285
		.priority = DEF_PRIORITY,
2286
		.target_mem_cgroup = memcg,
2287
		.nodemask = NULL, /* we don't care the placement */
2288 2289 2290 2291 2292
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2293 2294
	};

2295 2296 2297 2298 2299
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2300
	nid = mem_cgroup_select_victim_node(memcg);
2301 2302

	zonelist = NODE_DATA(nid)->node_zonelists;
2303 2304 2305 2306 2307

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2308
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2309 2310 2311 2312

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2313 2314 2315
}
#endif

2316
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2317
{
2318
	struct mem_cgroup *memcg;
2319

2320 2321 2322 2323 2324
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2325
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2326

2327
		if (inactive_anon_is_low(lruvec))
2328
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2329
					   sc, LRU_ACTIVE_ANON);
2330 2331 2332

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2333 2334
}

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2346
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2360 2361
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2362 2363
}

2364 2365 2366 2367 2368 2369 2370
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2371
					int classzone_idx)
2372
{
2373
	int i;
2374 2375
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2376 2377 2378

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2394

2395
	/* Check the watermark levels */
2396
	for (i = 0; i <= classzone_idx; i++) {
2397 2398 2399 2400 2401
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2402 2403 2404 2405 2406 2407 2408 2409
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2410
			continue;
2411
		}
2412

2413
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2414
							i, 0))
2415 2416 2417
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2418
	}
2419

2420 2421 2422 2423 2424 2425
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2426
		return pgdat_balanced(pgdat, balanced, classzone_idx);
2427
	else
2428
		return all_zones_ok;
2429 2430
}

L
Linus Torvalds 已提交
2431 2432
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2433
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2434
 *
2435
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2446 2447 2448 2449 2450
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2451
 */
2452
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2453
							int *classzone_idx)
L
Linus Torvalds 已提交
2454 2455
{
	int all_zones_ok;
2456
	unsigned long balanced;
L
Linus Torvalds 已提交
2457
	int i;
2458
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2459
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2460
	struct reclaim_state *reclaim_state = current->reclaim_state;
2461 2462
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2463 2464
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2465
		.may_unmap = 1,
2466
		.may_swap = 1,
2467 2468 2469 2470 2471
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2472
		.order = order,
2473
		.target_mem_cgroup = NULL,
2474
	};
2475 2476 2477
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2478 2479
loop_again:
	total_scanned = 0;
2480
	sc.priority = DEF_PRIORITY;
2481
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2482
	sc.may_writepage = !laptop_mode;
2483
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2484

2485
	do {
L
Linus Torvalds 已提交
2486
		unsigned long lru_pages = 0;
2487
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2488 2489

		all_zones_ok = 1;
2490
		balanced = 0;
L
Linus Torvalds 已提交
2491

2492 2493 2494 2495 2496 2497
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2498

2499 2500
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2501

2502 2503
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2504
				continue;
L
Linus Torvalds 已提交
2505

2506 2507 2508 2509
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2510
			age_active_anon(zone, &sc);
2511

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2523
			if (!zone_watermark_ok_safe(zone, order,
2524
					high_wmark_pages(zone), 0, 0)) {
2525
				end_zone = i;
A
Andrew Morton 已提交
2526
				break;
2527 2528 2529
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2530 2531
			}
		}
A
Andrew Morton 已提交
2532 2533 2534
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2535 2536 2537
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2538
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2552
			int nr_slab, testorder;
2553
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2554

2555
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2556 2557
				continue;

2558 2559
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2560 2561 2562
				continue;

			sc.nr_scanned = 0;
2563

2564
			nr_soft_scanned = 0;
2565 2566 2567
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2568 2569 2570 2571 2572
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2573

2574
			/*
2575 2576 2577 2578 2579 2580
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2581
			 */
2582 2583 2584 2585
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
			if (COMPACTION_BUILD && order &&
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2599
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2600
				    !zone_watermark_ok_safe(zone, testorder,
2601
					high_wmark_pages(zone) + balance_gap,
2602
					end_zone, 0)) {
2603
				shrink_zone(zone, &sc);
2604

2605 2606 2607 2608 2609 2610 2611 2612 2613
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2614 2615 2616 2617 2618 2619
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2620
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2621
				sc.may_writepage = 1;
2622

2623 2624 2625
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2626
				continue;
2627
			}
2628

2629
			if (!zone_watermark_ok_safe(zone, testorder,
2630 2631 2632 2633 2634 2635 2636
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2637
				if (!zone_watermark_ok_safe(zone, order,
2638 2639
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2640 2641 2642 2643 2644 2645
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
2646
				 * speculatively avoid congestion waits
2647 2648
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2649
				if (i <= *classzone_idx)
2650
					balanced += zone->present_pages;
2651
			}
2652

L
Linus Torvalds 已提交
2653
		}
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

2664
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2665 2666 2667 2668 2669
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2670
		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2671 2672 2673 2674 2675
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2676 2677 2678 2679 2680 2681 2682

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2683
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2684
			break;
2685
	} while (--sc.priority >= 0);
L
Linus Torvalds 已提交
2686
out:
2687 2688 2689

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2690 2691
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2692
	 */
2693
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2694
		cond_resched();
2695 2696 2697

		try_to_freeze();

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2715 2716 2717
		goto loop_again;
	}

2718 2719 2720 2721 2722 2723 2724 2725 2726
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2727 2728
		int zones_need_compaction = 1;

2729 2730 2731 2732 2733 2734
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

2735 2736
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2737 2738
				continue;

2739
			/* Would compaction fail due to lack of free memory? */
2740 2741
			if (COMPACTION_BUILD &&
			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2742 2743
				goto loop_again;

2744 2745 2746 2747 2748 2749 2750
			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

2751 2752 2753 2754 2755
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;

2756 2757 2758
			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
2759 2760 2761

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2762 2763
	}

2764
	/*
2765
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2766 2767 2768 2769
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2770
	*classzone_idx = end_zone;
2771
	return order;
L
Linus Torvalds 已提交
2772 2773
}

2774
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2785
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2786 2787 2788 2789 2790 2791 2792 2793 2794
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2795
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2807 2808 2809 2810

		if (!kthread_should_stop())
			schedule();

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2821 2822
/*
 * The background pageout daemon, started as a kernel thread
2823
 * from the init process.
L
Linus Torvalds 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2836
	unsigned long order, new_order;
2837
	unsigned balanced_order;
2838
	int classzone_idx, new_classzone_idx;
2839
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2840 2841
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2842

L
Linus Torvalds 已提交
2843 2844 2845
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2846
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2847

2848 2849
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2850
	if (!cpumask_empty(cpumask))
2851
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2866
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2867
	set_freezable();
L
Linus Torvalds 已提交
2868

2869
	order = new_order = 0;
2870
	balanced_order = 0;
2871
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2872
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2873
	for ( ; ; ) {
2874
		int ret;
2875

2876 2877 2878 2879 2880
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2881 2882
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2883 2884 2885 2886 2887 2888
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2889
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2890 2891
			/*
			 * Don't sleep if someone wants a larger 'order'
2892
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2893 2894
			 */
			order = new_order;
2895
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2896
		} else {
2897 2898
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2899
			order = pgdat->kswapd_max_order;
2900
			classzone_idx = pgdat->classzone_idx;
2901 2902
			new_order = order;
			new_classzone_idx = classzone_idx;
2903
			pgdat->kswapd_max_order = 0;
2904
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2905 2906
		}

2907 2908 2909 2910 2911 2912 2913 2914
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2915 2916
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2917 2918 2919
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2920
		}
L
Linus Torvalds 已提交
2921 2922 2923 2924 2925 2926 2927
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2928
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2929 2930 2931
{
	pg_data_t *pgdat;

2932
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2933 2934
		return;

2935
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2936
		return;
2937
	pgdat = zone->zone_pgdat;
2938
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2939
		pgdat->kswapd_max_order = order;
2940 2941
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2942
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2943
		return;
2944 2945 2946 2947
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2948
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2949 2950
}

2951 2952 2953 2954 2955 2956 2957 2958
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2959
{
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2984 2985
}

2986
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2987
/*
2988
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2989 2990 2991 2992 2993
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2994
 */
2995
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2996
{
2997 2998
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2999 3000 3001
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3002
		.may_writepage = 1,
3003 3004 3005
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3006
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3007
	};
3008 3009 3010 3011
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3012 3013
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3014

3015 3016 3017 3018
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3019

3020
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3021

3022 3023 3024
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3025

3026
	return nr_reclaimed;
L
Linus Torvalds 已提交
3027
}
3028
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3029 3030 3031 3032 3033

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3034
static int __devinit cpu_callback(struct notifier_block *nfb,
3035
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3036
{
3037
	int nid;
L
Linus Torvalds 已提交
3038

3039
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3040
		for_each_node_state(nid, N_HIGH_MEMORY) {
3041
			pg_data_t *pgdat = NODE_DATA(nid);
3042 3043 3044
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3045

3046
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3047
				/* One of our CPUs online: restore mask */
3048
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3049 3050 3051 3052 3053
		}
	}
	return NOTIFY_OK;
}

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3076
/*
3077 3078
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3079 3080 3081 3082 3083
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3084
	if (kswapd) {
3085
		kthread_stop(kswapd);
3086 3087
		NODE_DATA(nid)->kswapd = NULL;
	}
3088 3089
}

L
Linus Torvalds 已提交
3090 3091
static int __init kswapd_init(void)
{
3092
	int nid;
3093

L
Linus Torvalds 已提交
3094
	swap_setup();
3095
	for_each_node_state(nid, N_HIGH_MEMORY)
3096
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3112
#define RECLAIM_OFF 0
3113
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3114 3115 3116
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3117 3118 3119 3120 3121 3122 3123
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3124 3125 3126 3127 3128 3129
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3130 3131 3132 3133 3134 3135
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3178 3179 3180
/*
 * Try to free up some pages from this zone through reclaim.
 */
3181
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3182
{
3183
	/* Minimum pages needed in order to stay on node */
3184
	const unsigned long nr_pages = 1 << order;
3185 3186
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3187 3188
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3189
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3190
		.may_swap = 1,
3191 3192
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3193
		.gfp_mask = gfp_mask,
3194
		.order = order,
3195
		.priority = ZONE_RECLAIM_PRIORITY,
3196
	};
3197 3198 3199
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3200
	unsigned long nr_slab_pages0, nr_slab_pages1;
3201 3202

	cond_resched();
3203 3204 3205 3206 3207 3208
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3209
	lockdep_set_current_reclaim_state(gfp_mask);
3210 3211
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3212

3213
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3214 3215 3216 3217 3218
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3219 3220
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3221
	}
3222

3223 3224
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3225
		/*
3226
		 * shrink_slab() does not currently allow us to determine how
3227 3228 3229 3230
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3231
		 *
3232 3233
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3234
		 */
3235 3236 3237 3238
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3239
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3240 3241 3242 3243 3244 3245 3246 3247
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3248 3249 3250 3251 3252

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3253 3254 3255
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3256 3257
	}

3258
	p->reclaim_state = NULL;
3259
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3260
	lockdep_clear_current_reclaim_state();
3261
	return sc.nr_reclaimed >= nr_pages;
3262
}
3263 3264 3265 3266

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3267
	int ret;
3268 3269

	/*
3270 3271
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3272
	 *
3273 3274 3275 3276 3277
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3278
	 */
3279 3280
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3281
		return ZONE_RECLAIM_FULL;
3282

3283
	if (zone->all_unreclaimable)
3284
		return ZONE_RECLAIM_FULL;
3285

3286
	/*
3287
	 * Do not scan if the allocation should not be delayed.
3288
	 */
3289
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3290
		return ZONE_RECLAIM_NOSCAN;
3291 3292 3293 3294 3295 3296 3297

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3298
	node_id = zone_to_nid(zone);
3299
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3300
		return ZONE_RECLAIM_NOSCAN;
3301 3302

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3303 3304
		return ZONE_RECLAIM_NOSCAN;

3305 3306 3307
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3308 3309 3310
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3311
	return ret;
3312
}
3313
#endif
L
Lee Schermerhorn 已提交
3314 3315 3316 3317 3318 3319 3320

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3321 3322
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3323 3324
 *
 * Reasons page might not be evictable:
3325
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3326
 * (2) page is part of an mlocked VMA
3327
 *
L
Lee Schermerhorn 已提交
3328 3329 3330 3331
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3332 3333 3334
	if (mapping_unevictable(page_mapping(page)))
		return 0;

3335
	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
N
Nick Piggin 已提交
3336
		return 0;
L
Lee Schermerhorn 已提交
3337 3338 3339

	return 1;
}
3340

3341
#ifdef CONFIG_SHMEM
3342
/**
3343 3344 3345
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3346
 *
3347
 * Checks pages for evictability and moves them to the appropriate lru list.
3348 3349
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3350
 */
3351
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3352
{
3353
	struct lruvec *lruvec;
3354 3355 3356 3357
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3358

3359 3360 3361
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3362

3363 3364 3365 3366 3367 3368 3369 3370
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3371
		lruvec = mem_cgroup_page_lruvec(page, zone);
3372

3373 3374
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3375

3376 3377 3378 3379 3380
		if (page_evictable(page, NULL)) {
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3381 3382
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3383
			pgrescued++;
3384
		}
3385
	}
3386

3387 3388 3389 3390
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3391 3392
	}
}
3393
#endif /* CONFIG_SHMEM */
3394

3395
static void warn_scan_unevictable_pages(void)
3396
{
3397
	printk_once(KERN_WARNING
3398
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3399
		    "disabled for lack of a legitimate use case.  If you have "
3400 3401
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3402 3403 3404 3405 3406 3407 3408 3409 3410
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3411
			   void __user *buffer,
3412 3413
			   size_t *length, loff_t *ppos)
{
3414
	warn_scan_unevictable_pages();
3415
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3416 3417 3418 3419
	scan_unevictable_pages = 0;
	return 0;
}

3420
#ifdef CONFIG_NUMA
3421 3422 3423 3424 3425
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3426 3427
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3428 3429
					  char *buf)
{
3430
	warn_scan_unevictable_pages();
3431 3432 3433
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3434 3435
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3436 3437
					const char *buf, size_t count)
{
3438
	warn_scan_unevictable_pages();
3439 3440 3441 3442
	return 1;
}


3443
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3444 3445 3446 3447 3448
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3449
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3450 3451 3452 3453
}

void scan_unevictable_unregister_node(struct node *node)
{
3454
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3455
}
3456
#endif