vmscan.c 93.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
56 57 58 59
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

60 61 62
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

66 67
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70 71 72

	int may_writepage;

73 74
	/* Can mapped pages be reclaimed? */
	int may_unmap;
75

76 77 78
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83
	/* Scan (total_size >> priority) pages at once */
	int priority;

84 85 86 87 88
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
89

90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
95 96
};

97 98 99 100 101
struct mem_cgroup_zone {
	struct mem_cgroup *mem_cgroup;
	struct zone *zone;
};

L
Linus Torvalds 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
136
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
137 138 139 140

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

141
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
142 143
static bool global_reclaim(struct scan_control *sc)
{
144
	return !sc->target_mem_cgroup;
145
}
146
#else
147 148 149 150
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
151 152
#endif

153
static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
154
{
155
	return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
156 157
}

158
static unsigned long get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
159
{
160
	if (!mem_cgroup_disabled())
161
		return mem_cgroup_get_lruvec_size(lruvec, lru);
162

163
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
164 165
}

L
Linus Torvalds 已提交
166 167 168
/*
 * Add a shrinker callback to be called from the vm
 */
169
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
170
{
171
	atomic_long_set(&shrinker->nr_in_batch, 0);
172 173 174
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
175
}
176
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
177 178 179 180

/*
 * Remove one
 */
181
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
182 183 184 185 186
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
187
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
188

189 190 191 192 193 194 195 196
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
197 198 199 200 201 202 203 204 205
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
206
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
207 208 209 210 211 212 213
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
214 215
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
216
 */
217
unsigned long shrink_slab(struct shrink_control *shrink,
218
			  unsigned long nr_pages_scanned,
219
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
220 221
{
	struct shrinker *shrinker;
222
	unsigned long ret = 0;
L
Linus Torvalds 已提交
223

224 225
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
226

227 228 229 230 231
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
232 233 234

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
235 236
		long total_scan;
		long max_pass;
237
		int shrink_ret = 0;
238 239
		long nr;
		long new_nr;
240 241
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
242

243 244 245 246
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

247 248 249 250 251
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
252
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
253 254

		total_scan = nr;
255
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
256
		delta *= max_pass;
L
Linus Torvalds 已提交
257
		do_div(delta, lru_pages + 1);
258 259
		total_scan += delta;
		if (total_scan < 0) {
260 261
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
262 263
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
264 265
		}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

281 282 283 284 285
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
286 287
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
288

289
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
290 291 292
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

293
		while (total_scan >= batch_size) {
294
			int nr_before;
L
Linus Torvalds 已提交
295

296 297
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
298
							batch_size);
L
Linus Torvalds 已提交
299 300
			if (shrink_ret == -1)
				break;
301 302
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
303 304
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
305 306 307 308

			cond_resched();
		}

309 310 311 312 313
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
314 315 316 317 318
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
319 320

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
321 322
	}
	up_read(&shrinker_rwsem);
323 324
out:
	cond_resched();
325
	return ret;
L
Linus Torvalds 已提交
326 327 328 329
}

static inline int is_page_cache_freeable(struct page *page)
{
330 331 332 333 334
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
335
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
336 337
}

338 339
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
340
{
341
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
365
	lock_page(page);
366 367
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
368 369 370
	unlock_page(page);
}

371 372 373 374 375 376 377 378 379 380 381 382
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
383
/*
A
Andrew Morton 已提交
384 385
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
386
 */
387
static pageout_t pageout(struct page *page, struct address_space *mapping,
388
			 struct scan_control *sc)
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
397
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
413
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
414 415
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
416
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
417 418 419 420 421 422 423
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
424
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
425 426 427 428 429 430 431
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
432 433
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
434 435 436 437 438 439 440
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
441
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
442 443 444
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
445

L
Linus Torvalds 已提交
446 447 448 449
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
450
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
451
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
452 453 454 455 456 457
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

458
/*
N
Nick Piggin 已提交
459 460
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
461
 */
N
Nick Piggin 已提交
462
static int __remove_mapping(struct address_space *mapping, struct page *page)
463
{
464 465
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
466

N
Nick Piggin 已提交
467
	spin_lock_irq(&mapping->tree_lock);
468
	/*
N
Nick Piggin 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
492
	 */
N
Nick Piggin 已提交
493
	if (!page_freeze_refs(page, 2))
494
		goto cannot_free;
N
Nick Piggin 已提交
495 496 497
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
498
		goto cannot_free;
N
Nick Piggin 已提交
499
	}
500 501 502 503

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
504
		spin_unlock_irq(&mapping->tree_lock);
505
		swapcache_free(swap, page);
N
Nick Piggin 已提交
506
	} else {
507 508 509 510
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

511
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
512
		spin_unlock_irq(&mapping->tree_lock);
513
		mem_cgroup_uncharge_cache_page(page);
514 515 516

		if (freepage != NULL)
			freepage(page);
517 518 519 520 521
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
522
	spin_unlock_irq(&mapping->tree_lock);
523 524 525
	return 0;
}

N
Nick Piggin 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
559
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
573
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
574 575 576 577 578 579 580 581
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
582
		/*
583 584 585
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
586
		 * isolation/check_move_unevictable_pages,
587
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
588 589
		 * the page back to the evictable list.
		 *
590
		 * The other side is TestClearPageMlocked() or shmem_lock().
591 592
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

611 612 613 614 615
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
616 617 618
	put_page(page);		/* drop ref from isolate */
}

619 620 621
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
622
	PAGEREF_KEEP,
623 624 625 626 627 628
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
629
	int referenced_ptes, referenced_page;
630 631
	unsigned long vm_flags;

632 633
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
634
	referenced_page = TestClearPageReferenced(page);
635 636 637 638 639 640 641 642

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

643
	if (referenced_ptes) {
644
		if (PageSwapBacked(page))
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

662
		if (referenced_page || referenced_ptes > 1)
663 664
			return PAGEREF_ACTIVATE;

665 666 667 668 669 670
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

671 672
		return PAGEREF_KEEP;
	}
673 674

	/* Reclaim if clean, defer dirty pages to writeback */
675
	if (referenced_page && !PageSwapBacked(page))
676 677 678
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
679 680
}

L
Linus Torvalds 已提交
681
/*
A
Andrew Morton 已提交
682
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
683
 */
A
Andrew Morton 已提交
684
static unsigned long shrink_page_list(struct list_head *page_list,
685
				      struct zone *zone,
686
				      struct scan_control *sc,
687 688
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
689 690
{
	LIST_HEAD(ret_pages);
691
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
692
	int pgactivate = 0;
693 694
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
695
	unsigned long nr_reclaimed = 0;
696
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
697 698 699 700

	cond_resched();

	while (!list_empty(page_list)) {
701
		enum page_references references;
L
Linus Torvalds 已提交
702 703 704 705 706 707 708 709 710
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
711
		if (!trylock_page(page))
L
Linus Torvalds 已提交
712 713
			goto keep;

N
Nick Piggin 已提交
714
		VM_BUG_ON(PageActive(page));
715
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
716 717

		sc->nr_scanned++;
718

N
Nick Piggin 已提交
719 720
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
721

722
		if (!sc->may_unmap && page_mapped(page))
723 724
			goto keep_locked;

L
Linus Torvalds 已提交
725 726 727 728
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

729 730 731 732
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
733
			nr_writeback++;
734 735
			unlock_page(page);
			goto keep;
736
		}
L
Linus Torvalds 已提交
737

738
		references = page_check_references(page, sc);
739 740
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
741
			goto activate_locked;
742 743
		case PAGEREF_KEEP:
			goto keep_locked;
744 745 746 747
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
748 749 750 751 752

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
753
		if (PageAnon(page) && !PageSwapCache(page)) {
754 755
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
756
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
757
				goto activate_locked;
758
			may_enter_fs = 1;
N
Nick Piggin 已提交
759
		}
L
Linus Torvalds 已提交
760 761 762 763 764 765 766 767

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
768
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
769 770 771 772
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
773 774
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
775 776 777 778 779 780
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
781 782
			nr_dirty++;

783 784
			/*
			 * Only kswapd can writeback filesystem pages to
785 786
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
787
			 */
788
			if (page_is_file_cache(page) &&
789 790
					(!current_is_kswapd() ||
					 sc->priority >= DEF_PRIORITY - 2)) {
791 792 793 794 795 796 797 798 799
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

800 801 802
				goto keep_locked;
			}

803
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
804
				goto keep_locked;
805
			if (!may_enter_fs)
L
Linus Torvalds 已提交
806
				goto keep_locked;
807
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
808 809 810
				goto keep_locked;

			/* Page is dirty, try to write it out here */
811
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
812
			case PAGE_KEEP:
813
				nr_congested++;
L
Linus Torvalds 已提交
814 815 816 817
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
818
				if (PageWriteback(page))
819
					goto keep;
820
				if (PageDirty(page))
L
Linus Torvalds 已提交
821
					goto keep;
822

L
Linus Torvalds 已提交
823 824 825 826
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
827
				if (!trylock_page(page))
L
Linus Torvalds 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
847
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
848 849 850 851 852 853 854 855 856 857
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
858
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
859 860
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
877 878
		}

N
Nick Piggin 已提交
879
		if (!mapping || !__remove_mapping(mapping, page))
880
			goto keep_locked;
L
Linus Torvalds 已提交
881

N
Nick Piggin 已提交
882 883 884 885 886 887 888 889
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
890
free_it:
891
		nr_reclaimed++;
892 893 894 895 896 897

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
898 899
		continue;

N
Nick Piggin 已提交
900
cull_mlocked:
901 902
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
903 904 905 906
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
907
activate_locked:
908 909
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
910
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
911
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
912 913 914 915 916 917
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
918
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
919
	}
920

921 922 923 924 925 926
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
927
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
928
		zone_set_flag(zone, ZONE_CONGESTED);
929

930
	free_hot_cold_page_list(&free_pages, 1);
931

L
Linus Torvalds 已提交
932
	list_splice(&ret_pages, page_list);
933
	count_vm_events(PGACTIVATE, pgactivate);
934 935
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
936
	return nr_reclaimed;
L
Linus Torvalds 已提交
937 938
}

A
Andy Whitcroft 已提交
939 940 941 942 943 944 945 946 947 948
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
949
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
950 951 952 953 954 955 956
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Mel Gorman 已提交
957
	/* Do not give back unevictable pages for compaction */
L
Lee Schermerhorn 已提交
958 959 960
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
961
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
962

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
996

997 998 999
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1024
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1025
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1026
 * @nr_scanned:	The number of pages that were scanned.
1027
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1028
 * @mode:	One of the LRU isolation modes
1029
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1030 1031 1032
 *
 * returns how many pages were moved onto *@dst.
 */
1033
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1034
		struct lruvec *lruvec, struct list_head *dst,
1035
		unsigned long *nr_scanned, struct scan_control *sc,
1036
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1037
{
H
Hugh Dickins 已提交
1038
	struct list_head *src;
1039
	unsigned long nr_taken = 0;
1040
	unsigned long scan;
1041
	int file = is_file_lru(lru);
H
Hugh Dickins 已提交
1042 1043

	src = &lruvec->lists[lru];
L
Linus Torvalds 已提交
1044

1045
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1046 1047
		struct page *page;

L
Linus Torvalds 已提交
1048 1049 1050
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1051
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1052

1053
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1054
		case 0:
1055
			mem_cgroup_lru_del_list(page, lru);
A
Andy Whitcroft 已提交
1056
			list_move(&page->lru, dst);
1057
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1058 1059 1060 1061 1062 1063
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1064

A
Andy Whitcroft 已提交
1065 1066 1067
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1068 1069
	}

H
Hugh Dickins 已提交
1070
	*nr_scanned = scan;
1071

1072
	trace_mm_vmscan_lru_isolate(sc->order,
1073 1074
			nr_to_scan, scan,
			nr_taken,
1075
			mode, file);
L
Linus Torvalds 已提交
1076 1077 1078
	return nr_taken;
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1090 1091 1092
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1108 1109
	VM_BUG_ON(!page_count(page));

1110 1111 1112 1113
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1114
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1115
			int lru = page_lru(page);
1116
			ret = 0;
1117
			get_page(page);
1118
			ClearPageLRU(page);
1119 1120

			del_page_from_lru_list(zone, page, lru);
1121 1122 1123 1124 1125 1126
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1138
	if (!global_reclaim(sc))
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1152
static noinline_for_stack void
1153
putback_inactive_pages(struct lruvec *lruvec,
1154
		       struct list_head *page_list)
1155
{
1156 1157
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1158
	LIST_HEAD(pages_to_free);
1159 1160 1161 1162 1163

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1164
		struct page *page = lru_to_page(page_list);
1165
		int lru;
1166

1167 1168 1169 1170 1171 1172 1173 1174
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1175
		SetPageLRU(page);
1176
		lru = page_lru(page);
1177
		add_page_to_lru_list(zone, page, lru);
1178 1179
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1180 1181
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1182
		}
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1194 1195 1196
		}
	}

1197 1198 1199 1200
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1201 1202
}

L
Linus Torvalds 已提交
1203
/*
A
Andrew Morton 已提交
1204 1205
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1206
 */
1207
static noinline_for_stack unsigned long
1208
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1209
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1210 1211
{
	LIST_HEAD(page_list);
1212
	unsigned long nr_scanned;
1213
	unsigned long nr_reclaimed = 0;
1214
	unsigned long nr_taken;
1215 1216
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1217
	isolate_mode_t isolate_mode = 0;
1218
	int file = is_file_lru(lru);
1219 1220
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1221

1222
	while (unlikely(too_many_isolated(zone, file, sc))) {
1223
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1224 1225 1226 1227 1228 1229

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1230
	lru_add_drain();
1231 1232

	if (!sc->may_unmap)
1233
		isolate_mode |= ISOLATE_UNMAPPED;
1234
	if (!sc->may_writepage)
1235
		isolate_mode |= ISOLATE_CLEAN;
1236

L
Linus Torvalds 已提交
1237
	spin_lock_irq(&zone->lru_lock);
1238

1239 1240
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1241 1242 1243 1244

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1245
	if (global_reclaim(sc)) {
1246 1247 1248 1249 1250 1251 1252 1253
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	}
1254
	spin_unlock_irq(&zone->lru_lock);
1255

1256
	if (nr_taken == 0)
1257
		return 0;
A
Andy Whitcroft 已提交
1258

1259
	nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1260
						&nr_dirty, &nr_writeback);
1261

1262 1263
	spin_lock_irq(&zone->lru_lock);

1264
	reclaim_stat->recent_scanned[file] += nr_taken;
1265

Y
Ying Han 已提交
1266 1267 1268 1269 1270 1271 1272 1273
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1274

1275
	putback_inactive_pages(lruvec, &page_list);
1276

1277
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1278 1279 1280 1281

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1282

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1306 1307
	if (nr_writeback && nr_writeback >=
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1308 1309
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1310 1311 1312
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1313
		sc->priority,
M
Mel Gorman 已提交
1314
		trace_shrink_flags(file));
1315
	return nr_reclaimed;
L
Linus Torvalds 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1335

1336 1337
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
1338
				     struct list_head *pages_to_free,
1339 1340 1341 1342 1343 1344
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct page *page;

	while (!list_empty(list)) {
1345 1346
		struct lruvec *lruvec;

1347 1348 1349 1350 1351
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1352 1353
		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
		list_move(&page->lru, &lruvec->lists[lru]);
1354
		pgmoved += hpage_nr_pages(page);
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1367 1368 1369 1370 1371 1372
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1373

H
Hugh Dickins 已提交
1374
static void shrink_active_list(unsigned long nr_to_scan,
1375
			       struct lruvec *lruvec,
1376
			       struct scan_control *sc,
1377
			       enum lru_list lru)
L
Linus Torvalds 已提交
1378
{
1379
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1380
	unsigned long nr_scanned;
1381
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1382
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1383
	LIST_HEAD(l_active);
1384
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1385
	struct page *page;
1386
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1387
	unsigned long nr_rotated = 0;
1388
	isolate_mode_t isolate_mode = 0;
1389
	int file = is_file_lru(lru);
1390
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1391 1392

	lru_add_drain();
1393 1394

	if (!sc->may_unmap)
1395
		isolate_mode |= ISOLATE_UNMAPPED;
1396
	if (!sc->may_writepage)
1397
		isolate_mode |= ISOLATE_CLEAN;
1398

L
Linus Torvalds 已提交
1399
	spin_lock_irq(&zone->lru_lock);
1400

1401 1402
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1403
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1404
		zone->pages_scanned += nr_scanned;
1405

1406
	reclaim_stat->recent_scanned[file] += nr_taken;
1407

H
Hugh Dickins 已提交
1408
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1409
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1410
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415 1416
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1417

L
Lee Schermerhorn 已提交
1418 1419 1420 1421 1422
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1423 1424 1425 1426 1427 1428 1429 1430
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1431 1432
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1433
			nr_rotated += hpage_nr_pages(page);
1434 1435 1436 1437 1438 1439 1440 1441 1442
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1443
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1444 1445 1446 1447
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1448

1449
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1450 1451 1452
		list_add(&page->lru, &l_inactive);
	}

1453
	/*
1454
	 * Move pages back to the lru list.
1455
	 */
1456
	spin_lock_irq(&zone->lru_lock);
1457
	/*
1458 1459 1460 1461
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1462
	 */
1463
	reclaim_stat->recent_rotated[file] += nr_rotated;
1464

1465 1466
	move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
	move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1467
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1468
	spin_unlock_irq(&zone->lru_lock);
1469 1470

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1471 1472
}

1473
#ifdef CONFIG_SWAP
1474
static int inactive_anon_is_low_global(struct zone *zone)
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1487 1488
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1489
 * @lruvec: LRU vector to check
1490 1491 1492 1493
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1494
static int inactive_anon_is_low(struct lruvec *lruvec)
1495
{
1496 1497 1498 1499 1500 1501 1502
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1503
	if (!mem_cgroup_disabled())
1504
		return mem_cgroup_inactive_anon_is_low(lruvec);
1505

1506
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1507
}
1508
#else
1509
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1510 1511 1512 1513
{
	return 0;
}
#endif
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1527
 * @lruvec: LRU vector to check
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1539
static int inactive_file_is_low(struct lruvec *lruvec)
1540
{
1541
	if (!mem_cgroup_disabled())
1542
		return mem_cgroup_inactive_file_is_low(lruvec);
1543

1544
	return inactive_file_is_low_global(lruvec_zone(lruvec));
1545 1546
}

1547
static int inactive_list_is_low(struct lruvec *lruvec, int file)
1548 1549
{
	if (file)
1550
		return inactive_file_is_low(lruvec);
1551
	else
1552
		return inactive_anon_is_low(lruvec);
1553 1554
}

1555
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1556
				 struct lruvec *lruvec, struct scan_control *sc)
1557
{
1558 1559
	int file = is_file_lru(lru);

1560
	if (is_active_lru(lru)) {
1561
		if (inactive_list_is_low(lruvec, file))
1562
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1563 1564 1565
		return 0;
	}

1566
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1567 1568
}

1569
static int vmscan_swappiness(struct scan_control *sc)
1570
{
1571
	if (global_reclaim(sc))
1572
		return vm_swappiness;
1573
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1574 1575
}

1576 1577 1578 1579 1580 1581
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1582
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1583
 */
1584
static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1585
			   unsigned long *nr)
1586 1587 1588 1589
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1590
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1591
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1592
	enum lru_list lru;
1593
	int noswap = 0;
1594
	bool force_scan = false;
1595 1596 1597
	struct lruvec *lruvec;

	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1598

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1609
	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1610
		force_scan = true;
1611
	if (!global_reclaim(sc))
1612
		force_scan = true;
1613 1614 1615 1616 1617 1618 1619 1620 1621

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1622

1623 1624 1625 1626
	anon  = get_lruvec_size(lruvec, LRU_ACTIVE_ANON) +
		get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lruvec_size(lruvec, LRU_ACTIVE_FILE) +
		get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1627

1628
	if (global_reclaim(sc)) {
1629
		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1630 1631
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1632
		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1633 1634 1635 1636
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1637
		}
1638 1639
	}

1640 1641 1642 1643
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1644 1645
	anon_prio = vmscan_swappiness(sc);
	file_prio = 200 - vmscan_swappiness(sc);
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1658
	spin_lock_irq(&mz->zone->lru_lock);
1659 1660 1661
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1662 1663
	}

1664 1665 1666
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1667 1668 1669
	}

	/*
1670 1671 1672
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1673
	 */
1674
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1675
	ap /= reclaim_stat->recent_rotated[0] + 1;
1676

1677
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1678
	fp /= reclaim_stat->recent_rotated[1] + 1;
1679
	spin_unlock_irq(&mz->zone->lru_lock);
1680

1681 1682 1683 1684
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1685 1686
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1687
		unsigned long scan;
1688

1689
		scan = get_lruvec_size(lruvec, lru);
1690 1691
		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
			scan >>= sc->priority;
1692 1693
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1694 1695
			scan = div64_u64(scan * fraction[file], denominator);
		}
H
Hugh Dickins 已提交
1696
		nr[lru] = scan;
1697
	}
1698
}
1699

M
Mel Gorman 已提交
1700
/* Use reclaim/compaction for costly allocs or under memory pressure */
1701
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
1702 1703 1704
{
	if (COMPACTION_BUILD && sc->order &&
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1705
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
1706 1707 1708 1709 1710
		return true;

	return false;
}

1711
/*
M
Mel Gorman 已提交
1712 1713 1714 1715 1716
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1717
 */
1718
static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1719 1720 1721 1722 1723 1724
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
1725
	struct lruvec *lruvec;
1726 1727

	/* If not in reclaim/compaction mode, stop */
1728
	if (!in_reclaim_compaction(sc))
1729 1730
		return false;

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1753 1754 1755 1756 1757

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
1758
	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1759
	pages_for_compaction = (2UL << sc->order);
1760
	inactive_lru_pages = get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1761
	if (nr_swap_pages > 0)
1762 1763
		inactive_lru_pages += get_lruvec_size(lruvec,
						      LRU_INACTIVE_ANON);
1764 1765 1766 1767 1768
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1769
	switch (compaction_suitable(mz->zone, sc->order)) {
1770 1771 1772 1773 1774 1775 1776 1777
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1778 1779 1780
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1781
static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
1782
				   struct scan_control *sc)
L
Linus Torvalds 已提交
1783
{
1784
	unsigned long nr[NR_LRU_LISTS];
1785
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1786
	enum lru_list lru;
1787
	unsigned long nr_reclaimed, nr_scanned;
1788
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1789
	struct blk_plug plug;
1790 1791 1792
	struct lruvec *lruvec;

	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1793

1794 1795
restart:
	nr_reclaimed = 0;
1796
	nr_scanned = sc->nr_scanned;
1797
	get_scan_count(mz, sc, nr);
L
Linus Torvalds 已提交
1798

1799
	blk_start_plug(&plug);
1800 1801
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1802 1803
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1804
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1805 1806
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1807

H
Hugh Dickins 已提交
1808
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1809
							    lruvec, sc);
1810
			}
L
Linus Torvalds 已提交
1811
		}
1812 1813 1814 1815 1816 1817 1818 1819
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1820 1821
		if (nr_reclaimed >= nr_to_reclaim &&
		    sc->priority < DEF_PRIORITY)
1822
			break;
L
Linus Torvalds 已提交
1823
	}
1824
	blk_finish_plug(&plug);
1825
	sc->nr_reclaimed += nr_reclaimed;
1826

1827 1828 1829 1830
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1831
	if (inactive_anon_is_low(lruvec))
1832
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1833
				   sc, LRU_ACTIVE_ANON);
1834

1835
	/* reclaim/compaction might need reclaim to continue */
1836
	if (should_continue_reclaim(mz, nr_reclaimed,
1837
				    sc->nr_scanned - nr_scanned, sc))
1838 1839
		goto restart;

1840
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1841 1842
}

1843
static void shrink_zone(struct zone *zone, struct scan_control *sc)
1844
{
1845 1846
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
1847
		.zone = zone,
1848
		.priority = sc->priority,
1849
	};
1850 1851 1852 1853 1854 1855 1856 1857
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};
1858

1859
		shrink_mem_cgroup_zone(&mz, sc);
1860 1861 1862 1863 1864
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
1865 1866 1867 1868
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
1869 1870 1871 1872 1873 1874 1875
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
1876 1877
}

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
1904
	if (compaction_deferred(zone, sc->order))
1905 1906 1907 1908 1909 1910 1911 1912 1913
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
1914 1915 1916 1917 1918
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1919 1920
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1921 1922
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1923 1924 1925
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1926 1927 1928
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
1929 1930
 *
 * This function returns true if a zone is being reclaimed for a costly
1931
 * high-order allocation and compaction is ready to begin. This indicates to
1932 1933
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
1934
 */
1935
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
1936
{
1937
	struct zoneref *z;
1938
	struct zone *zone;
1939 1940
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
1941
	bool aborted_reclaim = false;
1942

1943 1944 1945 1946 1947 1948 1949 1950
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

1951 1952
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1953
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1954
			continue;
1955 1956 1957 1958
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1959
		if (global_reclaim(sc)) {
1960 1961
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1962 1963
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
1964
				continue;	/* Let kswapd poll it */
1965 1966
			if (COMPACTION_BUILD) {
				/*
1967 1968 1969 1970 1971
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
1972 1973
				 * noticeable problem, like transparent huge
				 * page allocations.
1974
				 */
1975
				if (compaction_ready(zone, sc)) {
1976
					aborted_reclaim = true;
1977
					continue;
1978
				}
1979
			}
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
1993
		}
1994

1995
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
1996
	}
1997

1998
	return aborted_reclaim;
1999 2000 2001 2002 2003 2004 2005
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2006
/* All zones in zonelist are unreclaimable? */
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2019 2020
		if (!zone->all_unreclaimable)
			return false;
2021 2022
	}

2023
	return true;
L
Linus Torvalds 已提交
2024
}
2025

L
Linus Torvalds 已提交
2026 2027 2028 2029 2030 2031 2032 2033
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2034 2035 2036 2037
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2038 2039 2040
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2041
 */
2042
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2043 2044
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2045
{
2046
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2047
	struct reclaim_state *reclaim_state = current->reclaim_state;
2048
	struct zoneref *z;
2049
	struct zone *zone;
2050
	unsigned long writeback_threshold;
2051
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2052

2053 2054
	delayacct_freepages_start();

2055
	if (global_reclaim(sc))
2056
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2057

2058
	do {
2059
		sc->nr_scanned = 0;
2060
		aborted_reclaim = shrink_zones(zonelist, sc);
2061

2062 2063 2064 2065
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2066
		if (global_reclaim(sc)) {
2067
			unsigned long lru_pages = 0;
2068 2069
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2070 2071 2072 2073 2074 2075
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2076
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2077
			if (reclaim_state) {
2078
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2079 2080
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2081
		}
2082
		total_scanned += sc->nr_scanned;
2083
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2093 2094
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2095 2096
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2097
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2098 2099 2100
		}

		/* Take a nap, wait for some writeback to complete */
2101
		if (!sc->hibernation_mode && sc->nr_scanned &&
2102
		    sc->priority < DEF_PRIORITY - 2) {
2103 2104 2105
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2106 2107
						&cpuset_current_mems_allowed,
						&preferred_zone);
2108 2109
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2110
	} while (--sc->priority >= 0);
2111

L
Linus Torvalds 已提交
2112
out:
2113 2114
	delayacct_freepages_end();

2115 2116 2117
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2118 2119 2120 2121 2122 2123 2124 2125
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2126 2127
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2128 2129
		return 1;

2130
	/* top priority shrink_zones still had more to do? don't OOM, then */
2131
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2132 2133 2134
		return 1;

	return 0;
L
Linus Torvalds 已提交
2135 2136
}

2137
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2138
				gfp_t gfp_mask, nodemask_t *nodemask)
2139
{
2140
	unsigned long nr_reclaimed;
2141 2142 2143
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2144
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2145
		.may_unmap = 1,
2146
		.may_swap = 1,
2147
		.order = order,
2148
		.priority = DEF_PRIORITY,
2149
		.target_mem_cgroup = NULL,
2150
		.nodemask = nodemask,
2151
	};
2152 2153 2154
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2155

2156 2157 2158 2159
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2160
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2161 2162 2163 2164

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2165 2166
}

2167
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2168

2169
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2170
						gfp_t gfp_mask, bool noswap,
2171 2172
						struct zone *zone,
						unsigned long *nr_scanned)
2173 2174
{
	struct scan_control sc = {
2175
		.nr_scanned = 0,
2176
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2177 2178 2179 2180
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2181
		.priority = 0,
2182
		.target_mem_cgroup = memcg,
2183
	};
2184
	struct mem_cgroup_zone mz = {
2185
		.mem_cgroup = memcg,
2186 2187
		.zone = zone,
	};
2188

2189 2190
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2191

2192
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2193 2194 2195
						      sc.may_writepage,
						      sc.gfp_mask);

2196 2197 2198 2199 2200 2201 2202
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2203
	shrink_mem_cgroup_zone(&mz, &sc);
2204 2205 2206

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2207
	*nr_scanned = sc.nr_scanned;
2208 2209 2210
	return sc.nr_reclaimed;
}

2211
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2212
					   gfp_t gfp_mask,
2213
					   bool noswap)
2214
{
2215
	struct zonelist *zonelist;
2216
	unsigned long nr_reclaimed;
2217
	int nid;
2218 2219
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2220
		.may_unmap = 1,
2221
		.may_swap = !noswap,
2222
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2223
		.order = 0,
2224
		.priority = DEF_PRIORITY,
2225
		.target_mem_cgroup = memcg,
2226
		.nodemask = NULL, /* we don't care the placement */
2227 2228 2229 2230 2231
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2232 2233
	};

2234 2235 2236 2237 2238
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2239
	nid = mem_cgroup_select_victim_node(memcg);
2240 2241

	zonelist = NODE_DATA(nid)->node_zonelists;
2242 2243 2244 2245 2246

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2247
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2248 2249 2250 2251

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2252 2253 2254
}
#endif

2255
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2256
{
2257
	struct mem_cgroup *memcg;
2258

2259 2260 2261 2262 2263
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2264
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2265

2266
		if (inactive_anon_is_low(lruvec))
2267
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2268
					   sc, LRU_ACTIVE_ANON);
2269 2270 2271

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2272 2273
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2285
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2299 2300
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2301 2302
}

2303
/* is kswapd sleeping prematurely? */
2304 2305
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2306
{
2307
	int i;
2308 2309
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2310 2311 2312

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2313
		return true;
2314

2315
	/* Check the watermark levels */
2316
	for (i = 0; i <= classzone_idx; i++) {
2317 2318 2319 2320 2321
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2322 2323 2324 2325 2326 2327 2328 2329
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2330
			continue;
2331
		}
2332

2333
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2334
							i, 0))
2335 2336 2337
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2338
	}
2339

2340 2341 2342 2343 2344 2345
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2346
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2347 2348
	else
		return !all_zones_ok;
2349 2350
}

L
Linus Torvalds 已提交
2351 2352
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2353
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2354
 *
2355
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2366 2367 2368 2369 2370
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2371
 */
2372
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2373
							int *classzone_idx)
L
Linus Torvalds 已提交
2374 2375
{
	int all_zones_ok;
2376
	unsigned long balanced;
L
Linus Torvalds 已提交
2377
	int i;
2378
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2379
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2380
	struct reclaim_state *reclaim_state = current->reclaim_state;
2381 2382
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2383 2384
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2385
		.may_unmap = 1,
2386
		.may_swap = 1,
2387 2388 2389 2390 2391
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2392
		.order = order,
2393
		.target_mem_cgroup = NULL,
2394
	};
2395 2396 2397
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2398 2399
loop_again:
	total_scanned = 0;
2400
	sc.priority = DEF_PRIORITY;
2401
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2402
	sc.may_writepage = !laptop_mode;
2403
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2404

2405
	do {
L
Linus Torvalds 已提交
2406
		unsigned long lru_pages = 0;
2407
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2408 2409

		all_zones_ok = 1;
2410
		balanced = 0;
L
Linus Torvalds 已提交
2411

2412 2413 2414 2415 2416 2417
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2418

2419 2420
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2421

2422 2423
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2424
				continue;
L
Linus Torvalds 已提交
2425

2426 2427 2428 2429
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2430
			age_active_anon(zone, &sc);
2431

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2443
			if (!zone_watermark_ok_safe(zone, order,
2444
					high_wmark_pages(zone), 0, 0)) {
2445
				end_zone = i;
A
Andrew Morton 已提交
2446
				break;
2447 2448 2449
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2450 2451
			}
		}
A
Andrew Morton 已提交
2452 2453 2454
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2455 2456 2457
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2458
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2472
			int nr_slab, testorder;
2473
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2474

2475
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2476 2477
				continue;

2478 2479
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2480 2481 2482
				continue;

			sc.nr_scanned = 0;
2483

2484
			nr_soft_scanned = 0;
2485 2486 2487
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2488 2489 2490 2491 2492
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2493

2494
			/*
2495 2496 2497 2498 2499 2500
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2501
			 */
2502 2503 2504 2505
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
			if (COMPACTION_BUILD && order &&
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2519
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2520
				    !zone_watermark_ok_safe(zone, testorder,
2521
					high_wmark_pages(zone) + balance_gap,
2522
					end_zone, 0)) {
2523
				shrink_zone(zone, &sc);
2524

2525 2526 2527 2528 2529 2530 2531 2532 2533
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2534 2535 2536 2537 2538 2539
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2540
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2541
				sc.may_writepage = 1;
2542

2543 2544 2545
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2546
				continue;
2547
			}
2548

2549
			if (!zone_watermark_ok_safe(zone, testorder,
2550 2551 2552 2553 2554 2555 2556
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2557
				if (!zone_watermark_ok_safe(zone, order,
2558 2559
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2560 2561 2562 2563 2564 2565 2566 2567 2568
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2569
				if (i <= *classzone_idx)
2570
					balanced += zone->present_pages;
2571
			}
2572

L
Linus Torvalds 已提交
2573
		}
2574
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2575 2576 2577 2578 2579
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2580
		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2581 2582 2583 2584 2585
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2586 2587 2588 2589 2590 2591 2592

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2593
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2594
			break;
2595
	} while (--sc.priority >= 0);
L
Linus Torvalds 已提交
2596
out:
2597 2598 2599

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2600 2601
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2602
	 */
2603
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2604
		cond_resched();
2605 2606 2607

		try_to_freeze();

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2625 2626 2627
		goto loop_again;
	}

2628 2629 2630 2631 2632 2633 2634 2635 2636
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2637 2638
		int zones_need_compaction = 1;

2639 2640 2641 2642 2643 2644
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

2645 2646
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2647 2648
				continue;

2649
			/* Would compaction fail due to lack of free memory? */
2650 2651
			if (COMPACTION_BUILD &&
			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2652 2653
				goto loop_again;

2654 2655 2656 2657 2658 2659 2660
			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

2661 2662 2663 2664 2665
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;

2666 2667 2668
			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
2669 2670 2671

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2672 2673
	}

2674 2675 2676 2677 2678 2679
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2680
	*classzone_idx = end_zone;
2681
	return order;
L
Linus Torvalds 已提交
2682 2683
}

2684
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2695
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2696 2697 2698 2699 2700 2701 2702 2703 2704
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2705
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2728 2729
/*
 * The background pageout daemon, started as a kernel thread
2730
 * from the init process.
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2743
	unsigned long order, new_order;
2744
	unsigned balanced_order;
2745
	int classzone_idx, new_classzone_idx;
2746
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2747 2748
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2749

L
Linus Torvalds 已提交
2750 2751 2752
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2753
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2754

2755 2756
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2757
	if (!cpumask_empty(cpumask))
2758
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2773
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2774
	set_freezable();
L
Linus Torvalds 已提交
2775

2776
	order = new_order = 0;
2777
	balanced_order = 0;
2778
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2779
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2780
	for ( ; ; ) {
2781
		int ret;
2782

2783 2784 2785 2786 2787
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2788 2789
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2790 2791 2792 2793 2794 2795
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2796
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2797 2798
			/*
			 * Don't sleep if someone wants a larger 'order'
2799
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2800 2801
			 */
			order = new_order;
2802
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2803
		} else {
2804 2805
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2806
			order = pgdat->kswapd_max_order;
2807
			classzone_idx = pgdat->classzone_idx;
2808 2809
			new_order = order;
			new_classzone_idx = classzone_idx;
2810
			pgdat->kswapd_max_order = 0;
2811
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2812 2813
		}

2814 2815 2816 2817 2818 2819 2820 2821
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2822 2823
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2824 2825 2826
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2827
		}
L
Linus Torvalds 已提交
2828 2829 2830 2831 2832 2833 2834
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2835
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2836 2837 2838
{
	pg_data_t *pgdat;

2839
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2840 2841
		return;

2842
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2843
		return;
2844
	pgdat = zone->zone_pgdat;
2845
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2846
		pgdat->kswapd_max_order = order;
2847 2848
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2849
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2850
		return;
2851 2852 2853 2854
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2855
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2856 2857
}

2858 2859 2860 2861 2862 2863 2864 2865
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2866
{
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2891 2892
}

2893
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2894
/*
2895
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2896 2897 2898 2899 2900
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2901
 */
2902
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2903
{
2904 2905
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2906 2907 2908
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2909
		.may_writepage = 1,
2910 2911 2912
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
2913
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
2914
	};
2915 2916 2917 2918
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2919 2920
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2921

2922 2923 2924 2925
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2926

2927
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2928

2929 2930 2931
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2932

2933
	return nr_reclaimed;
L
Linus Torvalds 已提交
2934
}
2935
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2936 2937 2938 2939 2940

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2941
static int __devinit cpu_callback(struct notifier_block *nfb,
2942
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2943
{
2944
	int nid;
L
Linus Torvalds 已提交
2945

2946
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2947
		for_each_node_state(nid, N_HIGH_MEMORY) {
2948
			pg_data_t *pgdat = NODE_DATA(nid);
2949 2950 2951
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2952

2953
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2954
				/* One of our CPUs online: restore mask */
2955
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2956 2957 2958 2959 2960
		}
	}
	return NOTIFY_OK;
}

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2994 2995
static int __init kswapd_init(void)
{
2996
	int nid;
2997

L
Linus Torvalds 已提交
2998
	swap_setup();
2999
	for_each_node_state(nid, N_HIGH_MEMORY)
3000
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3001 3002 3003 3004 3005
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3016
#define RECLAIM_OFF 0
3017
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3018 3019 3020
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3021 3022 3023 3024 3025 3026 3027
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3028 3029 3030 3031 3032 3033
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3034 3035 3036 3037 3038 3039
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3082 3083 3084
/*
 * Try to free up some pages from this zone through reclaim.
 */
3085
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3086
{
3087
	/* Minimum pages needed in order to stay on node */
3088
	const unsigned long nr_pages = 1 << order;
3089 3090
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3091 3092
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3093
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3094
		.may_swap = 1,
3095 3096
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3097
		.gfp_mask = gfp_mask,
3098
		.order = order,
3099
		.priority = ZONE_RECLAIM_PRIORITY,
3100
	};
3101 3102 3103
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3104
	unsigned long nr_slab_pages0, nr_slab_pages1;
3105 3106

	cond_resched();
3107 3108 3109 3110 3111 3112
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3113
	lockdep_set_current_reclaim_state(gfp_mask);
3114 3115
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3116

3117
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3118 3119 3120 3121 3122
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3123 3124
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3125
	}
3126

3127 3128
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3129
		/*
3130
		 * shrink_slab() does not currently allow us to determine how
3131 3132 3133 3134
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3135
		 *
3136 3137
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3138
		 */
3139 3140 3141 3142
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3143
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3144 3145 3146 3147 3148 3149 3150 3151
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3152 3153 3154 3155 3156

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3157 3158 3159
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3160 3161
	}

3162
	p->reclaim_state = NULL;
3163
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3164
	lockdep_clear_current_reclaim_state();
3165
	return sc.nr_reclaimed >= nr_pages;
3166
}
3167 3168 3169 3170

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3171
	int ret;
3172 3173

	/*
3174 3175
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3176
	 *
3177 3178 3179 3180 3181
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3182
	 */
3183 3184
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3185
		return ZONE_RECLAIM_FULL;
3186

3187
	if (zone->all_unreclaimable)
3188
		return ZONE_RECLAIM_FULL;
3189

3190
	/*
3191
	 * Do not scan if the allocation should not be delayed.
3192
	 */
3193
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3194
		return ZONE_RECLAIM_NOSCAN;
3195 3196 3197 3198 3199 3200 3201

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3202
	node_id = zone_to_nid(zone);
3203
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3204
		return ZONE_RECLAIM_NOSCAN;
3205 3206

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3207 3208
		return ZONE_RECLAIM_NOSCAN;

3209 3210 3211
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3212 3213 3214
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3215
	return ret;
3216
}
3217
#endif
L
Lee Schermerhorn 已提交
3218 3219 3220 3221 3222 3223 3224

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3225 3226
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3227 3228
 *
 * Reasons page might not be evictable:
3229
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3230
 * (2) page is part of an mlocked VMA
3231
 *
L
Lee Schermerhorn 已提交
3232 3233 3234 3235
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3236 3237 3238
	if (mapping_unevictable(page_mapping(page)))
		return 0;

3239
	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
N
Nick Piggin 已提交
3240
		return 0;
L
Lee Schermerhorn 已提交
3241 3242 3243

	return 1;
}
3244

3245
#ifdef CONFIG_SHMEM
3246
/**
3247 3248 3249
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3250
 *
3251
 * Checks pages for evictability and moves them to the appropriate lru list.
3252 3253
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3254
 */
3255
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3256
{
3257
	struct lruvec *lruvec;
3258 3259 3260 3261
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3262

3263 3264 3265
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3266

3267 3268 3269 3270 3271 3272 3273 3274
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3275

3276 3277
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3278

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
		if (page_evictable(page, NULL)) {
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
			__dec_zone_state(zone, NR_UNEVICTABLE);
			lruvec = mem_cgroup_lru_move_lists(zone, page,
						LRU_UNEVICTABLE, lru);
			list_move(&page->lru, &lruvec->lists[lru]);
			__inc_zone_state(zone, NR_INACTIVE_ANON + lru);
			pgrescued++;
3290
		}
3291
	}
3292

3293 3294 3295 3296
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3297 3298
	}
}
3299
#endif /* CONFIG_SHMEM */
3300

3301
static void warn_scan_unevictable_pages(void)
3302
{
3303
	printk_once(KERN_WARNING
3304
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3305
		    "disabled for lack of a legitimate use case.  If you have "
3306 3307
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3308 3309 3310 3311 3312 3313 3314 3315 3316
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3317
			   void __user *buffer,
3318 3319
			   size_t *length, loff_t *ppos)
{
3320
	warn_scan_unevictable_pages();
3321
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3322 3323 3324 3325
	scan_unevictable_pages = 0;
	return 0;
}

3326
#ifdef CONFIG_NUMA
3327 3328 3329 3330 3331
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3332 3333
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3334 3335
					  char *buf)
{
3336
	warn_scan_unevictable_pages();
3337 3338 3339
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3340 3341
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3342 3343
					const char *buf, size_t count)
{
3344
	warn_scan_unevictable_pages();
3345 3346 3347 3348
	return 1;
}


3349
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3350 3351 3352 3353 3354
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3355
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3356 3357 3358 3359
}

void scan_unevictable_unregister_node(struct node *node)
{
3360
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3361
}
3362
#endif