vmscan.c 98.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
56 57 58 59
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

60 61 62
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

66 67
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70 71 72

	int may_writepage;

73 74
	/* Can mapped pages be reclaimed? */
	int may_unmap;
75

76 77 78
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83
	/* Scan (total_size >> priority) pages at once */
	int priority;

84 85 86 87 88
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
89

90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
131
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
132 133 134 135

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
136
#ifdef CONFIG_MEMCG
137 138
static bool global_reclaim(struct scan_control *sc)
{
139
	return !sc->target_mem_cgroup;
140
}
141
#else
142 143 144 145
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
146 147
#endif

148
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149
{
150
	if (!mem_cgroup_disabled())
151
		return mem_cgroup_get_lru_size(lruvec, lru);
152

153
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 155
}

L
Linus Torvalds 已提交
156 157 158
/*
 * Add a shrinker callback to be called from the vm
 */
159
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
160
{
161
	atomic_long_set(&shrinker->nr_in_batch, 0);
162 163 164
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
165
}
166
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
167 168 169 170

/*
 * Remove one
 */
171
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
172 173 174 175 176
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
177
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
178

179 180 181 182 183 184 185 186
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
187 188 189 190 191 192 193 194 195
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
196
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
197 198 199 200 201 202 203
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
204 205
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
206
 */
207
unsigned long shrink_slab(struct shrink_control *shrink,
208
			  unsigned long nr_pages_scanned,
209
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
210 211
{
	struct shrinker *shrinker;
212
	unsigned long ret = 0;
L
Linus Torvalds 已提交
213

214 215
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
216

217 218 219 220 221
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
222 223 224

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
225 226
		long total_scan;
		long max_pass;
227
		int shrink_ret = 0;
228 229
		long nr;
		long new_nr;
230 231
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
232

233 234 235 236
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

237 238 239 240 241
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
242
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243 244

		total_scan = nr;
245
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
246
		delta *= max_pass;
L
Linus Torvalds 已提交
247
		do_div(delta, lru_pages + 1);
248 249
		total_scan += delta;
		if (total_scan < 0) {
250 251
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
252 253
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
254 255
		}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

271 272 273 274 275
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
276 277
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
278

279
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 281 282
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

283
		while (total_scan >= batch_size) {
284
			int nr_before;
L
Linus Torvalds 已提交
285

286 287
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
288
							batch_size);
L
Linus Torvalds 已提交
289 290
			if (shrink_ret == -1)
				break;
291 292
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
293 294
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
295 296 297 298

			cond_resched();
		}

299 300 301 302 303
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
304 305 306 307 308
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
309 310

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
311 312
	}
	up_read(&shrinker_rwsem);
313 314
out:
	cond_resched();
315
	return ret;
L
Linus Torvalds 已提交
316 317 318 319
}

static inline int is_page_cache_freeable(struct page *page)
{
320 321 322 323 324
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
325
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
326 327
}

328 329
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
330
{
331
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
355
	lock_page(page);
356 357
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
358 359 360
	unlock_page(page);
}

361 362 363 364 365 366 367 368 369 370 371 372
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
373
/*
A
Andrew Morton 已提交
374 375
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
376
 */
377
static pageout_t pageout(struct page *page, struct address_space *mapping,
378
			 struct scan_control *sc)
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
387
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
403
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
404 405
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
406
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
407 408 409 410 411 412 413
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
414
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
415 416 417 418 419 420 421
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
422 423
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
424 425 426 427 428 429 430
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
431
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
432 433 434
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
435

L
Linus Torvalds 已提交
436 437 438 439
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
440
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
442 443 444 445 446 447
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

448
/*
N
Nick Piggin 已提交
449 450
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
451
 */
N
Nick Piggin 已提交
452
static int __remove_mapping(struct address_space *mapping, struct page *page)
453
{
454 455
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
456

N
Nick Piggin 已提交
457
	spin_lock_irq(&mapping->tree_lock);
458
	/*
N
Nick Piggin 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
482
	 */
N
Nick Piggin 已提交
483
	if (!page_freeze_refs(page, 2))
484
		goto cannot_free;
N
Nick Piggin 已提交
485 486 487
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
488
		goto cannot_free;
N
Nick Piggin 已提交
489
	}
490 491 492 493

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
494
		spin_unlock_irq(&mapping->tree_lock);
495
		swapcache_free(swap, page);
N
Nick Piggin 已提交
496
	} else {
497 498 499 500
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

501
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
502
		spin_unlock_irq(&mapping->tree_lock);
503
		mem_cgroup_uncharge_cache_page(page);
504 505 506

		if (freepage != NULL)
			freepage(page);
507 508 509 510 511
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
512
	spin_unlock_irq(&mapping->tree_lock);
513 514 515
	return 0;
}

N
Nick Piggin 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
549
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
563
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
564 565 566 567 568 569 570 571
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
572
		/*
573 574 575
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
576
		 * isolation/check_move_unevictable_pages,
577
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 579
		 * the page back to the evictable list.
		 *
580
		 * The other side is TestClearPageMlocked() or shmem_lock().
581 582
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

601 602 603 604 605
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
606 607 608
	put_page(page);		/* drop ref from isolate */
}

609 610 611
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
612
	PAGEREF_KEEP,
613 614 615 616 617 618
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
619
	int referenced_ptes, referenced_page;
620 621
	unsigned long vm_flags;

622 623
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
624
	referenced_page = TestClearPageReferenced(page);
625 626 627 628 629 630 631 632

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

633
	if (referenced_ptes) {
634
		if (PageSwapBacked(page))
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

652
		if (referenced_page || referenced_ptes > 1)
653 654
			return PAGEREF_ACTIVATE;

655 656 657 658 659 660
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

661 662
		return PAGEREF_KEEP;
	}
663 664

	/* Reclaim if clean, defer dirty pages to writeback */
665
	if (referenced_page && !PageSwapBacked(page))
666 667 668
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
669 670
}

L
Linus Torvalds 已提交
671
/*
A
Andrew Morton 已提交
672
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
673
 */
A
Andrew Morton 已提交
674
static unsigned long shrink_page_list(struct list_head *page_list,
675
				      struct zone *zone,
676
				      struct scan_control *sc,
677 678
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
679 680
{
	LIST_HEAD(ret_pages);
681
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
682
	int pgactivate = 0;
683 684
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
685
	unsigned long nr_reclaimed = 0;
686
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
687 688 689 690

	cond_resched();

	while (!list_empty(page_list)) {
691
		enum page_references references;
L
Linus Torvalds 已提交
692 693 694 695 696 697 698 699 700
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
701
		if (!trylock_page(page))
L
Linus Torvalds 已提交
702 703
			goto keep;

N
Nick Piggin 已提交
704
		VM_BUG_ON(PageActive(page));
705
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
706 707

		sc->nr_scanned++;
708

N
Nick Piggin 已提交
709 710
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
711

712
		if (!sc->may_unmap && page_mapped(page))
713 714
			goto keep_locked;

L
Linus Torvalds 已提交
715 716 717 718
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

719 720 721 722
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
723 724 725
			/*
			 * memcg doesn't have any dirty pages throttling so we
			 * could easily OOM just because too many pages are in
726
			 * writeback and there is nothing else to reclaim.
727
			 *
728
			 * Check __GFP_IO, certainly because a loop driver
729 730 731 732
			 * thread might enter reclaim, and deadlock if it waits
			 * on a page for which it is needed to do the write
			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
			 * but more thought would probably show more reasons.
733 734 735 736 737 738
			 *
			 * Don't require __GFP_FS, since we're not going into
			 * the FS, just waiting on its writeback completion.
			 * Worryingly, ext4 gfs2 and xfs allocate pages with
			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
			 * testing may_enter_fs here is liable to OOM on them.
739
			 */
740 741 742 743 744 745 746 747 748 749 750 751 752 753
			if (global_reclaim(sc) ||
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
754
				nr_writeback++;
755
				goto keep_locked;
756
			}
757
			wait_on_page_writeback(page);
758
		}
L
Linus Torvalds 已提交
759

760
		references = page_check_references(page, sc);
761 762
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
763
			goto activate_locked;
764 765
		case PAGEREF_KEEP:
			goto keep_locked;
766 767 768 769
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
770 771 772 773 774

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
775
		if (PageAnon(page) && !PageSwapCache(page)) {
776 777
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
778
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
779
				goto activate_locked;
780
			may_enter_fs = 1;
N
Nick Piggin 已提交
781
		}
L
Linus Torvalds 已提交
782 783 784 785 786 787 788 789

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
790
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
791 792 793 794
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
795 796
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
797 798 799 800 801 802
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
803 804
			nr_dirty++;

805 806
			/*
			 * Only kswapd can writeback filesystem pages to
807 808
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
809
			 */
810
			if (page_is_file_cache(page) &&
811 812
					(!current_is_kswapd() ||
					 sc->priority >= DEF_PRIORITY - 2)) {
813 814 815 816 817 818 819 820 821
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

822 823 824
				goto keep_locked;
			}

825
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
826
				goto keep_locked;
827
			if (!may_enter_fs)
L
Linus Torvalds 已提交
828
				goto keep_locked;
829
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
830 831 832
				goto keep_locked;

			/* Page is dirty, try to write it out here */
833
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
834
			case PAGE_KEEP:
835
				nr_congested++;
L
Linus Torvalds 已提交
836 837 838 839
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
840
				if (PageWriteback(page))
841
					goto keep;
842
				if (PageDirty(page))
L
Linus Torvalds 已提交
843
					goto keep;
844

L
Linus Torvalds 已提交
845 846 847 848
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
849
				if (!trylock_page(page))
L
Linus Torvalds 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
869
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
870 871 872 873 874 875 876 877 878 879
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
880
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
881 882
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
899 900
		}

N
Nick Piggin 已提交
901
		if (!mapping || !__remove_mapping(mapping, page))
902
			goto keep_locked;
L
Linus Torvalds 已提交
903

N
Nick Piggin 已提交
904 905 906 907 908 909 910 911
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
912
free_it:
913
		nr_reclaimed++;
914 915 916 917 918 919

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
920 921
		continue;

N
Nick Piggin 已提交
922
cull_mlocked:
923 924
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
925 926 927 928
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
929
activate_locked:
930 931
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
932
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
933
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
934 935 936 937 938 939
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
940
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
941
	}
942

943 944 945 946 947 948
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
949
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
950
		zone_set_flag(zone, ZONE_CONGESTED);
951

952
	free_hot_cold_page_list(&free_pages, 1);
953

L
Linus Torvalds 已提交
954
	list_splice(&ret_pages, page_list);
955
	count_vm_events(PGACTIVATE, pgactivate);
956 957
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
958
	return nr_reclaimed;
L
Linus Torvalds 已提交
959 960
}

A
Andy Whitcroft 已提交
961 962 963 964 965 966 967 968 969 970
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
971
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
972 973 974 975 976 977 978
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Mel Gorman 已提交
979
	/* Do not give back unevictable pages for compaction */
L
Lee Schermerhorn 已提交
980 981 982
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
983
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1018

1019 1020 1021
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1046
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1047
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1048
 * @nr_scanned:	The number of pages that were scanned.
1049
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1050
 * @mode:	One of the LRU isolation modes
1051
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1052 1053 1054
 *
 * returns how many pages were moved onto *@dst.
 */
1055
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1056
		struct lruvec *lruvec, struct list_head *dst,
1057
		unsigned long *nr_scanned, struct scan_control *sc,
1058
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1059
{
H
Hugh Dickins 已提交
1060
	struct list_head *src = &lruvec->lists[lru];
1061
	unsigned long nr_taken = 0;
1062
	unsigned long scan;
L
Linus Torvalds 已提交
1063

1064
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1065
		struct page *page;
1066
		int nr_pages;
A
Andy Whitcroft 已提交
1067

L
Linus Torvalds 已提交
1068 1069 1070
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1071
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1072

1073
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1074
		case 0:
1075 1076
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1077
			list_move(&page->lru, dst);
1078
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1079 1080 1081 1082 1083 1084
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1085

A
Andy Whitcroft 已提交
1086 1087 1088
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1089 1090
	}

H
Hugh Dickins 已提交
1091
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1092 1093
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1094 1095 1096
	return nr_taken;
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1108 1109 1110
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1126 1127
	VM_BUG_ON(!page_count(page));

1128 1129
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1130
		struct lruvec *lruvec;
1131 1132

		spin_lock_irq(&zone->lru_lock);
1133
		lruvec = mem_cgroup_page_lruvec(page, zone);
1134
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1135
			int lru = page_lru(page);
1136
			get_page(page);
1137
			ClearPageLRU(page);
1138 1139
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1140 1141 1142 1143 1144 1145
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1157
	if (!global_reclaim(sc))
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1171
static noinline_for_stack void
H
Hugh Dickins 已提交
1172
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1173
{
1174 1175
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1176
	LIST_HEAD(pages_to_free);
1177 1178 1179 1180 1181

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1182
		struct page *page = lru_to_page(page_list);
1183
		int lru;
1184

1185 1186 1187 1188 1189 1190 1191 1192
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1193 1194 1195

		lruvec = mem_cgroup_page_lruvec(page, zone);

1196
		SetPageLRU(page);
1197
		lru = page_lru(page);
1198 1199
		add_page_to_lru_list(page, lruvec, lru);

1200 1201
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1202 1203
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1204
		}
1205 1206 1207
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1208
			del_page_from_lru_list(page, lruvec, lru);
1209 1210 1211 1212 1213 1214 1215

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1216 1217 1218
		}
	}

1219 1220 1221 1222
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1223 1224
}

L
Linus Torvalds 已提交
1225
/*
A
Andrew Morton 已提交
1226 1227
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1228
 */
1229
static noinline_for_stack unsigned long
1230
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1231
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1232 1233
{
	LIST_HEAD(page_list);
1234
	unsigned long nr_scanned;
1235
	unsigned long nr_reclaimed = 0;
1236
	unsigned long nr_taken;
1237 1238
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1239
	isolate_mode_t isolate_mode = 0;
1240
	int file = is_file_lru(lru);
1241 1242
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1243

1244
	while (unlikely(too_many_isolated(zone, file, sc))) {
1245
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1246 1247 1248 1249 1250 1251

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1252
	lru_add_drain();
1253 1254

	if (!sc->may_unmap)
1255
		isolate_mode |= ISOLATE_UNMAPPED;
1256
	if (!sc->may_writepage)
1257
		isolate_mode |= ISOLATE_CLEAN;
1258

L
Linus Torvalds 已提交
1259
	spin_lock_irq(&zone->lru_lock);
1260

1261 1262
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1263 1264 1265 1266

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1267
	if (global_reclaim(sc)) {
1268 1269
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1270
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1271
		else
H
Hugh Dickins 已提交
1272
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1273
	}
1274
	spin_unlock_irq(&zone->lru_lock);
1275

1276
	if (nr_taken == 0)
1277
		return 0;
A
Andy Whitcroft 已提交
1278

1279
	nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1280
						&nr_dirty, &nr_writeback);
1281

1282 1283
	spin_lock_irq(&zone->lru_lock);

1284
	reclaim_stat->recent_scanned[file] += nr_taken;
1285

Y
Ying Han 已提交
1286 1287 1288 1289 1290 1291 1292 1293
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1294

1295
	putback_inactive_pages(lruvec, &page_list);
1296

1297
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1298 1299 1300 1301

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1326 1327
	if (nr_writeback && nr_writeback >=
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1328 1329
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1330 1331 1332
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1333
		sc->priority,
M
Mel Gorman 已提交
1334
		trace_shrink_flags(file));
1335
	return nr_reclaimed;
L
Linus Torvalds 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1355

1356
static void move_active_pages_to_lru(struct lruvec *lruvec,
1357
				     struct list_head *list,
1358
				     struct list_head *pages_to_free,
1359 1360
				     enum lru_list lru)
{
1361
	struct zone *zone = lruvec_zone(lruvec);
1362 1363
	unsigned long pgmoved = 0;
	struct page *page;
1364
	int nr_pages;
1365 1366 1367

	while (!list_empty(list)) {
		page = lru_to_page(list);
1368
		lruvec = mem_cgroup_page_lruvec(page, zone);
1369 1370 1371 1372

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1373 1374
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1375
		list_move(&page->lru, &lruvec->lists[lru]);
1376
		pgmoved += nr_pages;
1377

1378 1379 1380
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1381
			del_page_from_lru_list(page, lruvec, lru);
1382 1383 1384 1385 1386 1387 1388

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1389 1390 1391 1392 1393 1394
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1395

H
Hugh Dickins 已提交
1396
static void shrink_active_list(unsigned long nr_to_scan,
1397
			       struct lruvec *lruvec,
1398
			       struct scan_control *sc,
1399
			       enum lru_list lru)
L
Linus Torvalds 已提交
1400
{
1401
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1402
	unsigned long nr_scanned;
1403
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1404
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1405
	LIST_HEAD(l_active);
1406
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1407
	struct page *page;
1408
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1409
	unsigned long nr_rotated = 0;
1410
	isolate_mode_t isolate_mode = 0;
1411
	int file = is_file_lru(lru);
1412
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1413 1414

	lru_add_drain();
1415 1416

	if (!sc->may_unmap)
1417
		isolate_mode |= ISOLATE_UNMAPPED;
1418
	if (!sc->may_writepage)
1419
		isolate_mode |= ISOLATE_CLEAN;
1420

L
Linus Torvalds 已提交
1421
	spin_lock_irq(&zone->lru_lock);
1422

1423 1424
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1425
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1426
		zone->pages_scanned += nr_scanned;
1427

1428
	reclaim_stat->recent_scanned[file] += nr_taken;
1429

H
Hugh Dickins 已提交
1430
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1431
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1432
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1433 1434 1435 1436 1437 1438
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1439

L
Lee Schermerhorn 已提交
1440 1441 1442 1443 1444
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1445 1446 1447 1448 1449 1450 1451 1452
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1453 1454
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1455
			nr_rotated += hpage_nr_pages(page);
1456 1457 1458 1459 1460 1461 1462 1463 1464
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1465
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1466 1467 1468 1469
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1470

1471
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1472 1473 1474
		list_add(&page->lru, &l_inactive);
	}

1475
	/*
1476
	 * Move pages back to the lru list.
1477
	 */
1478
	spin_lock_irq(&zone->lru_lock);
1479
	/*
1480 1481 1482 1483
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1484
	 */
1485
	reclaim_stat->recent_rotated[file] += nr_rotated;
1486

1487 1488
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1489
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1490
	spin_unlock_irq(&zone->lru_lock);
1491 1492

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1493 1494
}

1495
#ifdef CONFIG_SWAP
1496
static int inactive_anon_is_low_global(struct zone *zone)
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1509 1510
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1511
 * @lruvec: LRU vector to check
1512 1513 1514 1515
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1516
static int inactive_anon_is_low(struct lruvec *lruvec)
1517
{
1518 1519 1520 1521 1522 1523 1524
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1525
	if (!mem_cgroup_disabled())
1526
		return mem_cgroup_inactive_anon_is_low(lruvec);
1527

1528
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1529
}
1530
#else
1531
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1532 1533 1534 1535
{
	return 0;
}
#endif
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1549
 * @lruvec: LRU vector to check
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1561
static int inactive_file_is_low(struct lruvec *lruvec)
1562
{
1563
	if (!mem_cgroup_disabled())
1564
		return mem_cgroup_inactive_file_is_low(lruvec);
1565

1566
	return inactive_file_is_low_global(lruvec_zone(lruvec));
1567 1568
}

H
Hugh Dickins 已提交
1569
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1570
{
H
Hugh Dickins 已提交
1571
	if (is_file_lru(lru))
1572
		return inactive_file_is_low(lruvec);
1573
	else
1574
		return inactive_anon_is_low(lruvec);
1575 1576
}

1577
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1578
				 struct lruvec *lruvec, struct scan_control *sc)
1579
{
1580
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1581
		if (inactive_list_is_low(lruvec, lru))
1582
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1583 1584 1585
		return 0;
	}

1586
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1587 1588
}

1589
static int vmscan_swappiness(struct scan_control *sc)
1590
{
1591
	if (global_reclaim(sc))
1592
		return vm_swappiness;
1593
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1594 1595
}

1596 1597 1598 1599 1600 1601
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1602 1603
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1604
 */
1605
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1606
			   unsigned long *nr)
1607 1608 1609 1610
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1611
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1612
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1613
	enum lru_list lru;
1614
	int noswap = 0;
1615
	bool force_scan = false;
1616
	struct zone *zone = lruvec_zone(lruvec);
1617

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1628
	if (current_is_kswapd() && zone->all_unreclaimable)
1629
		force_scan = true;
1630
	if (!global_reclaim(sc))
1631
		force_scan = true;
1632 1633 1634 1635 1636 1637 1638 1639 1640

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1641

1642 1643 1644 1645
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1646

1647
	if (global_reclaim(sc)) {
1648
		free  = zone_page_state(zone, NR_FREE_PAGES);
1649 1650
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1651
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1652 1653 1654 1655
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1656
		}
1657 1658
	}

1659 1660 1661 1662
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1663
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1664
	file_prio = 200 - anon_prio;
1665

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1677
	spin_lock_irq(&zone->lru_lock);
1678 1679 1680
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1681 1682
	}

1683 1684 1685
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1686 1687 1688
	}

	/*
1689 1690 1691
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1692
	 */
1693
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1694
	ap /= reclaim_stat->recent_rotated[0] + 1;
1695

1696
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1697
	fp /= reclaim_stat->recent_rotated[1] + 1;
1698
	spin_unlock_irq(&zone->lru_lock);
1699

1700 1701 1702 1703
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1704 1705
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1706
		unsigned long scan;
1707

1708
		scan = get_lru_size(lruvec, lru);
1709 1710
		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
			scan >>= sc->priority;
1711 1712
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1713 1714
			scan = div64_u64(scan * fraction[file], denominator);
		}
H
Hugh Dickins 已提交
1715
		nr[lru] = scan;
1716
	}
1717
}
1718

M
Mel Gorman 已提交
1719
/* Use reclaim/compaction for costly allocs or under memory pressure */
1720
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
1721 1722 1723
{
	if (COMPACTION_BUILD && sc->order &&
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1724
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
1725 1726 1727 1728 1729
		return true;

	return false;
}

1730
/*
M
Mel Gorman 已提交
1731 1732 1733 1734 1735
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1736
 */
1737
static inline bool should_continue_reclaim(struct lruvec *lruvec,
1738 1739 1740 1741 1742 1743 1744 1745
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1746
	if (!in_reclaim_compaction(sc))
1747 1748
		return false;

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1771 1772 1773 1774 1775 1776

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1777
	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1778
	if (nr_swap_pages > 0)
1779
		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1780 1781 1782 1783 1784
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1785
	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1786 1787 1788 1789 1790 1791 1792 1793
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1794 1795 1796
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1797
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
L
Linus Torvalds 已提交
1798
{
1799
	unsigned long nr[NR_LRU_LISTS];
1800
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1801
	enum lru_list lru;
1802
	unsigned long nr_reclaimed, nr_scanned;
1803
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1804
	struct blk_plug plug;
1805

1806 1807
restart:
	nr_reclaimed = 0;
1808
	nr_scanned = sc->nr_scanned;
1809
	get_scan_count(lruvec, sc, nr);
L
Linus Torvalds 已提交
1810

1811
	blk_start_plug(&plug);
1812 1813
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1814 1815
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1816
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1817 1818
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1819

H
Hugh Dickins 已提交
1820
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1821
							    lruvec, sc);
1822
			}
L
Linus Torvalds 已提交
1823
		}
1824 1825 1826 1827 1828 1829 1830 1831
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1832 1833
		if (nr_reclaimed >= nr_to_reclaim &&
		    sc->priority < DEF_PRIORITY)
1834
			break;
L
Linus Torvalds 已提交
1835
	}
1836
	blk_finish_plug(&plug);
1837
	sc->nr_reclaimed += nr_reclaimed;
1838

1839 1840 1841 1842
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1843
	if (inactive_anon_is_low(lruvec))
1844
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1845
				   sc, LRU_ACTIVE_ANON);
1846

1847
	/* reclaim/compaction might need reclaim to continue */
1848
	if (should_continue_reclaim(lruvec, nr_reclaimed,
1849
				    sc->nr_scanned - nr_scanned, sc))
1850 1851
		goto restart;

1852
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1853 1854
}

1855
static void shrink_zone(struct zone *zone, struct scan_control *sc)
1856
{
1857 1858
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
1859
		.zone = zone,
1860
		.priority = sc->priority,
1861
	};
1862 1863 1864 1865
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
1866 1867 1868
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);

		shrink_lruvec(lruvec, sc);
1869

1870 1871 1872 1873 1874
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
1875 1876 1877 1878
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
1879 1880 1881 1882 1883 1884 1885
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
1886 1887
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
1914
	if (compaction_deferred(zone, sc->order))
1915 1916 1917 1918 1919 1920 1921 1922 1923
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
1924 1925 1926 1927 1928
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1929 1930
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1931 1932
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1933 1934 1935
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1936 1937 1938
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
1939 1940
 *
 * This function returns true if a zone is being reclaimed for a costly
1941
 * high-order allocation and compaction is ready to begin. This indicates to
1942 1943
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
1944
 */
1945
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
1946
{
1947
	struct zoneref *z;
1948
	struct zone *zone;
1949 1950
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
1951
	bool aborted_reclaim = false;
1952

1953 1954 1955 1956 1957 1958 1959 1960
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

1961 1962
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1963
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1964
			continue;
1965 1966 1967 1968
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1969
		if (global_reclaim(sc)) {
1970 1971
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1972 1973
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
1974
				continue;	/* Let kswapd poll it */
1975 1976
			if (COMPACTION_BUILD) {
				/*
1977 1978 1979 1980 1981
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
1982 1983
				 * noticeable problem, like transparent huge
				 * page allocations.
1984
				 */
1985
				if (compaction_ready(zone, sc)) {
1986
					aborted_reclaim = true;
1987
					continue;
1988
				}
1989
			}
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2003
		}
2004

2005
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2006
	}
2007

2008
	return aborted_reclaim;
2009 2010 2011 2012 2013 2014 2015
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2016
/* All zones in zonelist are unreclaimable? */
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2029 2030
		if (!zone->all_unreclaimable)
			return false;
2031 2032
	}

2033
	return true;
L
Linus Torvalds 已提交
2034
}
2035

L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041 2042 2043
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2044 2045 2046 2047
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2048 2049 2050
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2051
 */
2052
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2053 2054
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2055
{
2056
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2057
	struct reclaim_state *reclaim_state = current->reclaim_state;
2058
	struct zoneref *z;
2059
	struct zone *zone;
2060
	unsigned long writeback_threshold;
2061
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2062

2063 2064
	delayacct_freepages_start();

2065
	if (global_reclaim(sc))
2066
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2067

2068
	do {
2069
		sc->nr_scanned = 0;
2070
		aborted_reclaim = shrink_zones(zonelist, sc);
2071

2072 2073 2074 2075
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2076
		if (global_reclaim(sc)) {
2077
			unsigned long lru_pages = 0;
2078 2079
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2080 2081 2082 2083 2084 2085
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2086
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2087
			if (reclaim_state) {
2088
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2089 2090
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2091
		}
2092
		total_scanned += sc->nr_scanned;
2093
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2103 2104
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2105 2106
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2107
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2108 2109 2110
		}

		/* Take a nap, wait for some writeback to complete */
2111
		if (!sc->hibernation_mode && sc->nr_scanned &&
2112
		    sc->priority < DEF_PRIORITY - 2) {
2113 2114 2115
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2116 2117
						&cpuset_current_mems_allowed,
						&preferred_zone);
2118 2119
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2120
	} while (--sc->priority >= 0);
2121

L
Linus Torvalds 已提交
2122
out:
2123 2124
	delayacct_freepages_end();

2125 2126 2127
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2128 2129 2130 2131 2132 2133 2134 2135
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2136 2137
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2138 2139
		return 1;

2140
	/* top priority shrink_zones still had more to do? don't OOM, then */
2141
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2142 2143 2144
		return 1;

	return 0;
L
Linus Torvalds 已提交
2145 2146
}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
 * when the low watermark is reached
 */
static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
		return;

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
		return;

2202 2203 2204
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
		return;
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
}

2224
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2225
				gfp_t gfp_mask, nodemask_t *nodemask)
2226
{
2227
	unsigned long nr_reclaimed;
2228 2229 2230
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2231
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2232
		.may_unmap = 1,
2233
		.may_swap = 1,
2234
		.order = order,
2235
		.priority = DEF_PRIORITY,
2236
		.target_mem_cgroup = NULL,
2237
		.nodemask = nodemask,
2238
	};
2239 2240 2241
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2242

2243 2244 2245 2246 2247 2248 2249 2250 2251
	throttle_direct_reclaim(gfp_mask, zonelist, nodemask);

	/*
	 * Do not enter reclaim if fatal signal is pending. 1 is returned so
	 * that the page allocator does not consider triggering OOM
	 */
	if (fatal_signal_pending(current))
		return 1;

2252 2253 2254 2255
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2256
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2257 2258 2259 2260

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2261 2262
}

A
Andrew Morton 已提交
2263
#ifdef CONFIG_MEMCG
2264

2265
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2266
						gfp_t gfp_mask, bool noswap,
2267 2268
						struct zone *zone,
						unsigned long *nr_scanned)
2269 2270
{
	struct scan_control sc = {
2271
		.nr_scanned = 0,
2272
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2273 2274 2275 2276
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2277
		.priority = 0,
2278
		.target_mem_cgroup = memcg,
2279
	};
2280
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2281

2282 2283
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2284

2285
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2286 2287 2288
						      sc.may_writepage,
						      sc.gfp_mask);

2289 2290 2291 2292 2293 2294 2295
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2296
	shrink_lruvec(lruvec, &sc);
2297 2298 2299

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2300
	*nr_scanned = sc.nr_scanned;
2301 2302 2303
	return sc.nr_reclaimed;
}

2304
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2305
					   gfp_t gfp_mask,
2306
					   bool noswap)
2307
{
2308
	struct zonelist *zonelist;
2309
	unsigned long nr_reclaimed;
2310
	int nid;
2311 2312
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2313
		.may_unmap = 1,
2314
		.may_swap = !noswap,
2315
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2316
		.order = 0,
2317
		.priority = DEF_PRIORITY,
2318
		.target_mem_cgroup = memcg,
2319
		.nodemask = NULL, /* we don't care the placement */
2320 2321 2322 2323 2324
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2325 2326
	};

2327 2328 2329 2330 2331
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2332
	nid = mem_cgroup_select_victim_node(memcg);
2333 2334

	zonelist = NODE_DATA(nid)->node_zonelists;
2335 2336 2337 2338 2339

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2340
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2341 2342 2343 2344

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2345 2346 2347
}
#endif

2348
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2349
{
2350
	struct mem_cgroup *memcg;
2351

2352 2353 2354 2355 2356
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2357
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2358

2359
		if (inactive_anon_is_low(lruvec))
2360
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2361
					   sc, LRU_ACTIVE_ANON);
2362 2363 2364

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2365 2366
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2378
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2392 2393
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2394 2395
}

2396 2397 2398 2399 2400 2401 2402
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2403
					int classzone_idx)
2404
{
2405
	int i;
2406 2407
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2408 2409 2410

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2426

2427
	/* Check the watermark levels */
2428
	for (i = 0; i <= classzone_idx; i++) {
2429 2430 2431 2432 2433
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2434 2435 2436 2437 2438 2439 2440 2441
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2442
			continue;
2443
		}
2444

2445
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2446
							i, 0))
2447 2448 2449
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2450
	}
2451

2452 2453 2454 2455 2456 2457
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2458
		return pgdat_balanced(pgdat, balanced, classzone_idx);
2459
	else
2460
		return all_zones_ok;
2461 2462
}

L
Linus Torvalds 已提交
2463 2464
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2465
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2466
 *
2467
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2478 2479 2480 2481 2482
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2483
 */
2484
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2485
							int *classzone_idx)
L
Linus Torvalds 已提交
2486 2487
{
	int all_zones_ok;
2488
	unsigned long balanced;
L
Linus Torvalds 已提交
2489
	int i;
2490
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2491
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2492
	struct reclaim_state *reclaim_state = current->reclaim_state;
2493 2494
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2495 2496
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2497
		.may_unmap = 1,
2498
		.may_swap = 1,
2499 2500 2501 2502 2503
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2504
		.order = order,
2505
		.target_mem_cgroup = NULL,
2506
	};
2507 2508 2509
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2510 2511
loop_again:
	total_scanned = 0;
2512
	sc.priority = DEF_PRIORITY;
2513
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2514
	sc.may_writepage = !laptop_mode;
2515
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2516

2517
	do {
L
Linus Torvalds 已提交
2518
		unsigned long lru_pages = 0;
2519
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2520 2521

		all_zones_ok = 1;
2522
		balanced = 0;
L
Linus Torvalds 已提交
2523

2524 2525 2526 2527 2528 2529
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2530

2531 2532
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2533

2534 2535
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2536
				continue;
L
Linus Torvalds 已提交
2537

2538 2539 2540 2541
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2542
			age_active_anon(zone, &sc);
2543

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2555
			if (!zone_watermark_ok_safe(zone, order,
2556
					high_wmark_pages(zone), 0, 0)) {
2557
				end_zone = i;
A
Andrew Morton 已提交
2558
				break;
2559 2560 2561
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2562 2563
			}
		}
A
Andrew Morton 已提交
2564 2565 2566
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2567 2568 2569
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2570
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2584
			int nr_slab, testorder;
2585
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2586

2587
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2588 2589
				continue;

2590 2591
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2592 2593 2594
				continue;

			sc.nr_scanned = 0;
2595

2596
			nr_soft_scanned = 0;
2597 2598 2599
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2600 2601 2602 2603 2604
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2605

2606
			/*
2607 2608 2609 2610 2611 2612
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2613
			 */
2614 2615 2616 2617
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
			if (COMPACTION_BUILD && order &&
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2631
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2632
				    !zone_watermark_ok_safe(zone, testorder,
2633
					high_wmark_pages(zone) + balance_gap,
2634
					end_zone, 0)) {
2635
				shrink_zone(zone, &sc);
2636

2637 2638 2639 2640 2641 2642 2643 2644 2645
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2646 2647 2648 2649 2650 2651
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2652
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2653
				sc.may_writepage = 1;
2654

2655 2656 2657
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2658
				continue;
2659
			}
2660

2661
			if (!zone_watermark_ok_safe(zone, testorder,
2662 2663 2664 2665 2666 2667 2668
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2669
				if (!zone_watermark_ok_safe(zone, order,
2670 2671
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2672 2673 2674 2675 2676 2677
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
2678
				 * speculatively avoid congestion waits
2679 2680
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2681
				if (i <= *classzone_idx)
2682
					balanced += zone->present_pages;
2683
			}
2684

L
Linus Torvalds 已提交
2685
		}
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

2696
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2702
		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2703 2704 2705 2706 2707
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2708 2709 2710 2711 2712 2713 2714

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2715
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2716
			break;
2717
	} while (--sc.priority >= 0);
L
Linus Torvalds 已提交
2718
out:
2719 2720 2721

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2722 2723
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2724
	 */
2725
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2726
		cond_resched();
2727 2728 2729

		try_to_freeze();

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2747 2748 2749
		goto loop_again;
	}

2750 2751 2752 2753 2754 2755 2756 2757 2758
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2759 2760
		int zones_need_compaction = 1;

2761 2762 2763 2764 2765 2766
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

2767 2768
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2769 2770
				continue;

2771
			/* Would compaction fail due to lack of free memory? */
2772 2773
			if (COMPACTION_BUILD &&
			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2774 2775
				goto loop_again;

2776 2777 2778 2779 2780 2781 2782
			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

2783 2784 2785 2786 2787
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;

2788 2789 2790
			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
2791 2792 2793

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2794 2795
	}

2796
	/*
2797
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2798 2799 2800 2801
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2802
	*classzone_idx = end_zone;
2803
	return order;
L
Linus Torvalds 已提交
2804 2805
}

2806
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2817
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2818 2819 2820 2821 2822 2823 2824 2825 2826
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2827
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2839 2840 2841 2842

		if (!kthread_should_stop())
			schedule();

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2853 2854
/*
 * The background pageout daemon, started as a kernel thread
2855
 * from the init process.
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2868
	unsigned long order, new_order;
2869
	unsigned balanced_order;
2870
	int classzone_idx, new_classzone_idx;
2871
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2872 2873
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2874

L
Linus Torvalds 已提交
2875 2876 2877
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2878
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2879

2880 2881
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2882
	if (!cpumask_empty(cpumask))
2883
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2898
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2899
	set_freezable();
L
Linus Torvalds 已提交
2900

2901
	order = new_order = 0;
2902
	balanced_order = 0;
2903
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2904
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2905
	for ( ; ; ) {
2906
		int ret;
2907

2908 2909 2910 2911 2912
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2913 2914
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2915 2916 2917 2918 2919 2920
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2921
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2922 2923
			/*
			 * Don't sleep if someone wants a larger 'order'
2924
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2925 2926
			 */
			order = new_order;
2927
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2928
		} else {
2929 2930
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2931
			order = pgdat->kswapd_max_order;
2932
			classzone_idx = pgdat->classzone_idx;
2933 2934
			new_order = order;
			new_classzone_idx = classzone_idx;
2935
			pgdat->kswapd_max_order = 0;
2936
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2937 2938
		}

2939 2940 2941 2942 2943 2944 2945 2946
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2947 2948
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2949 2950 2951
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2952
		}
L
Linus Torvalds 已提交
2953 2954 2955 2956 2957 2958 2959
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2960
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2961 2962 2963
{
	pg_data_t *pgdat;

2964
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2965 2966
		return;

2967
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2968
		return;
2969
	pgdat = zone->zone_pgdat;
2970
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2971
		pgdat->kswapd_max_order = order;
2972 2973
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2974
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2975
		return;
2976 2977 2978 2979
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2980
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2981 2982
}

2983 2984 2985 2986 2987 2988 2989 2990
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2991
{
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3016 3017
}

3018
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3019
/*
3020
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3021 3022 3023 3024 3025
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3026
 */
3027
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3028
{
3029 3030
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3031 3032 3033
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3034
		.may_writepage = 1,
3035 3036 3037
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3038
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3039
	};
3040 3041 3042 3043
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3044 3045
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3046

3047 3048 3049 3050
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3051

3052
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3053

3054 3055 3056
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3057

3058
	return nr_reclaimed;
L
Linus Torvalds 已提交
3059
}
3060
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3061 3062 3063 3064 3065

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3066
static int __devinit cpu_callback(struct notifier_block *nfb,
3067
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3068
{
3069
	int nid;
L
Linus Torvalds 已提交
3070

3071
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3072
		for_each_node_state(nid, N_HIGH_MEMORY) {
3073
			pg_data_t *pgdat = NODE_DATA(nid);
3074 3075 3076
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3077

3078
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3079
				/* One of our CPUs online: restore mask */
3080
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3081 3082 3083 3084 3085
		}
	}
	return NOTIFY_OK;
}

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3108
/*
3109 3110
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3111 3112 3113 3114 3115
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3116
	if (kswapd) {
3117
		kthread_stop(kswapd);
3118 3119
		NODE_DATA(nid)->kswapd = NULL;
	}
3120 3121
}

L
Linus Torvalds 已提交
3122 3123
static int __init kswapd_init(void)
{
3124
	int nid;
3125

L
Linus Torvalds 已提交
3126
	swap_setup();
3127
	for_each_node_state(nid, N_HIGH_MEMORY)
3128
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3129 3130 3131 3132 3133
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3144
#define RECLAIM_OFF 0
3145
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3146 3147 3148
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3149 3150 3151 3152 3153 3154 3155
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3156 3157 3158 3159 3160 3161
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3162 3163 3164 3165 3166 3167
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3210 3211 3212
/*
 * Try to free up some pages from this zone through reclaim.
 */
3213
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3214
{
3215
	/* Minimum pages needed in order to stay on node */
3216
	const unsigned long nr_pages = 1 << order;
3217 3218
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3219 3220
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3221
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3222
		.may_swap = 1,
3223 3224
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3225
		.gfp_mask = gfp_mask,
3226
		.order = order,
3227
		.priority = ZONE_RECLAIM_PRIORITY,
3228
	};
3229 3230 3231
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3232
	unsigned long nr_slab_pages0, nr_slab_pages1;
3233 3234

	cond_resched();
3235 3236 3237 3238 3239 3240
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3241
	lockdep_set_current_reclaim_state(gfp_mask);
3242 3243
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3244

3245
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3246 3247 3248 3249 3250
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3251 3252
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3253
	}
3254

3255 3256
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3257
		/*
3258
		 * shrink_slab() does not currently allow us to determine how
3259 3260 3261 3262
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3263
		 *
3264 3265
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3266
		 */
3267 3268 3269 3270
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3271
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3272 3273 3274 3275 3276 3277 3278 3279
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3280 3281 3282 3283 3284

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3285 3286 3287
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3288 3289
	}

3290
	p->reclaim_state = NULL;
3291
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3292
	lockdep_clear_current_reclaim_state();
3293
	return sc.nr_reclaimed >= nr_pages;
3294
}
3295 3296 3297 3298

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3299
	int ret;
3300 3301

	/*
3302 3303
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3304
	 *
3305 3306 3307 3308 3309
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3310
	 */
3311 3312
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3313
		return ZONE_RECLAIM_FULL;
3314

3315
	if (zone->all_unreclaimable)
3316
		return ZONE_RECLAIM_FULL;
3317

3318
	/*
3319
	 * Do not scan if the allocation should not be delayed.
3320
	 */
3321
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3322
		return ZONE_RECLAIM_NOSCAN;
3323 3324 3325 3326 3327 3328 3329

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3330
	node_id = zone_to_nid(zone);
3331
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3332
		return ZONE_RECLAIM_NOSCAN;
3333 3334

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3335 3336
		return ZONE_RECLAIM_NOSCAN;

3337 3338 3339
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3340 3341 3342
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3343
	return ret;
3344
}
3345
#endif
L
Lee Schermerhorn 已提交
3346 3347 3348 3349 3350 3351 3352

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3353 3354
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3355 3356
 *
 * Reasons page might not be evictable:
3357
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3358
 * (2) page is part of an mlocked VMA
3359
 *
L
Lee Schermerhorn 已提交
3360 3361 3362 3363
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3364 3365 3366
	if (mapping_unevictable(page_mapping(page)))
		return 0;

3367
	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
N
Nick Piggin 已提交
3368
		return 0;
L
Lee Schermerhorn 已提交
3369 3370 3371

	return 1;
}
3372

3373
#ifdef CONFIG_SHMEM
3374
/**
3375 3376 3377
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3378
 *
3379
 * Checks pages for evictability and moves them to the appropriate lru list.
3380 3381
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3382
 */
3383
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3384
{
3385
	struct lruvec *lruvec;
3386 3387 3388 3389
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3390

3391 3392 3393
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3394

3395 3396 3397 3398 3399 3400 3401 3402
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3403
		lruvec = mem_cgroup_page_lruvec(page, zone);
3404

3405 3406
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3407

3408 3409 3410 3411 3412
		if (page_evictable(page, NULL)) {
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3413 3414
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3415
			pgrescued++;
3416
		}
3417
	}
3418

3419 3420 3421 3422
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3423 3424
	}
}
3425
#endif /* CONFIG_SHMEM */
3426

3427
static void warn_scan_unevictable_pages(void)
3428
{
3429
	printk_once(KERN_WARNING
3430
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3431
		    "disabled for lack of a legitimate use case.  If you have "
3432 3433
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3434 3435 3436 3437 3438 3439 3440 3441 3442
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3443
			   void __user *buffer,
3444 3445
			   size_t *length, loff_t *ppos)
{
3446
	warn_scan_unevictable_pages();
3447
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3448 3449 3450 3451
	scan_unevictable_pages = 0;
	return 0;
}

3452
#ifdef CONFIG_NUMA
3453 3454 3455 3456 3457
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3458 3459
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3460 3461
					  char *buf)
{
3462
	warn_scan_unevictable_pages();
3463 3464 3465
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3466 3467
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3468 3469
					const char *buf, size_t count)
{
3470
	warn_scan_unevictable_pages();
3471 3472 3473 3474
	return 1;
}


3475
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3476 3477 3478 3479 3480
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3481
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3482 3483 3484 3485
}

void scan_unevictable_unregister_node(struct node *node)
{
3486
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3487
}
3488
#endif