vmscan.c 79.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

51 52 53
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
54 55 56 57
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

58 59 60
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

61 62 63
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

64 65
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68 69 70

	int may_writepage;

71 72
	/* Can mapped pages be reclaimed? */
	int may_unmap;
73

74 75 76
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

77
	int swappiness;
78

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83 84 85 86
	/*
	 * Intend to reclaim enough contenious memory rather than to reclaim
	 * enough amount memory. I.e, it's the mode for high order allocation.
	 */
	bool lumpy_reclaim_mode;

87 88 89
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
131
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
132 133 134 135

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

136
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
137
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138
#else
139
#define scanning_global_lru(sc)	(1)
140 141
#endif

142 143 144
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
145
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
146 147
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

148 149 150
	return &zone->reclaim_stat;
}

151 152
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
153
{
154
	if (!scanning_global_lru(sc))
155 156
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

157 158 159 160
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
161 162 163
/*
 * Add a shrinker callback to be called from the vm
 */
164
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
165
{
166 167 168 169
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
170
}
171
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
172 173 174 175

/*
 * Remove one
 */
176
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
177 178 179 180 181
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
182
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
183 184 185 186 187 188 189 190 191 192

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
193
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
194 195 196 197 198 199 200
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
201 202
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
203
 */
204 205
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
206 207
{
	struct shrinker *shrinker;
208
	unsigned long ret = 0;
L
Linus Torvalds 已提交
209 210 211 212 213

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
214
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
215 216 217 218

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
219
		unsigned long max_pass;
L
Linus Torvalds 已提交
220

221
		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
L
Linus Torvalds 已提交
222
		delta = (4 * scanned) / shrinker->seeks;
223
		delta *= max_pass;
L
Linus Torvalds 已提交
224 225
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
226
		if (shrinker->nr < 0) {
227 228 229
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
230 231 232 233 234 235 236 237 238 239
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
240 241 242 243 244 245 246

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
247
			int nr_before;
L
Linus Torvalds 已提交
248

249 250 251
			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
								gfp_mask);
L
Linus Torvalds 已提交
252 253
			if (shrink_ret == -1)
				break;
254 255
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
256
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
265
	return ret;
L
Linus Torvalds 已提交
266 267 268 269
}

static inline int is_page_cache_freeable(struct page *page)
{
270 271 272 273 274
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
275
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
276 277 278 279
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
280
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
304
	lock_page_nosync(page);
305 306
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
307 308 309
	unlock_page(page);
}

310 311 312 313 314 315
/* Request for sync pageout. */
enum pageout_io {
	PAGEOUT_IO_ASYNC,
	PAGEOUT_IO_SYNC,
};

316 317 318 319 320 321 322 323 324 325 326 327
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
328
/*
A
Andrew Morton 已提交
329 330
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
331
 */
332 333
static pageout_t pageout(struct page *page, struct address_space *mapping,
						enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
334 335 336 337 338 339 340 341
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
342
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
358
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
359 360
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
361
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
377 378
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
387
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
388 389 390
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
391 392 393 394 395 396 397 398 399

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
400 401 402 403
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
404 405
		trace_mm_vmscan_writepage(page,
			trace_reclaim_flags(page, sync_writeback));
406
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
407 408 409 410 411 412
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

413
/*
N
Nick Piggin 已提交
414 415
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
416
 */
N
Nick Piggin 已提交
417
static int __remove_mapping(struct address_space *mapping, struct page *page)
418
{
419 420
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
421

N
Nick Piggin 已提交
422
	spin_lock_irq(&mapping->tree_lock);
423
	/*
N
Nick Piggin 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
447
	 */
N
Nick Piggin 已提交
448
	if (!page_freeze_refs(page, 2))
449
		goto cannot_free;
N
Nick Piggin 已提交
450 451 452
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
453
		goto cannot_free;
N
Nick Piggin 已提交
454
	}
455 456 457 458

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
459
		spin_unlock_irq(&mapping->tree_lock);
460
		swapcache_free(swap, page);
N
Nick Piggin 已提交
461 462
	} else {
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
463
		spin_unlock_irq(&mapping->tree_lock);
464
		mem_cgroup_uncharge_cache_page(page);
465 466 467 468 469
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
470
	spin_unlock_irq(&mapping->tree_lock);
471 472 473
	return 0;
}

N
Nick Piggin 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
507
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
521
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
522 523 524 525 526 527 528 529
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
530 531 532 533 534 535 536 537 538 539
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

558 559 560 561 562
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
563 564 565
	put_page(page);		/* drop ref from isolate */
}

566 567 568
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
569
	PAGEREF_KEEP,
570 571 572 573 574 575
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
576
	int referenced_ptes, referenced_page;
577 578
	unsigned long vm_flags;

579 580
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
581 582

	/* Lumpy reclaim - ignore references */
583
	if (sc->lumpy_reclaim_mode)
584 585 586 587 588 589 590 591 592
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
617 618

	/* Reclaim if clean, defer dirty pages to writeback */
619 620 621 622
	if (referenced_page)
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
623 624
}

L
Linus Torvalds 已提交
625
/*
A
Andrew Morton 已提交
626
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
627
 */
A
Andrew Morton 已提交
628
static unsigned long shrink_page_list(struct list_head *page_list,
629 630
					struct scan_control *sc,
					enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
631 632 633 634
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
635
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
636 637 638 639 640

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
641
		enum page_references references;
L
Linus Torvalds 已提交
642 643 644 645 646 647 648 649 650
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
651
		if (!trylock_page(page))
L
Linus Torvalds 已提交
652 653
			goto keep;

N
Nick Piggin 已提交
654
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
655 656

		sc->nr_scanned++;
657

N
Nick Piggin 已提交
658 659
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
660

661
		if (!sc->may_unmap && page_mapped(page))
662 663
			goto keep_locked;

L
Linus Torvalds 已提交
664 665 666 667
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

668 669 670 671 672 673 674 675 676 677 678 679 680 681
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
				wait_on_page_writeback(page);
682
			else
683 684
				goto keep_locked;
		}
L
Linus Torvalds 已提交
685

686 687 688
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
689
			goto activate_locked;
690 691
		case PAGEREF_KEEP:
			goto keep_locked;
692 693 694 695
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
696 697 698 699 700

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
701
		if (PageAnon(page) && !PageSwapCache(page)) {
702 703
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
704
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
705
				goto activate_locked;
706
			may_enter_fs = 1;
N
Nick Piggin 已提交
707
		}
L
Linus Torvalds 已提交
708 709 710 711 712 713 714 715

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
716
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
717 718 719 720
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
721 722
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
723 724 725 726 727 728
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
729
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
730
				goto keep_locked;
731
			if (!may_enter_fs)
L
Linus Torvalds 已提交
732
				goto keep_locked;
733
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
734 735 736
				goto keep_locked;

			/* Page is dirty, try to write it out here */
737
			switch (pageout(page, mapping, sync_writeback)) {
L
Linus Torvalds 已提交
738 739 740 741 742
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
743
				if (PageWriteback(page) || PageDirty(page))
L
Linus Torvalds 已提交
744 745 746 747 748
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
749
				if (!trylock_page(page))
L
Linus Torvalds 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
769
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
770 771 772 773 774 775 776 777 778 779
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
780
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
781 782
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
799 800
		}

N
Nick Piggin 已提交
801
		if (!mapping || !__remove_mapping(mapping, page))
802
			goto keep_locked;
L
Linus Torvalds 已提交
803

N
Nick Piggin 已提交
804 805 806 807 808 809 810 811
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
812
free_it:
813
		nr_reclaimed++;
N
Nick Piggin 已提交
814 815 816 817
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
L
Linus Torvalds 已提交
818 819
		continue;

N
Nick Piggin 已提交
820
cull_mlocked:
821 822
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
823 824 825 826
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
827
activate_locked:
828 829
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
830
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
831
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
832 833 834 835 836 837
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
838
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
839 840 841
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
N
Nick Piggin 已提交
842
		__pagevec_free(&freed_pvec);
843
	count_vm_events(PGACTIVATE, pgactivate);
844
	return nr_reclaimed;
L
Linus Torvalds 已提交
845 846
}

A
Andy Whitcroft 已提交
847 848 849 850 851 852 853 854 855 856
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
857
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

873
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
874 875
		return ret;

L
Lee Schermerhorn 已提交
876 877 878 879 880 881 882 883
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
884
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
885

A
Andy Whitcroft 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
913 914
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
915
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
916 917 918
 *
 * returns how many pages were moved onto *@dst.
 */
919 920
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
921
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
922
{
923
	unsigned long nr_taken = 0;
924 925 926
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
927
	unsigned long scan;
L
Linus Torvalds 已提交
928

929
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
930 931 932 933 934 935
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
936 937 938
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
939
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
940

941
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
942 943
		case 0:
			list_move(&page->lru, dst);
944
			mem_cgroup_del_lru(page);
945
			nr_taken++;
A
Andy Whitcroft 已提交
946 947 948 949 950
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
951
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
952
			continue;
953

A
Andy Whitcroft 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
986

A
Andy Whitcroft 已提交
987 988 989
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
990 991 992 993 994 995 996 997 998 999

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
					!PageSwapCache(cursor_page))
				continue;

1000
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1001
				list_move(&cursor_page->lru, dst);
1002
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
1003
				nr_taken++;
1004 1005 1006
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1007
				scan++;
1008 1009 1010 1011
			} else {
				if (mode == ISOLATE_BOTH &&
						page_count(cursor_page))
					nr_lumpy_failed++;
A
Andy Whitcroft 已提交
1012 1013
			}
		}
L
Linus Torvalds 已提交
1014 1015 1016
	}

	*scanned = scan;
1017 1018 1019 1020 1021 1022

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1023 1024 1025
	return nr_taken;
}

1026 1027 1028 1029
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1030
					int active, int file)
1031
{
1032
	int lru = LRU_BASE;
1033
	if (active)
1034 1035 1036 1037
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1038
								mode, file);
1039 1040
}

A
Andy Whitcroft 已提交
1041 1042 1043 1044
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1045 1046
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1047 1048
{
	int nr_active = 0;
1049
	int lru;
A
Andy Whitcroft 已提交
1050 1051
	struct page *page;

1052
	list_for_each_entry(page, page_list, lru) {
1053
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1054
		if (PageActive(page)) {
1055
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1056 1057 1058
			ClearPageActive(page);
			nr_active++;
		}
1059 1060
		count[lru]++;
	}
A
Andy Whitcroft 已提交
1061 1062 1063 1064

	return nr_active;
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1076 1077 1078
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1099
			int lru = page_lru(page);
1100 1101
			ret = 0;
			ClearPageLRU(page);
1102 1103

			del_page_from_lru_list(zone, page, lru);
1104 1105 1106 1107 1108 1109
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

L
Linus Torvalds 已提交
1135
/*
A
Andrew Morton 已提交
1136 1137
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1138
 */
A
Andrew Morton 已提交
1139
static unsigned long shrink_inactive_list(unsigned long max_scan,
R
Rik van Riel 已提交
1140 1141
			struct zone *zone, struct scan_control *sc,
			int priority, int file)
L
Linus Torvalds 已提交
1142 1143 1144
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
1145
	unsigned long nr_scanned = 0;
1146
	unsigned long nr_reclaimed = 0;
1147
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1148

1149
	while (unlikely(too_many_isolated(zone, file, sc))) {
1150
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1151 1152 1153 1154 1155 1156

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1157 1158 1159 1160 1161

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1162
	do {
L
Linus Torvalds 已提交
1163
		struct page *page;
1164 1165 1166
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
A
Andy Whitcroft 已提交
1167
		unsigned long nr_active;
1168
		unsigned int count[NR_LRU_LISTS] = { 0, };
1169
		int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE;
K
KOSAKI Motohiro 已提交
1170 1171
		unsigned long nr_anon;
		unsigned long nr_file;
L
Linus Torvalds 已提交
1172

1173
		if (scanning_global_lru(sc)) {
1174 1175 1176 1177
			nr_taken = isolate_pages_global(SWAP_CLUSTER_MAX,
							&page_list, &nr_scan,
							sc->order, mode,
							zone, 0, file);
1178 1179 1180 1181 1182 1183 1184
			zone->pages_scanned += nr_scan;
			if (current_is_kswapd())
				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
						       nr_scan);
			else
				__count_zone_vm_events(PGSCAN_DIRECT, zone,
						       nr_scan);
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		} else {
			nr_taken = mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX,
							&page_list, &nr_scan,
							sc->order, mode,
							zone, sc->mem_cgroup,
							0, file);
			/*
			 * mem_cgroup_isolate_pages() keeps track of
			 * scanned pages on its own.
			 */
1195 1196 1197 1198 1199
		}

		if (nr_taken == 0)
			goto done;

1200
		nr_active = clear_active_flags(&page_list, count);
1201
		__count_vm_events(PGDEACTIVATE, nr_active);
A
Andy Whitcroft 已提交
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211
		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
						-count[LRU_ACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
						-count[LRU_INACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
						-count[LRU_ACTIVE_ANON]);
		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
						-count[LRU_INACTIVE_ANON]);

K
KOSAKI Motohiro 已提交
1212 1213 1214 1215
		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
K
KOSAKI Motohiro 已提交
1216

H
Huang Shijie 已提交
1217 1218
		reclaim_stat->recent_scanned[0] += nr_anon;
		reclaim_stat->recent_scanned[1] += nr_file;
K
KOSAKI Motohiro 已提交
1219

L
Linus Torvalds 已提交
1220 1221
		spin_unlock_irq(&zone->lru_lock);

1222
		nr_scanned += nr_scan;
1223 1224 1225 1226 1227 1228 1229 1230 1231
		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

		/*
		 * If we are direct reclaiming for contiguous pages and we do
		 * not reclaim everything in the list, try again and wait
		 * for IO to complete. This will stall high-order allocations
		 * but that should be acceptable to the caller
		 */
		if (nr_freed < nr_taken && !current_is_kswapd() &&
1232
		    sc->lumpy_reclaim_mode) {
1233
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1234 1235 1236 1237 1238

			/*
			 * The attempt at page out may have made some
			 * of the pages active, mark them inactive again.
			 */
1239
			nr_active = clear_active_flags(&page_list, count);
1240 1241 1242 1243 1244 1245
			count_vm_events(PGDEACTIVATE, nr_active);

			nr_freed += shrink_page_list(&page_list, sc,
							PAGEOUT_IO_SYNC);
		}

1246
		nr_reclaimed += nr_freed;
1247

N
Nick Piggin 已提交
1248
		local_irq_disable();
1249
		if (current_is_kswapd())
1250
			__count_vm_events(KSWAPD_STEAL, nr_freed);
S
Shantanu Goel 已提交
1251
		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
N
Nick Piggin 已提交
1252 1253

		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
1254 1255 1256 1257
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
L
Lee Schermerhorn 已提交
1258
			int lru;
L
Linus Torvalds 已提交
1259
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
1260
			VM_BUG_ON(PageLRU(page));
L
Linus Torvalds 已提交
1261
			list_del(&page->lru);
L
Lee Schermerhorn 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270
			if (unlikely(!page_evictable(page, NULL))) {
				spin_unlock_irq(&zone->lru_lock);
				putback_lru_page(page);
				spin_lock_irq(&zone->lru_lock);
				continue;
			}
			SetPageLRU(page);
			lru = page_lru(page);
			add_page_to_lru_list(zone, page, lru);
1271
			if (is_active_lru(lru)) {
1272
				int file = is_file_lru(lru);
1273
				reclaim_stat->recent_rotated[file]++;
1274
			}
L
Linus Torvalds 已提交
1275 1276 1277 1278 1279 1280
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
K
KOSAKI Motohiro 已提交
1281 1282 1283
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

1284
  	} while (nr_scanned < max_scan);
1285

L
Linus Torvalds 已提交
1286
done:
1287
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1288
	pagevec_release(&pvec);
1289
	return nr_reclaimed;
L
Linus Torvalds 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1342

A
Andrew Morton 已提交
1343
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1344
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1345
{
1346
	unsigned long nr_taken;
1347
	unsigned long pgscanned;
1348
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1349
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1350
	LIST_HEAD(l_active);
1351
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1352
	struct page *page;
1353
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1354
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1355 1356 1357

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1358
	if (scanning_global_lru(sc)) {
1359 1360 1361 1362
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1363
		zone->pages_scanned += pgscanned;
1364 1365 1366 1367 1368 1369 1370 1371 1372
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1373
	}
1374

1375
	reclaim_stat->recent_scanned[file] += nr_taken;
1376

1377
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1378
	if (file)
1379
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1380
	else
1381
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1382
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1389

L
Lee Schermerhorn 已提交
1390 1391 1392 1393 1394
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1395
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1396
			nr_rotated++;
1397 1398 1399 1400 1401 1402 1403 1404 1405
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1406
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1407 1408 1409 1410
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1411

1412
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1413 1414 1415
		list_add(&page->lru, &l_inactive);
	}

1416
	/*
1417
	 * Move pages back to the lru list.
1418
	 */
1419
	spin_lock_irq(&zone->lru_lock);
1420
	/*
1421 1422 1423 1424
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1425
	 */
1426
	reclaim_stat->recent_rotated[file] += nr_rotated;
1427

1428 1429 1430 1431
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1432
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1433
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1434 1435
}

1436
static int inactive_anon_is_low_global(struct zone *zone)
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1461
	if (scanning_global_lru(sc))
1462 1463
		low = inactive_anon_is_low_global(zone);
	else
1464
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1465 1466 1467
	return low;
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1504 1505 1506 1507 1508 1509 1510 1511 1512
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1513
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1514 1515
	struct zone *zone, struct scan_control *sc, int priority)
{
1516 1517
	int file = is_file_lru(lru);

1518 1519 1520
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1521 1522 1523
		return 0;
	}

R
Rik van Riel 已提交
1524
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1525 1526
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= SWAP_CLUSTER_MAX)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}

1547 1548 1549 1550 1551 1552
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1553
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1554
 */
1555 1556
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1557 1558 1559 1560
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1561
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1574

1575 1576 1577 1578
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1579

1580
	if (scanning_global_lru(sc)) {
1581 1582 1583
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1584
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1585 1586 1587 1588
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1589
		}
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	}

	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1603
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1604
		spin_lock_irq(&zone->lru_lock);
1605 1606
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1607 1608 1609
		spin_unlock_irq(&zone->lru_lock);
	}

1610
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1611
		spin_lock_irq(&zone->lru_lock);
1612 1613
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		spin_unlock_irq(&zone->lru_lock);
	}

	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

	/*
1625 1626 1627
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1628
	 */
1629 1630
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1631

1632 1633
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1634

1635 1636 1637 1638 1639 1640 1641
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1642

1643 1644 1645 1646 1647 1648 1649 1650
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l]);
	}
1651
}
1652

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
{
	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		sc->lumpy_reclaim_mode = 1;
	else if (sc->order && priority < DEF_PRIORITY - 2)
		sc->lumpy_reclaim_mode = 1;
	else
		sc->lumpy_reclaim_mode = 0;
}

L
Linus Torvalds 已提交
1668 1669 1670
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1671
static void shrink_zone(int priority, struct zone *zone,
1672
				struct scan_control *sc)
L
Linus Torvalds 已提交
1673
{
1674
	unsigned long nr[NR_LRU_LISTS];
1675
	unsigned long nr_to_scan;
1676
	enum lru_list l;
1677
	unsigned long nr_reclaimed = sc->nr_reclaimed;
1678
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1679

1680
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1681

1682 1683
	set_lumpy_reclaim_mode(priority, sc);

1684 1685
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1686
		for_each_evictable_lru(l) {
1687
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1688 1689
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1690
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1691

1692 1693
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1694
			}
L
Linus Torvalds 已提交
1695
		}
1696 1697 1698 1699 1700 1701 1702 1703
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1704
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1705
			break;
L
Linus Torvalds 已提交
1706 1707
	}

1708 1709
	sc->nr_reclaimed = nr_reclaimed;

1710 1711 1712 1713
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1714
	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1715 1716
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1717
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1718 1719 1720 1721 1722 1723 1724
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1725 1726
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1727 1728
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1729 1730 1731
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1732 1733 1734 1735
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1736
static bool shrink_zones(int priority, struct zonelist *zonelist,
1737
					struct scan_control *sc)
L
Linus Torvalds 已提交
1738
{
1739
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1740
	struct zoneref *z;
1741
	struct zone *zone;
1742
	bool all_unreclaimable = true;
1743

1744 1745
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
					sc->nodemask) {
1746
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1747
			continue;
1748 1749 1750 1751
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1752
		if (scanning_global_lru(sc)) {
1753 1754
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1755
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1756 1757
				continue;	/* Let kswapd poll it */
		}
1758

1759
		shrink_zone(priority, zone, sc);
1760
		all_unreclaimable = false;
L
Linus Torvalds 已提交
1761
	}
1762
	return all_unreclaimable;
L
Linus Torvalds 已提交
1763
}
1764

L
Linus Torvalds 已提交
1765 1766 1767 1768 1769 1770 1771 1772
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
1773 1774 1775 1776
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
1777 1778 1779
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1780
 */
1781
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1782
					struct scan_control *sc)
L
Linus Torvalds 已提交
1783 1784
{
	int priority;
1785
	bool all_unreclaimable;
1786
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1787
	struct reclaim_state *reclaim_state = current->reclaim_state;
1788
	struct zoneref *z;
1789
	struct zone *zone;
1790
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1791
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
1792

1793
	get_mems_allowed();
1794 1795
	delayacct_freepages_start();

1796
	if (scanning_global_lru(sc))
1797
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
1798 1799

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1800
		sc->nr_scanned = 0;
1801 1802
		if (!priority)
			disable_swap_token();
1803
		all_unreclaimable = shrink_zones(priority, zonelist, sc);
1804 1805 1806 1807
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1808
		if (scanning_global_lru(sc)) {
1809 1810 1811 1812 1813 1814 1815 1816
			unsigned long lru_pages = 0;
			for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

1817
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1818
			if (reclaim_state) {
1819
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1820 1821
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1822
		}
1823
		total_scanned += sc->nr_scanned;
1824
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1834 1835
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
1836
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1837
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
1838 1839 1840
		}

		/* Take a nap, wait for some writeback to complete */
1841 1842
		if (!sc->hibernation_mode && sc->nr_scanned &&
		    priority < DEF_PRIORITY - 2)
1843
			congestion_wait(BLK_RW_ASYNC, HZ/10);
L
Linus Torvalds 已提交
1844
	}
1845

L
Linus Torvalds 已提交
1846
out:
1847 1848 1849 1850 1851 1852 1853 1854 1855
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1856

1857
	delayacct_freepages_end();
1858
	put_mems_allowed();
1859

1860 1861 1862 1863 1864 1865 1866 1867
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

	/* top priority shrink_zones still had more to do? don't OOM, then */
	if (scanning_global_lru(sc) && !all_unreclaimable)
		return 1;

	return 0;
L
Linus Torvalds 已提交
1868 1869
}

1870
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1871
				gfp_t gfp_mask, nodemask_t *nodemask)
1872
{
1873
	unsigned long nr_reclaimed;
1874 1875 1876
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
1877
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1878
		.may_unmap = 1,
1879
		.may_swap = 1,
1880 1881 1882
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
1883
		.nodemask = nodemask,
1884 1885
	};

1886 1887 1888 1889 1890 1891 1892 1893 1894
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
1895 1896
}

1897
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
						struct zone *zone, int nid)
{
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
	};
	nodemask_t nm  = nodemask_of_node(nid);

	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	sc.nodemask = &nm;
	sc.nr_reclaimed = 0;
	sc.nr_scanned = 0;
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
	return sc.nr_reclaimed;
}

1930
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
1931 1932 1933
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
1934
{
1935
	struct zonelist *zonelist;
1936 1937
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
1938
		.may_unmap = 1,
1939
		.may_swap = !noswap,
1940
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
1941
		.swappiness = swappiness,
1942 1943
		.order = 0,
		.mem_cgroup = mem_cont,
1944
		.nodemask = NULL, /* we don't care the placement */
1945 1946
	};

1947 1948 1949 1950
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
	return do_try_to_free_pages(zonelist, &sc);
1951 1952 1953
}
#endif

1954
/* is kswapd sleeping prematurely? */
1955
static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1956
{
1957
	int i;
1958 1959 1960 1961 1962 1963

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
		return 1;

	/* If after HZ/10, a zone is below the high mark, it's premature */
1964 1965 1966 1967 1968 1969
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

1970
		if (zone->all_unreclaimable)
1971 1972
			continue;

1973 1974 1975
		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
								0, 0))
			return 1;
1976
	}
1977 1978 1979 1980

	return 0;
}

L
Linus Torvalds 已提交
1981 1982
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
1983
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1996 1997 1998 1999 2000
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2001
 */
2002
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
2003 2004 2005 2006
{
	int all_zones_ok;
	int priority;
	int i;
2007
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2008
	struct reclaim_state *reclaim_state = current->reclaim_state;
2009 2010
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2011
		.may_unmap = 1,
2012
		.may_swap = 1,
2013 2014 2015 2016 2017
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2018
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2019
		.order = order,
2020
		.mem_cgroup = NULL,
2021
	};
L
Linus Torvalds 已提交
2022 2023
loop_again:
	total_scanned = 0;
2024
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2025
	sc.may_writepage = !laptop_mode;
2026
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2027 2028 2029 2030

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;
2031
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2032

2033 2034 2035 2036
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2037 2038
		all_zones_ok = 1;

2039 2040 2041 2042 2043 2044
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2045

2046 2047
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2048

2049
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2050
				continue;
L
Linus Torvalds 已提交
2051

2052 2053 2054 2055
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2056
			if (inactive_anon_is_low(zone, &sc))
2057 2058 2059
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2060 2061
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), 0, 0)) {
2062
				end_zone = i;
A
Andrew Morton 已提交
2063
				break;
L
Linus Torvalds 已提交
2064 2065
			}
		}
A
Andrew Morton 已提交
2066 2067 2068
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2069 2070 2071
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2072
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2086
			int nr_slab;
2087
			int nid, zid;
L
Linus Torvalds 已提交
2088

2089
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2090 2091
				continue;

2092
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2093 2094 2095
				continue;

			sc.nr_scanned = 0;
2096 2097 2098 2099 2100 2101 2102 2103 2104

			nid = pgdat->node_id;
			zid = zone_idx(zone);
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
							nid, zid);
2105 2106 2107 2108
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2109 2110
			if (!zone_watermark_ok(zone, order,
					8*high_wmark_pages(zone), end_zone, 0))
2111
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2112
			reclaim_state->reclaimed_slab = 0;
2113 2114
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2115
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2116
			total_scanned += sc.nr_scanned;
2117
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2118
				continue;
2119 2120 2121
			if (nr_slab == 0 &&
			    zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2122 2123 2124 2125 2126 2127
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2128
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2129
				sc.may_writepage = 1;
2130

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
				if (!zone_watermark_ok(zone, order,
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
			}
2143

L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149 2150
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2151 2152 2153 2154 2155 2156
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2157 2158 2159 2160 2161 2162 2163

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2164
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2165 2166 2167 2168 2169
			break;
	}
out:
	if (!all_zones_ok) {
		cond_resched();
2170 2171 2172

		try_to_freeze();

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2190 2191 2192
		goto loop_again;
	}

2193
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2194 2195 2196 2197
}

/*
 * The background pageout daemon, started as a kernel thread
2198
 * from the init process.
L
Linus Torvalds 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2218
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2219

2220 2221
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2222
	if (!cpumask_empty(cpumask))
2223
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2238
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2239
	set_freezable();
L
Linus Torvalds 已提交
2240 2241 2242 2243

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2244
		int ret;
2245

L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2256 2257 2258 2259
			if (!freezing(current) && !kthread_should_stop()) {
				long remaining = 0;

				/* Try to sleep for a short interval */
2260
				if (!sleeping_prematurely(pgdat, order, remaining)) {
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
					remaining = schedule_timeout(HZ/10);
					finish_wait(&pgdat->kswapd_wait, &wait);
					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
				}

				/*
				 * After a short sleep, check if it was a
				 * premature sleep. If not, then go fully
				 * to sleep until explicitly woken up
				 */
2271 2272
				if (!sleeping_prematurely(pgdat, order, remaining)) {
					trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2273
					schedule();
2274
				} else {
2275
					if (remaining)
2276
						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2277
					else
2278
						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2279 2280
				}
			}
2281

L
Linus Torvalds 已提交
2282 2283 2284 2285
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

2286 2287 2288 2289 2290 2291 2292 2293
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2294 2295
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2296
			balance_pgdat(pgdat, order);
2297
		}
L
Linus Torvalds 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2309
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2310 2311 2312
		return;

	pgdat = zone->zone_pgdat;
2313
	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
L
Linus Torvalds 已提交
2314 2315 2316
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2317
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2318
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2319
		return;
2320
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2321
		return;
2322
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2323 2324
}

2325 2326 2327 2328 2329 2330 2331 2332
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2333
{
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2358 2359
}

2360
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2361
/*
2362
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2363 2364 2365 2366 2367
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2368
 */
2369
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2370
{
2371 2372
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2373 2374 2375
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2376
		.may_writepage = 1,
2377 2378 2379 2380
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
L
Linus Torvalds 已提交
2381
	};
2382 2383 2384
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2385

2386 2387 2388 2389
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2390

2391
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2392

2393 2394 2395
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2396

2397
	return nr_reclaimed;
L
Linus Torvalds 已提交
2398
}
2399
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2400 2401 2402 2403 2404

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2405
static int __devinit cpu_callback(struct notifier_block *nfb,
2406
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2407
{
2408
	int nid;
L
Linus Torvalds 已提交
2409

2410
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2411
		for_each_node_state(nid, N_HIGH_MEMORY) {
2412
			pg_data_t *pgdat = NODE_DATA(nid);
2413 2414 2415
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2416

2417
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2418
				/* One of our CPUs online: restore mask */
2419
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2420 2421 2422 2423 2424
		}
	}
	return NOTIFY_OK;
}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2458 2459
static int __init kswapd_init(void)
{
2460
	int nid;
2461

L
Linus Torvalds 已提交
2462
	swap_setup();
2463
	for_each_node_state(nid, N_HIGH_MEMORY)
2464
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2465 2466 2467 2468 2469
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2480
#define RECLAIM_OFF 0
2481
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2482 2483 2484
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2485 2486 2487 2488 2489 2490 2491
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2492 2493 2494 2495 2496 2497
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2498 2499 2500 2501 2502 2503
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2546 2547 2548
/*
 * Try to free up some pages from this zone through reclaim.
 */
2549
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2550
{
2551
	/* Minimum pages needed in order to stay on node */
2552
	const unsigned long nr_pages = 1 << order;
2553 2554
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2555
	int priority;
2556 2557
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2558
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2559
		.may_swap = 1,
2560 2561
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2562
		.gfp_mask = gfp_mask,
2563
		.swappiness = vm_swappiness,
2564
		.order = order,
2565
	};
2566
	unsigned long slab_reclaimable;
2567 2568

	cond_resched();
2569 2570 2571 2572 2573 2574
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2575
	lockdep_set_current_reclaim_state(gfp_mask);
2576 2577
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2578

2579
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2580 2581 2582 2583 2584 2585
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2586
			shrink_zone(priority, zone, &sc);
2587
			priority--;
2588
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2589
	}
2590

2591 2592
	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (slab_reclaimable > zone->min_slab_pages) {
2593
		/*
2594
		 * shrink_slab() does not currently allow us to determine how
2595 2596 2597 2598
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2599
		 *
2600 2601
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2602
		 */
2603
		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2604 2605
			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
				slab_reclaimable - nr_pages)
2606
			;
2607 2608 2609 2610 2611

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2612
		sc.nr_reclaimed += slab_reclaimable -
2613
			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2614 2615
	}

2616
	p->reclaim_state = NULL;
2617
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2618
	lockdep_clear_current_reclaim_state();
2619
	return sc.nr_reclaimed >= nr_pages;
2620
}
2621 2622 2623 2624

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2625
	int ret;
2626 2627

	/*
2628 2629
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2630
	 *
2631 2632 2633 2634 2635
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2636
	 */
2637 2638
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2639
		return ZONE_RECLAIM_FULL;
2640

2641
	if (zone->all_unreclaimable)
2642
		return ZONE_RECLAIM_FULL;
2643

2644
	/*
2645
	 * Do not scan if the allocation should not be delayed.
2646
	 */
2647
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2648
		return ZONE_RECLAIM_NOSCAN;
2649 2650 2651 2652 2653 2654 2655

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2656
	node_id = zone_to_nid(zone);
2657
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2658
		return ZONE_RECLAIM_NOSCAN;
2659 2660

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2661 2662
		return ZONE_RECLAIM_NOSCAN;

2663 2664 2665
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2666 2667 2668
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2669
	return ret;
2670
}
2671
#endif
L
Lee Schermerhorn 已提交
2672 2673 2674 2675 2676 2677 2678

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2679 2680
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2681 2682
 *
 * Reasons page might not be evictable:
2683
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2684
 * (2) page is part of an mlocked VMA
2685
 *
L
Lee Schermerhorn 已提交
2686 2687 2688 2689
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2690 2691 2692
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2693 2694
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2695 2696 2697

	return 1;
}
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2717
		enum lru_list l = page_lru_base_type(page);
2718

2719 2720
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2721
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2722 2723 2724 2725 2726 2727 2728 2729
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2730
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2802
static void scan_zone_unevictable_pages(struct zone *zone)
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
2844
static void scan_all_zones_unevictable_pages(void)
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
2860
			   void __user *buffer,
2861 2862
			   size_t *length, loff_t *ppos)
{
2863
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}