vmscan.c 92.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

57
/*
58 59 60 61 62
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 64
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
65
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66
 *			order-0 pages and then compact the zone
67
 */
68 69 70 71 72 73
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74

L
Linus Torvalds 已提交
75 76 77 78
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

79 80 81
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

82 83 84
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

85 86
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
87
	/* This context's GFP mask */
A
Al Viro 已提交
88
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
89 90 91

	int may_writepage;

92 93
	/* Can mapped pages be reclaimed? */
	int may_unmap;
94

95 96 97
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

98
	int swappiness;
99

A
Andy Whitcroft 已提交
100
	int order;
101

102
	/*
103 104
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
105
	 */
106
	reclaim_mode_t reclaim_mode;
107

108 109 110
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

111 112 113 114 115
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
152
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
153 154 155 156

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

157
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
158
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159
#else
160
#define scanning_global_lru(sc)	(1)
161 162
#endif

163 164 165
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
166
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
167 168
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

169 170 171
	return &zone->reclaim_stat;
}

172 173
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
174
{
175
	if (!scanning_global_lru(sc))
176 177
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

178 179 180 181
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
182 183 184
/*
 * Add a shrinker callback to be called from the vm
 */
185
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
186
{
187 188 189 190
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
191
}
192
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
193 194 195 196

/*
 * Remove one
 */
197
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
198 199 200 201 202
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
203
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
214
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
215 216 217 218 219 220 221
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
222 223
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
224
 */
225 226
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
227 228
{
	struct shrinker *shrinker;
229
	unsigned long ret = 0;
L
Linus Torvalds 已提交
230 231 232 233 234

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
235
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
236 237 238 239

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
240
		unsigned long max_pass;
L
Linus Torvalds 已提交
241

242
		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
L
Linus Torvalds 已提交
243
		delta = (4 * scanned) / shrinker->seeks;
244
		delta *= max_pass;
L
Linus Torvalds 已提交
245 246
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
247
		if (shrinker->nr < 0) {
248 249 250
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
251 252 253 254 255 256 257 258 259 260
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
261 262 263 264 265 266 267

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
268
			int nr_before;
L
Linus Torvalds 已提交
269

270 271 272
			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
								gfp_mask);
L
Linus Torvalds 已提交
273 274
			if (shrink_ret == -1)
				break;
275 276
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
277
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
278 279 280 281 282 283 284 285
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
286
	return ret;
L
Linus Torvalds 已提交
287 288
}

289
static void set_reclaim_mode(int priority, struct scan_control *sc,
290 291
				   bool sync)
{
292
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
293 294

	/*
295 296 297
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
298
	 */
299
	if (COMPACTION_BUILD)
300
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
301
	else
302
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
303 304

	/*
305 306 307
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
308 309
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
310
		sc->reclaim_mode |= syncmode;
311
	else if (sc->order && priority < DEF_PRIORITY - 2)
312
		sc->reclaim_mode |= syncmode;
313
	else
314
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
315 316
}

317
static void reset_reclaim_mode(struct scan_control *sc)
318
{
319
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
320 321
}

L
Linus Torvalds 已提交
322 323
static inline int is_page_cache_freeable(struct page *page)
{
324 325 326 327 328
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
329
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
330 331
}

332 333
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
334
{
335
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
336 337 338 339 340
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
341 342 343 344

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
363
	lock_page(page);
364 365
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
366 367 368
	unlock_page(page);
}

369 370 371 372 373 374 375 376 377 378 379 380
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
381
/*
A
Andrew Morton 已提交
382 383
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
384
 */
385
static pageout_t pageout(struct page *page, struct address_space *mapping,
386
			 struct scan_control *sc)
L
Linus Torvalds 已提交
387 388 389 390 391 392 393 394
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
395
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
411
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
412 413
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
414
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
415 416 417 418 419 420 421
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
422
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
423 424 425 426 427 428 429
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
430 431
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
432 433 434 435 436 437 438
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
439
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
440 441 442
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
443 444 445 446 447 448

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
449
		if (PageWriteback(page) &&
450
		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
451 452
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
453 454 455 456
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
457
		trace_mm_vmscan_writepage(page,
458
			trace_reclaim_flags(page, sc->reclaim_mode));
459
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
460 461 462 463 464 465
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

466
/*
N
Nick Piggin 已提交
467 468
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
469
 */
N
Nick Piggin 已提交
470
static int __remove_mapping(struct address_space *mapping, struct page *page)
471
{
472 473
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
474

N
Nick Piggin 已提交
475
	spin_lock_irq(&mapping->tree_lock);
476
	/*
N
Nick Piggin 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
500
	 */
N
Nick Piggin 已提交
501
	if (!page_freeze_refs(page, 2))
502
		goto cannot_free;
N
Nick Piggin 已提交
503 504 505
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
506
		goto cannot_free;
N
Nick Piggin 已提交
507
	}
508 509 510 511

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
512
		spin_unlock_irq(&mapping->tree_lock);
513
		swapcache_free(swap, page);
N
Nick Piggin 已提交
514
	} else {
515 516 517 518
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

519
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
520
		spin_unlock_irq(&mapping->tree_lock);
521
		mem_cgroup_uncharge_cache_page(page);
522 523 524

		if (freepage != NULL)
			freepage(page);
525 526 527 528 529
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
530
	spin_unlock_irq(&mapping->tree_lock);
531 532 533
	return 0;
}

N
Nick Piggin 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
567
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
581
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
582 583 584 585 586 587 588 589
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
590 591 592 593 594 595 596 597 598 599
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

618 619 620 621 622
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
623 624 625
	put_page(page);		/* drop ref from isolate */
}

626 627 628
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
629
	PAGEREF_KEEP,
630 631 632 633 634 635
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
636
	int referenced_ptes, referenced_page;
637 638
	unsigned long vm_flags;

639 640
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
641 642

	/* Lumpy reclaim - ignore references */
643
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
644 645 646 647 648 649 650 651 652
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
677 678

	/* Reclaim if clean, defer dirty pages to writeback */
679
	if (referenced_page && !PageSwapBacked(page))
680 681 682
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
683 684
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
703
/*
A
Andrew Morton 已提交
704
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
705
 */
A
Andrew Morton 已提交
706
static unsigned long shrink_page_list(struct list_head *page_list,
707
				      struct zone *zone,
708
				      struct scan_control *sc)
L
Linus Torvalds 已提交
709 710
{
	LIST_HEAD(ret_pages);
711
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
712
	int pgactivate = 0;
713 714
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
715
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
716 717 718 719

	cond_resched();

	while (!list_empty(page_list)) {
720
		enum page_references references;
L
Linus Torvalds 已提交
721 722 723 724 725 726 727 728 729
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
730
		if (!trylock_page(page))
L
Linus Torvalds 已提交
731 732
			goto keep;

N
Nick Piggin 已提交
733
		VM_BUG_ON(PageActive(page));
734
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
735 736

		sc->nr_scanned++;
737

N
Nick Piggin 已提交
738 739
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
740

741
		if (!sc->may_unmap && page_mapped(page))
742 743
			goto keep_locked;

L
Linus Torvalds 已提交
744 745 746 747
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

748 749 750 751 752 753 754 755 756 757 758 759
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
760
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
761
			    may_enter_fs)
762
				wait_on_page_writeback(page);
763 764 765 766
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
767
		}
L
Linus Torvalds 已提交
768

769 770 771
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
772
			goto activate_locked;
773 774
		case PAGEREF_KEEP:
			goto keep_locked;
775 776 777 778
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
779 780 781 782 783

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
784
		if (PageAnon(page) && !PageSwapCache(page)) {
785 786
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
787
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
788
				goto activate_locked;
789
			may_enter_fs = 1;
N
Nick Piggin 已提交
790
		}
L
Linus Torvalds 已提交
791 792 793 794 795 796 797 798

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
799
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
800 801 802 803
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
804 805
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
806 807 808 809 810 811
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
812 813
			nr_dirty++;

814
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
815
				goto keep_locked;
816
			if (!may_enter_fs)
L
Linus Torvalds 已提交
817
				goto keep_locked;
818
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
819 820 821
				goto keep_locked;

			/* Page is dirty, try to write it out here */
822
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
823
			case PAGE_KEEP:
824
				nr_congested++;
L
Linus Torvalds 已提交
825 826 827 828
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
829 830 831
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
832
					goto keep;
833

L
Linus Torvalds 已提交
834 835 836 837
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
838
				if (!trylock_page(page))
L
Linus Torvalds 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
858
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
859 860 861 862 863 864 865 866 867 868
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
869
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
870 871
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
888 889
		}

N
Nick Piggin 已提交
890
		if (!mapping || !__remove_mapping(mapping, page))
891
			goto keep_locked;
L
Linus Torvalds 已提交
892

N
Nick Piggin 已提交
893 894 895 896 897 898 899 900
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
901
free_it:
902
		nr_reclaimed++;
903 904 905 906 907 908

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
909 910
		continue;

N
Nick Piggin 已提交
911
cull_mlocked:
912 913
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
914 915
		unlock_page(page);
		putback_lru_page(page);
916
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
917 918
		continue;

L
Linus Torvalds 已提交
919
activate_locked:
920 921
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
922
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
923
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
924 925 926 927 928
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
929
		reset_reclaim_mode(sc);
930
keep_lumpy:
L
Linus Torvalds 已提交
931
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
932
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
933
	}
934

935 936 937 938 939 940
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
K
KAMEZAWA Hiroyuki 已提交
941
	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
942 943
		zone_set_flag(zone, ZONE_CONGESTED);

944 945
	free_page_list(&free_pages);

L
Linus Torvalds 已提交
946
	list_splice(&ret_pages, page_list);
947
	count_vm_events(PGACTIVATE, pgactivate);
948
	return nr_reclaimed;
L
Linus Torvalds 已提交
949 950
}

A
Andy Whitcroft 已提交
951 952 953 954 955 956 957 958 959 960
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
961
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

977
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
978 979
		return ret;

L
Lee Schermerhorn 已提交
980 981 982 983 984 985 986 987
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
988
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
989

A
Andy Whitcroft 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1017 1018
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1019
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1020 1021 1022
 *
 * returns how many pages were moved onto *@dst.
 */
1023 1024
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1025
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
1026
{
1027
	unsigned long nr_taken = 0;
1028 1029 1030
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1031
	unsigned long scan;
L
Linus Torvalds 已提交
1032

1033
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1034 1035 1036 1037 1038 1039
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1040 1041 1042
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1043
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1044

1045
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1046 1047
		case 0:
			list_move(&page->lru, dst);
1048
			mem_cgroup_del_lru(page);
1049
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1050 1051 1052 1053 1054
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1055
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1056
			continue;
1057

A
Andy Whitcroft 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
L
Lucas De Marchi 已提交
1070
		 * as the mem_map is guaranteed valid out to MAX_ORDER,
A
Andy Whitcroft 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1090

A
Andy Whitcroft 已提交
1091 1092
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1093
				break;
1094 1095 1096 1097 1098 1099 1100

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1101 1102
			    !PageSwapCache(cursor_page))
				break;
1103

1104
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1105
				list_move(&cursor_page->lru, dst);
1106
				mem_cgroup_del_lru(cursor_page);
1107
				nr_taken += hpage_nr_pages(page);
1108 1109 1110
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1111
				scan++;
1112
			} else {
1113 1114 1115 1116
				/* the page is freed already. */
				if (!page_count(cursor_page))
					continue;
				break;
A
Andy Whitcroft 已提交
1117 1118
			}
		}
1119 1120 1121 1122

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1123 1124 1125
	}

	*scanned = scan;
1126 1127 1128 1129 1130 1131

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1132 1133 1134
	return nr_taken;
}

1135 1136 1137 1138
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1139
					int active, int file)
1140
{
1141
	int lru = LRU_BASE;
1142
	if (active)
1143 1144 1145 1146
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1147
								mode, file);
1148 1149
}

A
Andy Whitcroft 已提交
1150 1151 1152 1153
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1154 1155
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1156 1157
{
	int nr_active = 0;
1158
	int lru;
A
Andy Whitcroft 已提交
1159 1160
	struct page *page;

1161
	list_for_each_entry(page, page_list, lru) {
1162
		int numpages = hpage_nr_pages(page);
1163
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1164
		if (PageActive(page)) {
1165
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1166
			ClearPageActive(page);
1167
			nr_active += numpages;
A
Andy Whitcroft 已提交
1168
		}
1169
		if (count)
1170
			count[lru] += numpages;
1171
	}
A
Andy Whitcroft 已提交
1172 1173 1174 1175

	return nr_active;
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1187 1188 1189
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1210
			int lru = page_lru(page);
1211 1212
			ret = 0;
			ClearPageLRU(page);
1213 1214

			del_page_from_lru_list(zone, page, lru);
1215 1216 1217 1218 1219 1220
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1246 1247 1248 1249
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1250
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1251 1252 1253 1254 1255
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1256
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1275
		SetPageLRU(page);
1276
		lru = page_lru(page);
1277
		add_page_to_lru_list(zone, page, lru);
1278 1279
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1280 1281
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
/*
 * Returns true if the caller should wait to clean dirty/writeback pages.
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1347
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
		return false;

	/* If we have relaimed everything on the isolated list, no stall */
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1368
/*
A
Andrew Morton 已提交
1369 1370
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1371
 */
1372 1373 1374
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1375 1376
{
	LIST_HEAD(page_list);
1377
	unsigned long nr_scanned;
1378
	unsigned long nr_reclaimed = 0;
1379 1380 1381
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1382

1383
	while (unlikely(too_many_isolated(zone, file, sc))) {
1384
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1385 1386 1387 1388 1389 1390

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1391
	set_reclaim_mode(priority, sc, false);
L
Linus Torvalds 已提交
1392 1393
	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1394

1395 1396 1397
	if (scanning_global_lru(sc)) {
		nr_taken = isolate_pages_global(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1398
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1399
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
			zone, 0, file);
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1411
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1412
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1413 1414 1415 1416 1417 1418 1419
			zone, sc->mem_cgroup,
			0, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1420

1421 1422 1423 1424
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1425

1426
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1427

1428
	spin_unlock_irq(&zone->lru_lock);
1429

1430
	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1431

1432 1433
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1434
		set_reclaim_mode(priority, sc, true);
1435
		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1436
	}
1437

1438 1439 1440 1441
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1442

1443
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1444 1445 1446 1447 1448

	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1449
		trace_shrink_flags(file, sc->reclaim_mode));
1450
	return nr_reclaimed;
L
Linus Torvalds 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1470

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
1489
		pgmoved += hpage_nr_pages(page);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1503

A
Andrew Morton 已提交
1504
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1505
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1506
{
1507
	unsigned long nr_taken;
1508
	unsigned long pgscanned;
1509
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1510
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1511
	LIST_HEAD(l_active);
1512
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1513
	struct page *page;
1514
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1515
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1516 1517 1518

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1519
	if (scanning_global_lru(sc)) {
1520 1521 1522 1523
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1524
		zone->pages_scanned += pgscanned;
1525 1526 1527 1528 1529 1530 1531 1532 1533
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1534
	}
1535

1536
	reclaim_stat->recent_scanned[file] += nr_taken;
1537

1538
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1539
	if (file)
1540
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1541
	else
1542
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1543
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1544 1545 1546 1547 1548 1549
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1550

L
Lee Schermerhorn 已提交
1551 1552 1553 1554 1555
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1556
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1557
			nr_rotated += hpage_nr_pages(page);
1558 1559 1560 1561 1562 1563 1564 1565 1566
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1567
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1568 1569 1570 1571
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1572

1573
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1574 1575 1576
		list_add(&page->lru, &l_inactive);
	}

1577
	/*
1578
	 * Move pages back to the lru list.
1579
	 */
1580
	spin_lock_irq(&zone->lru_lock);
1581
	/*
1582 1583 1584 1585
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1586
	 */
1587
	reclaim_stat->recent_rotated[file] += nr_rotated;
1588

1589 1590 1591 1592
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1593
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1594
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1595 1596
}

1597
#ifdef CONFIG_SWAP
1598
static int inactive_anon_is_low_global(struct zone *zone)
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1623 1624 1625 1626 1627 1628 1629
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1630
	if (scanning_global_lru(sc))
1631 1632
		low = inactive_anon_is_low_global(zone);
	else
1633
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1634 1635
	return low;
}
1636 1637 1638 1639 1640 1641 1642
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1680 1681 1682 1683 1684 1685 1686 1687 1688
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1689
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1690 1691
	struct zone *zone, struct scan_control *sc, int priority)
{
1692 1693
	int file = is_file_lru(lru);

1694 1695 1696
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1697 1698 1699
		return 0;
	}

R
Rik van Riel 已提交
1700
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1701 1702
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= SWAP_CLUSTER_MAX)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}

1723 1724 1725 1726 1727 1728
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1729
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1730
 */
1731 1732
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1733 1734 1735 1736
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1737
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1750

1751 1752 1753 1754
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1755

1756
	if (scanning_global_lru(sc)) {
1757 1758 1759
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1760
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1761 1762 1763 1764
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1765
		}
1766 1767
	}

1768 1769 1770 1771 1772 1773 1774
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1786
	spin_lock_irq(&zone->lru_lock);
1787 1788 1789
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1790 1791
	}

1792 1793 1794
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1795 1796 1797
	}

	/*
1798 1799 1800
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1801
	 */
1802 1803
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1804

1805 1806
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1807
	spin_unlock_irq(&zone->lru_lock);
1808

1809 1810 1811 1812 1813 1814 1815
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1816

1817 1818 1819 1820 1821 1822 1823 1824
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l]);
	}
1825
}
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
static inline bool should_continue_reclaim(struct zone *zone,
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1843
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1844 1845
		return false;

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
	switch (compaction_suitable(zone, sc->order)) {
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1890 1891 1892
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1893
static void shrink_zone(int priority, struct zone *zone,
1894
				struct scan_control *sc)
L
Linus Torvalds 已提交
1895
{
1896
	unsigned long nr[NR_LRU_LISTS];
1897
	unsigned long nr_to_scan;
1898
	enum lru_list l;
1899
	unsigned long nr_reclaimed, nr_scanned;
1900
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1901

1902 1903
restart:
	nr_reclaimed = 0;
1904
	nr_scanned = sc->nr_scanned;
1905
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1906

1907 1908
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1909
		for_each_evictable_lru(l) {
1910
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1911 1912
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1913
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1914

1915 1916
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1917
			}
L
Linus Torvalds 已提交
1918
		}
1919 1920 1921 1922 1923 1924 1925 1926
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1927
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1928
			break;
L
Linus Torvalds 已提交
1929
	}
1930
	sc->nr_reclaimed += nr_reclaimed;
1931

1932 1933 1934 1935
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1936
	if (inactive_anon_is_low(zone, sc))
1937 1938
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1939 1940 1941 1942 1943
	/* reclaim/compaction might need reclaim to continue */
	if (should_continue_reclaim(zone, nr_reclaimed,
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

1944
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1945 1946 1947 1948 1949 1950 1951
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1952 1953
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1954 1955
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1956 1957 1958
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1959 1960 1961 1962
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1963
static void shrink_zones(int priority, struct zonelist *zonelist,
1964
					struct scan_control *sc)
L
Linus Torvalds 已提交
1965
{
1966
	struct zoneref *z;
1967
	struct zone *zone;
1968

1969 1970
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1971
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1972
			continue;
1973 1974 1975 1976
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1977
		if (scanning_global_lru(sc)) {
1978 1979
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1980
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1981 1982
				continue;	/* Let kswapd poll it */
		}
1983

1984
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1985
	}
1986 1987 1988 1989 1990 1991 1992
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

1993
/* All zones in zonelist are unreclaimable? */
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2006 2007
		if (!zone->all_unreclaimable)
			return false;
2008 2009
	}

2010
	return true;
L
Linus Torvalds 已提交
2011
}
2012

L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018 2019 2020
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2021 2022 2023 2024
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2025 2026 2027
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2028
 */
2029
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2030
					struct scan_control *sc)
L
Linus Torvalds 已提交
2031 2032
{
	int priority;
2033
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2034
	struct reclaim_state *reclaim_state = current->reclaim_state;
2035
	struct zoneref *z;
2036
	struct zone *zone;
2037
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
2038

2039
	get_mems_allowed();
2040 2041
	delayacct_freepages_start();

2042
	if (scanning_global_lru(sc))
2043
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2044 2045

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2046
		sc->nr_scanned = 0;
2047 2048
		if (!priority)
			disable_swap_token();
2049
		shrink_zones(priority, zonelist, sc);
2050 2051 2052 2053
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2054
		if (scanning_global_lru(sc)) {
2055
			unsigned long lru_pages = 0;
2056 2057
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2058 2059 2060 2061 2062 2063
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2064
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2065
			if (reclaim_state) {
2066
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2067 2068
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2069
		}
2070
		total_scanned += sc->nr_scanned;
2071
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2081 2082
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2083
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2084
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2085 2086 2087
		}

		/* Take a nap, wait for some writeback to complete */
2088
		if (!sc->hibernation_mode && sc->nr_scanned &&
2089 2090 2091 2092
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2093 2094
						&cpuset_current_mems_allowed,
						&preferred_zone);
2095 2096
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2097
	}
2098

L
Linus Torvalds 已提交
2099
out:
2100
	delayacct_freepages_end();
2101
	put_mems_allowed();
2102

2103 2104 2105
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2106 2107 2108 2109 2110 2111 2112 2113
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2114
	/* top priority shrink_zones still had more to do? don't OOM, then */
2115
	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2116 2117 2118
		return 1;

	return 0;
L
Linus Torvalds 已提交
2119 2120
}

2121
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2122
				gfp_t gfp_mask, nodemask_t *nodemask)
2123
{
2124
	unsigned long nr_reclaimed;
2125 2126 2127
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2128
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2129
		.may_unmap = 1,
2130
		.may_swap = 1,
2131 2132 2133
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
2134
		.nodemask = nodemask,
2135 2136
	};

2137 2138 2139 2140 2141 2142 2143 2144 2145
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2146 2147
}

2148
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2149

2150 2151 2152
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
2153
						struct zone *zone)
2154 2155
{
	struct scan_control sc = {
2156
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2157 2158 2159 2160 2161 2162 2163 2164 2165
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
	};
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2166 2167 2168 2169 2170

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2171 2172 2173 2174 2175 2176 2177 2178
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
2179 2180 2181

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2182 2183 2184
	return sc.nr_reclaimed;
}

2185
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2186 2187 2188
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
2189
{
2190
	struct zonelist *zonelist;
2191
	unsigned long nr_reclaimed;
2192 2193
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2194
		.may_unmap = 1,
2195
		.may_swap = !noswap,
2196
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
2197
		.swappiness = swappiness,
2198 2199
		.order = 0,
		.mem_cgroup = mem_cont,
2200
		.nodemask = NULL, /* we don't care the placement */
2201 2202
	};

2203 2204 2205
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2216 2217 2218
}
#endif

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2230
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

	return balanced_pages > (present_pages >> 2);
}

2247
/* is kswapd sleeping prematurely? */
2248 2249
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2250
{
2251
	int i;
2252 2253
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2254 2255 2256

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2257
		return true;
2258

2259
	/* Check the watermark levels */
2260 2261 2262 2263 2264 2265
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2266 2267 2268 2269 2270 2271 2272 2273
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2274
			continue;
2275
		}
2276

2277
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2278
							classzone_idx, 0))
2279 2280 2281
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2282
	}
2283

2284 2285 2286 2287 2288 2289
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2290
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2291 2292
	else
		return !all_zones_ok;
2293 2294
}

L
Linus Torvalds 已提交
2295 2296
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2297
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2298
 *
2299
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2310 2311 2312 2313 2314
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2315
 */
2316
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2317
							int *classzone_idx)
L
Linus Torvalds 已提交
2318 2319
{
	int all_zones_ok;
2320
	unsigned long balanced;
L
Linus Torvalds 已提交
2321 2322
	int priority;
	int i;
2323
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2324
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2325
	struct reclaim_state *reclaim_state = current->reclaim_state;
2326 2327
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2328
		.may_unmap = 1,
2329
		.may_swap = 1,
2330 2331 2332 2333 2334
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2335
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2336
		.order = order,
2337
		.mem_cgroup = NULL,
2338
	};
L
Linus Torvalds 已提交
2339 2340
loop_again:
	total_scanned = 0;
2341
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2342
	sc.may_writepage = !laptop_mode;
2343
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2344 2345 2346

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2347
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2348

2349 2350 2351 2352
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2353
		all_zones_ok = 1;
2354
		balanced = 0;
L
Linus Torvalds 已提交
2355

2356 2357 2358 2359 2360 2361
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2362

2363 2364
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2365

2366
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2367
				continue;
L
Linus Torvalds 已提交
2368

2369 2370 2371 2372
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2373
			if (inactive_anon_is_low(zone, &sc))
2374 2375 2376
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2377
			if (!zone_watermark_ok_safe(zone, order,
2378
					high_wmark_pages(zone), 0, 0)) {
2379
				end_zone = i;
2380
				*classzone_idx = i;
A
Andrew Morton 已提交
2381
				break;
L
Linus Torvalds 已提交
2382 2383
			}
		}
A
Andrew Morton 已提交
2384 2385 2386
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2387 2388 2389
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2390
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2404
			int nr_slab;
2405
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2406

2407
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2408 2409
				continue;

2410
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2411 2412 2413
				continue;

			sc.nr_scanned = 0;
2414 2415 2416 2417 2418

			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
2419 2420
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);

2421
			/*
2422 2423 2424 2425 2426 2427
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2428
			 */
2429 2430 2431 2432
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2433
			if (!zone_watermark_ok_safe(zone, order,
2434 2435
					high_wmark_pages(zone) + balance_gap,
					end_zone, 0))
2436
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2437
			reclaim_state->reclaimed_slab = 0;
2438 2439
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2440
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2441
			total_scanned += sc.nr_scanned;
2442

2443
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2444
				continue;
2445
			if (nr_slab == 0 &&
2446
			    !zone_reclaimable(zone))
2447
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2448 2449 2450 2451 2452 2453
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2454
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2455
				sc.may_writepage = 1;
2456

2457
			if (!zone_watermark_ok_safe(zone, order,
2458 2459 2460 2461 2462 2463 2464
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2465
				if (!zone_watermark_ok_safe(zone, order,
2466 2467
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2468 2469 2470 2471 2472 2473 2474 2475 2476
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2477
				if (i <= *classzone_idx)
2478
					balanced += zone->present_pages;
2479
			}
2480

L
Linus Torvalds 已提交
2481
		}
2482
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2483 2484 2485 2486 2487
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2488 2489 2490 2491 2492 2493
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2494 2495 2496 2497 2498 2499 2500

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2501
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2502 2503 2504
			break;
	}
out:
2505 2506 2507

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2508 2509
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2510
	 */
2511
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2512
		cond_resched();
2513 2514 2515

		try_to_freeze();

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2533 2534 2535
		goto loop_again;
	}

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
	}

2566 2567 2568 2569 2570 2571
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2572
	*classzone_idx = end_zone;
2573
	return order;
L
Linus Torvalds 已提交
2574 2575
}

2576
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2587
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2588 2589 2590 2591 2592 2593 2594 2595 2596
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2597
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2620 2621
/*
 * The background pageout daemon, started as a kernel thread
2622
 * from the init process.
L
Linus Torvalds 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
2636
	int classzone_idx;
L
Linus Torvalds 已提交
2637 2638
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2639

L
Linus Torvalds 已提交
2640 2641 2642
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2643
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2644

2645 2646
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2647
	if (!cpumask_empty(cpumask))
2648
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2663
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2664
	set_freezable();
L
Linus Torvalds 已提交
2665 2666

	order = 0;
2667
	classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
2668 2669
	for ( ; ; ) {
		unsigned long new_order;
2670
		int new_classzone_idx;
2671
		int ret;
2672

L
Linus Torvalds 已提交
2673
		new_order = pgdat->kswapd_max_order;
2674
		new_classzone_idx = pgdat->classzone_idx;
L
Linus Torvalds 已提交
2675
		pgdat->kswapd_max_order = 0;
2676 2677
		pgdat->classzone_idx = MAX_NR_ZONES - 1;
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2678 2679
			/*
			 * Don't sleep if someone wants a larger 'order'
2680
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2681 2682
			 */
			order = new_order;
2683
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2684
		} else {
2685
			kswapd_try_to_sleep(pgdat, order, classzone_idx);
L
Linus Torvalds 已提交
2686
			order = pgdat->kswapd_max_order;
2687
			classzone_idx = pgdat->classzone_idx;
2688 2689
			pgdat->kswapd_max_order = 0;
			pgdat->classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
2690 2691
		}

2692 2693 2694 2695 2696 2697 2698 2699
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2700 2701
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2702
			order = balance_pgdat(pgdat, order, &classzone_idx);
2703
		}
L
Linus Torvalds 已提交
2704 2705 2706 2707 2708 2709 2710
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2711
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2712 2713 2714
{
	pg_data_t *pgdat;

2715
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2716 2717
		return;

2718
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2719
		return;
2720
	pgdat = zone->zone_pgdat;
2721
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2722
		pgdat->kswapd_max_order = order;
2723 2724
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2725
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2726
		return;
2727 2728 2729 2730
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2731
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2732 2733
}

2734 2735 2736 2737 2738 2739 2740 2741
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2742
{
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2767 2768
}

2769
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2770
/*
2771
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2772 2773 2774 2775 2776
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2777
 */
2778
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2779
{
2780 2781
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2782 2783 2784
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2785
		.may_writepage = 1,
2786 2787 2788 2789
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
L
Linus Torvalds 已提交
2790
	};
2791 2792 2793
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2794

2795 2796 2797 2798
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2799

2800
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2801

2802 2803 2804
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2805

2806
	return nr_reclaimed;
L
Linus Torvalds 已提交
2807
}
2808
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2809 2810 2811 2812 2813

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2814
static int __devinit cpu_callback(struct notifier_block *nfb,
2815
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2816
{
2817
	int nid;
L
Linus Torvalds 已提交
2818

2819
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2820
		for_each_node_state(nid, N_HIGH_MEMORY) {
2821
			pg_data_t *pgdat = NODE_DATA(nid);
2822 2823 2824
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2825

2826
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2827
				/* One of our CPUs online: restore mask */
2828
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2829 2830 2831 2832 2833
		}
	}
	return NOTIFY_OK;
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2867 2868
static int __init kswapd_init(void)
{
2869
	int nid;
2870

L
Linus Torvalds 已提交
2871
	swap_setup();
2872
	for_each_node_state(nid, N_HIGH_MEMORY)
2873
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2889
#define RECLAIM_OFF 0
2890
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2891 2892 2893
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2894 2895 2896 2897 2898 2899 2900
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2901 2902 2903 2904 2905 2906
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2907 2908 2909 2910 2911 2912
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2955 2956 2957
/*
 * Try to free up some pages from this zone through reclaim.
 */
2958
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2959
{
2960
	/* Minimum pages needed in order to stay on node */
2961
	const unsigned long nr_pages = 1 << order;
2962 2963
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2964
	int priority;
2965 2966
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2967
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2968
		.may_swap = 1,
2969 2970
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2971
		.gfp_mask = gfp_mask,
2972
		.swappiness = vm_swappiness,
2973
		.order = order,
2974
	};
2975
	unsigned long nr_slab_pages0, nr_slab_pages1;
2976 2977

	cond_resched();
2978 2979 2980 2981 2982 2983
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2984
	lockdep_set_current_reclaim_state(gfp_mask);
2985 2986
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2987

2988
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2989 2990 2991 2992 2993 2994
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2995
			shrink_zone(priority, zone, &sc);
2996
			priority--;
2997
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2998
	}
2999

3000 3001
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3002
		/*
3003
		 * shrink_slab() does not currently allow us to determine how
3004 3005 3006 3007
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3008
		 *
3009 3010
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3011
		 */
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3025 3026 3027 3028 3029

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3030 3031 3032
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3033 3034
	}

3035
	p->reclaim_state = NULL;
3036
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3037
	lockdep_clear_current_reclaim_state();
3038
	return sc.nr_reclaimed >= nr_pages;
3039
}
3040 3041 3042 3043

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3044
	int ret;
3045 3046

	/*
3047 3048
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3049
	 *
3050 3051 3052 3053 3054
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3055
	 */
3056 3057
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3058
		return ZONE_RECLAIM_FULL;
3059

3060
	if (zone->all_unreclaimable)
3061
		return ZONE_RECLAIM_FULL;
3062

3063
	/*
3064
	 * Do not scan if the allocation should not be delayed.
3065
	 */
3066
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3067
		return ZONE_RECLAIM_NOSCAN;
3068 3069 3070 3071 3072 3073 3074

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3075
	node_id = zone_to_nid(zone);
3076
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3077
		return ZONE_RECLAIM_NOSCAN;
3078 3079

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3080 3081
		return ZONE_RECLAIM_NOSCAN;

3082 3083 3084
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3085 3086 3087
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3088
	return ret;
3089
}
3090
#endif
L
Lee Schermerhorn 已提交
3091 3092 3093 3094 3095 3096 3097

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3098 3099
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3100 3101
 *
 * Reasons page might not be evictable:
3102
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3103
 * (2) page is part of an mlocked VMA
3104
 *
L
Lee Schermerhorn 已提交
3105 3106 3107 3108
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3109 3110 3111
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3112 3113
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3114 3115 3116

	return 1;
}
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3136
		enum lru_list l = page_lru_base_type(page);
3137

3138 3139
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
3140
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3141 3142 3143 3144 3145 3146 3147 3148
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
3149
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3221
static void scan_zone_unevictable_pages(struct zone *zone)
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
3263
static void scan_all_zones_unevictable_pages(void)
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3279
			   void __user *buffer,
3280 3281
			   size_t *length, loff_t *ppos)
{
3282
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3283 3284 3285 3286 3287 3288 3289 3290

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

3291
#ifdef CONFIG_NUMA
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}
3338
#endif