vmscan.c 97.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

57
/*
58 59 60 61 62
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 64
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
65
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66
 *			order-0 pages and then compact the zone
67
 */
68 69 70 71 72 73
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74

L
Linus Torvalds 已提交
75 76 77 78
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

79 80 81
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

82 83 84
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

85 86
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
87
	/* This context's GFP mask */
A
Al Viro 已提交
88
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
89 90 91

	int may_writepage;

92 93
	/* Can mapped pages be reclaimed? */
	int may_unmap;
94

95 96 97
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
98
	int order;
99

100
	/*
101 102
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
103
	 */
104
	reclaim_mode_t reclaim_mode;
105

106 107
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;
108
	struct memcg_scanrecord *memcg_record;
109

110 111 112 113 114
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
151
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
152 153 154 155

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

156
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
157
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
158
#else
159
#define scanning_global_lru(sc)	(1)
160 161
#endif

162 163 164
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
165
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
166 167
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

168 169 170
	return &zone->reclaim_stat;
}

171 172
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
173
{
174
	if (!scanning_global_lru(sc))
175 176
		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
				zone_to_nid(zone), zone_idx(zone), BIT(lru));
177

178 179 180 181
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
182 183 184
/*
 * Add a shrinker callback to be called from the vm
 */
185
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
186
{
187 188 189 190
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
191
}
192
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
193 194 195 196

/*
 * Remove one
 */
197
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
198 199 200 201 202
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
203
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
204

205 206 207 208 209 210 211 212
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
213 214 215 216 217 218 219 220 221
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
222
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
223 224 225 226 227 228 229
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
230 231
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
232
 */
233
unsigned long shrink_slab(struct shrink_control *shrink,
234
			  unsigned long nr_pages_scanned,
235
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
236 237
{
	struct shrinker *shrinker;
238
	unsigned long ret = 0;
L
Linus Torvalds 已提交
239

240 241
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
242

243 244 245 246 247
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
248 249 250 251

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
252
		unsigned long max_pass;
253
		int shrink_ret = 0;
254 255
		long nr;
		long new_nr;
256 257
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
258

259 260 261 262 263 264 265 266 267 268
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
		do {
			nr = shrinker->nr;
		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);

		total_scan = nr;
269 270
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
271
		delta *= max_pass;
L
Linus Torvalds 已提交
272
		do_div(delta, lru_pages + 1);
273 274
		total_scan += delta;
		if (total_scan < 0) {
275 276
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
277 278
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
279 280
		}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

296 297 298 299 300
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
301 302
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
303

304
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
305 306 307
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

308
		while (total_scan >= batch_size) {
309
			int nr_before;
L
Linus Torvalds 已提交
310

311 312
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
313
							batch_size);
L
Linus Torvalds 已提交
314 315
			if (shrink_ret == -1)
				break;
316 317
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
318 319
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
320 321 322 323

			cond_resched();
		}

324 325 326 327 328 329 330 331 332 333 334 335 336
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
		do {
			nr = shrinker->nr;
			new_nr = total_scan + nr;
			if (total_scan <= 0)
				break;
		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
337 338
	}
	up_read(&shrinker_rwsem);
339 340
out:
	cond_resched();
341
	return ret;
L
Linus Torvalds 已提交
342 343
}

344
static void set_reclaim_mode(int priority, struct scan_control *sc,
345 346
				   bool sync)
{
347
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
348 349

	/*
350 351 352
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
353
	 */
354
	if (COMPACTION_BUILD)
355
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
356
	else
357
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
358 359

	/*
360 361 362
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
363 364
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
365
		sc->reclaim_mode |= syncmode;
366
	else if (sc->order && priority < DEF_PRIORITY - 2)
367
		sc->reclaim_mode |= syncmode;
368
	else
369
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
370 371
}

372
static void reset_reclaim_mode(struct scan_control *sc)
373
{
374
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
375 376
}

L
Linus Torvalds 已提交
377 378
static inline int is_page_cache_freeable(struct page *page)
{
379 380 381 382 383
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
384
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
385 386
}

387 388
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
389
{
390
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
391 392 393 394 395
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
396 397 398 399

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
418
	lock_page(page);
419 420
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
421 422 423
	unlock_page(page);
}

424 425 426 427 428 429 430 431 432 433 434 435
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
436
/*
A
Andrew Morton 已提交
437 438
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
439
 */
440
static pageout_t pageout(struct page *page, struct address_space *mapping,
441
			 struct scan_control *sc)
L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
450
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
466
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
467 468
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
469
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
470 471 472 473 474 475 476
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
477
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
478 479 480 481 482 483 484
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
485 486
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
487 488 489 490 491 492 493
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
494
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
495 496 497
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
498 499 500 501 502 503

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
504
		if (PageWriteback(page) &&
505
		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
506 507
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
508 509 510 511
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
512
		trace_mm_vmscan_writepage(page,
513
			trace_reclaim_flags(page, sc->reclaim_mode));
514
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
515 516 517 518 519 520
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

521
/*
N
Nick Piggin 已提交
522 523
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
524
 */
N
Nick Piggin 已提交
525
static int __remove_mapping(struct address_space *mapping, struct page *page)
526
{
527 528
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
529

N
Nick Piggin 已提交
530
	spin_lock_irq(&mapping->tree_lock);
531
	/*
N
Nick Piggin 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
555
	 */
N
Nick Piggin 已提交
556
	if (!page_freeze_refs(page, 2))
557
		goto cannot_free;
N
Nick Piggin 已提交
558 559 560
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
561
		goto cannot_free;
N
Nick Piggin 已提交
562
	}
563 564 565 566

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
567
		spin_unlock_irq(&mapping->tree_lock);
568
		swapcache_free(swap, page);
N
Nick Piggin 已提交
569
	} else {
570 571 572 573
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

574
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
575
		spin_unlock_irq(&mapping->tree_lock);
576
		mem_cgroup_uncharge_cache_page(page);
577 578 579

		if (freepage != NULL)
			freepage(page);
580 581 582 583 584
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
585
	spin_unlock_irq(&mapping->tree_lock);
586 587 588
	return 0;
}

N
Nick Piggin 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
622
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
636
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
637 638 639 640 641 642 643 644
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
645 646 647 648 649 650 651 652 653 654
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

673 674 675 676 677
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
678 679 680
	put_page(page);		/* drop ref from isolate */
}

681 682 683
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
684
	PAGEREF_KEEP,
685 686 687 688 689 690
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
691
	int referenced_ptes, referenced_page;
692 693
	unsigned long vm_flags;

694 695
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
696 697

	/* Lumpy reclaim - ignore references */
698
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
699 700 701 702 703 704 705 706 707
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
732 733

	/* Reclaim if clean, defer dirty pages to writeback */
734
	if (referenced_page && !PageSwapBacked(page))
735 736 737
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
738 739
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
758
/*
A
Andrew Morton 已提交
759
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
760
 */
A
Andrew Morton 已提交
761
static unsigned long shrink_page_list(struct list_head *page_list,
762
				      struct zone *zone,
763
				      struct scan_control *sc)
L
Linus Torvalds 已提交
764 765
{
	LIST_HEAD(ret_pages);
766
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
767
	int pgactivate = 0;
768 769
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
770
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
771 772 773 774

	cond_resched();

	while (!list_empty(page_list)) {
775
		enum page_references references;
L
Linus Torvalds 已提交
776 777 778 779 780 781 782 783 784
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
785
		if (!trylock_page(page))
L
Linus Torvalds 已提交
786 787
			goto keep;

N
Nick Piggin 已提交
788
		VM_BUG_ON(PageActive(page));
789
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
790 791

		sc->nr_scanned++;
792

N
Nick Piggin 已提交
793 794
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
795

796
		if (!sc->may_unmap && page_mapped(page))
797 798
			goto keep_locked;

L
Linus Torvalds 已提交
799 800 801 802
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

803 804 805 806 807 808 809 810 811 812 813 814
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
815
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816
			    may_enter_fs)
817
				wait_on_page_writeback(page);
818 819 820 821
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
822
		}
L
Linus Torvalds 已提交
823

824 825 826
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
827
			goto activate_locked;
828 829
		case PAGEREF_KEEP:
			goto keep_locked;
830 831 832 833
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
834 835 836 837 838

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
839
		if (PageAnon(page) && !PageSwapCache(page)) {
840 841
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
842
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
843
				goto activate_locked;
844
			may_enter_fs = 1;
N
Nick Piggin 已提交
845
		}
L
Linus Torvalds 已提交
846 847 848 849 850 851 852 853

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
854
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
855 856 857 858
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
859 860
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
861 862 863 864 865 866
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
867 868
			nr_dirty++;

869
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
870
				goto keep_locked;
871
			if (!may_enter_fs)
L
Linus Torvalds 已提交
872
				goto keep_locked;
873
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
874 875 876
				goto keep_locked;

			/* Page is dirty, try to write it out here */
877
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
878
			case PAGE_KEEP:
879
				nr_congested++;
L
Linus Torvalds 已提交
880 881 882 883
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
884 885 886
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
887
					goto keep;
888

L
Linus Torvalds 已提交
889 890 891 892
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
893
				if (!trylock_page(page))
L
Linus Torvalds 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
913
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
914 915 916 917 918 919 920 921 922 923
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
924
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
925 926
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
943 944
		}

N
Nick Piggin 已提交
945
		if (!mapping || !__remove_mapping(mapping, page))
946
			goto keep_locked;
L
Linus Torvalds 已提交
947

N
Nick Piggin 已提交
948 949 950 951 952 953 954 955
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
956
free_it:
957
		nr_reclaimed++;
958 959 960 961 962 963

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
964 965
		continue;

N
Nick Piggin 已提交
966
cull_mlocked:
967 968
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
969 970
		unlock_page(page);
		putback_lru_page(page);
971
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
972 973
		continue;

L
Linus Torvalds 已提交
974
activate_locked:
975 976
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
977
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
978
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
979 980 981 982 983
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
984
		reset_reclaim_mode(sc);
985
keep_lumpy:
L
Linus Torvalds 已提交
986
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
987
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
988
	}
989

990 991 992 993 994 995
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
K
KAMEZAWA Hiroyuki 已提交
996
	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
997 998
		zone_set_flag(zone, ZONE_CONGESTED);

999 1000
	free_page_list(&free_pages);

L
Linus Torvalds 已提交
1001
	list_splice(&ret_pages, page_list);
1002
	count_vm_events(PGACTIVATE, pgactivate);
1003
	return nr_reclaimed;
L
Linus Torvalds 已提交
1004 1005
}

A
Andy Whitcroft 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1016
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

1032
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
1033 1034
		return ret;

L
Lee Schermerhorn 已提交
1035 1036 1037 1038 1039 1040 1041 1042
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
1043
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1044

A
Andy Whitcroft 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1072 1073
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1074
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1075 1076 1077
 *
 * returns how many pages were moved onto *@dst.
 */
1078 1079
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1080
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
1081
{
1082
	unsigned long nr_taken = 0;
1083 1084 1085
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1086
	unsigned long scan;
L
Linus Torvalds 已提交
1087

1088
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1089 1090 1091 1092 1093 1094
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1095 1096 1097
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1098
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1099

1100
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1101 1102
		case 0:
			list_move(&page->lru, dst);
1103
			mem_cgroup_del_lru(page);
1104
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1105 1106 1107 1108 1109
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1110
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1111
			continue;
1112

A
Andy Whitcroft 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
L
Lucas De Marchi 已提交
1125
		 * as the mem_map is guaranteed valid out to MAX_ORDER,
A
Andy Whitcroft 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1145

A
Andy Whitcroft 已提交
1146 1147
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1148
				break;
1149 1150 1151 1152 1153 1154 1155

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1156 1157
			    !PageSwapCache(cursor_page))
				break;
1158

1159
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1160
				list_move(&cursor_page->lru, dst);
1161
				mem_cgroup_del_lru(cursor_page);
1162
				nr_taken += hpage_nr_pages(page);
1163 1164 1165
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1166
				scan++;
1167
			} else {
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
				/*
				 * Check if the page is freed already.
				 *
				 * We can't use page_count() as that
				 * requires compound_head and we don't
				 * have a pin on the page here. If a
				 * page is tail, we may or may not
				 * have isolated the head, so assume
				 * it's not free, it'd be tricky to
				 * track the head status without a
				 * page pin.
				 */
				if (!PageTail(cursor_page) &&
				    !atomic_read(&cursor_page->_count))
1182 1183
					continue;
				break;
A
Andy Whitcroft 已提交
1184 1185
			}
		}
1186 1187 1188 1189

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1190 1191 1192
	}

	*scanned = scan;
1193 1194 1195 1196 1197 1198

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1199 1200 1201
	return nr_taken;
}

1202 1203 1204 1205
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1206
					int active, int file)
1207
{
1208
	int lru = LRU_BASE;
1209
	if (active)
1210 1211 1212 1213
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1214
								mode, file);
1215 1216
}

A
Andy Whitcroft 已提交
1217 1218 1219 1220
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1221 1222
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1223 1224
{
	int nr_active = 0;
1225
	int lru;
A
Andy Whitcroft 已提交
1226 1227
	struct page *page;

1228
	list_for_each_entry(page, page_list, lru) {
1229
		int numpages = hpage_nr_pages(page);
1230
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1231
		if (PageActive(page)) {
1232
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1233
			ClearPageActive(page);
1234
			nr_active += numpages;
A
Andy Whitcroft 已提交
1235
		}
1236
		if (count)
1237
			count[lru] += numpages;
1238
	}
A
Andy Whitcroft 已提交
1239 1240 1241 1242

	return nr_active;
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1254 1255 1256
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1272 1273
	VM_BUG_ON(!page_count(page));

1274 1275 1276 1277
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1278
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1279
			int lru = page_lru(page);
1280
			ret = 0;
1281
			get_page(page);
1282
			ClearPageLRU(page);
1283 1284

			del_page_from_lru_list(zone, page, lru);
1285 1286 1287 1288 1289 1290
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1316 1317 1318 1319
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1320
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1321 1322 1323 1324 1325
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1326
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1345
		SetPageLRU(page);
1346
		lru = page_lru(page);
1347
		add_page_to_lru_list(zone, page, lru);
1348 1349
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1350 1351
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1352 1353
			if (!scanning_global_lru(sc))
				sc->memcg_record->nr_rotated[file] += numpages;
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
1397 1398 1399 1400
	if (!scanning_global_lru(sc)) {
		sc->memcg_record->nr_scanned[0] += *nr_anon;
		sc->memcg_record->nr_scanned[1] += *nr_file;
	}
1401 1402
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
/*
 * Returns true if the caller should wait to clean dirty/writeback pages.
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1423
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
		return false;

	/* If we have relaimed everything on the isolated list, no stall */
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1444
/*
A
Andrew Morton 已提交
1445 1446
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1447
 */
1448 1449 1450
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1451 1452
{
	LIST_HEAD(page_list);
1453
	unsigned long nr_scanned;
1454
	unsigned long nr_reclaimed = 0;
1455 1456 1457
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1458

1459
	while (unlikely(too_many_isolated(zone, file, sc))) {
1460
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1461 1462 1463 1464 1465 1466

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1467
	set_reclaim_mode(priority, sc, false);
L
Linus Torvalds 已提交
1468 1469
	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1470

1471 1472 1473
	if (scanning_global_lru(sc)) {
		nr_taken = isolate_pages_global(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1474
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1475
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
			zone, 0, file);
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1487
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1488
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1489 1490 1491 1492 1493 1494 1495
			zone, sc->mem_cgroup,
			0, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1496

1497 1498 1499 1500
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1501

1502
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1503

1504
	spin_unlock_irq(&zone->lru_lock);
1505

1506
	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1507

1508 1509
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1510
		set_reclaim_mode(priority, sc, true);
1511
		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1512
	}
1513

1514 1515 1516
	if (!scanning_global_lru(sc))
		sc->memcg_record->nr_freed[file] += nr_reclaimed;

1517 1518 1519 1520
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1521

1522
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1523 1524 1525 1526 1527

	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1528
		trace_shrink_flags(file, sc->reclaim_mode));
1529
	return nr_reclaimed;
L
Linus Torvalds 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
1568
		pgmoved += hpage_nr_pages(page);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1582

A
Andrew Morton 已提交
1583
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1584
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1585
{
1586
	unsigned long nr_taken;
1587
	unsigned long pgscanned;
1588
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1589
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1590
	LIST_HEAD(l_active);
1591
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1592
	struct page *page;
1593
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1594
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1595 1596 1597

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1598
	if (scanning_global_lru(sc)) {
1599 1600 1601 1602
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1603
		zone->pages_scanned += pgscanned;
1604 1605 1606 1607 1608 1609 1610 1611 1612
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1613
	}
1614

1615
	reclaim_stat->recent_scanned[file] += nr_taken;
1616 1617
	if (!scanning_global_lru(sc))
		sc->memcg_record->nr_scanned[file] += nr_taken;
1618

1619
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1620
	if (file)
1621
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1622
	else
1623
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1624
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1625 1626 1627 1628 1629 1630
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1631

L
Lee Schermerhorn 已提交
1632 1633 1634 1635 1636
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1637
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1638
			nr_rotated += hpage_nr_pages(page);
1639 1640 1641 1642 1643 1644 1645 1646 1647
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1648
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1649 1650 1651 1652
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1653

1654
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1655 1656 1657
		list_add(&page->lru, &l_inactive);
	}

1658
	/*
1659
	 * Move pages back to the lru list.
1660
	 */
1661
	spin_lock_irq(&zone->lru_lock);
1662
	/*
1663 1664 1665 1666
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1667
	 */
1668
	reclaim_stat->recent_rotated[file] += nr_rotated;
1669 1670
	if (!scanning_global_lru(sc))
		sc->memcg_record->nr_rotated[file] += nr_rotated;
1671

1672 1673 1674 1675
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1676
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1677
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1678 1679
}

1680
#ifdef CONFIG_SWAP
1681
static int inactive_anon_is_low_global(struct zone *zone)
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1706 1707 1708 1709 1710 1711 1712
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1713
	if (scanning_global_lru(sc))
1714 1715
		low = inactive_anon_is_low_global(zone);
	else
1716
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1717 1718
	return low;
}
1719 1720 1721 1722 1723 1724 1725
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1763 1764 1765 1766 1767 1768 1769 1770 1771
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1772
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1773 1774
	struct zone *zone, struct scan_control *sc, int priority)
{
1775 1776
	int file = is_file_lru(lru);

1777 1778 1779
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1780 1781 1782
		return 0;
	}

R
Rik van Riel 已提交
1783
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1784 1785
}

1786 1787 1788 1789 1790 1791 1792
static int vmscan_swappiness(struct scan_control *sc)
{
	if (scanning_global_lru(sc))
		return vm_swappiness;
	return mem_cgroup_swappiness(sc->mem_cgroup);
}

1793 1794 1795 1796 1797 1798
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1799
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1800
 */
1801 1802
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1803 1804 1805 1806
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1807
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1808 1809 1810
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;
1811
	int force_scan = 0;
1812
	unsigned long nr_force_scan[2];
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827


	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);

	if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
		/* kswapd does zone balancing and need to scan this zone */
		if (scanning_global_lru(sc) && current_is_kswapd())
			force_scan = 1;
		/* memcg may have small limit and need to avoid priority drop */
		if (!scanning_global_lru(sc))
			force_scan = 1;
	}
1828 1829 1830 1831 1832 1833 1834

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
1835 1836
		nr_force_scan[0] = 0;
		nr_force_scan[1] = SWAP_CLUSTER_MAX;
1837 1838
		goto out;
	}
1839

1840
	if (scanning_global_lru(sc)) {
1841 1842 1843
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1844
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1845 1846 1847
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
1848 1849
			nr_force_scan[0] = SWAP_CLUSTER_MAX;
			nr_force_scan[1] = 0;
1850
			goto out;
1851
		}
1852 1853
	}

1854 1855 1856 1857
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1858 1859
	anon_prio = vmscan_swappiness(sc);
	file_prio = 200 - vmscan_swappiness(sc);
1860

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1872
	spin_lock_irq(&zone->lru_lock);
1873 1874 1875
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1876 1877
	}

1878 1879 1880
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1881 1882 1883
	}

	/*
1884 1885 1886
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1887
	 */
1888 1889
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1890

1891 1892
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1893
	spin_unlock_irq(&zone->lru_lock);
1894

1895 1896 1897
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
1898 1899 1900 1901 1902
	if (force_scan) {
		unsigned long scan = SWAP_CLUSTER_MAX;
		nr_force_scan[0] = div64_u64(scan * ap, denominator);
		nr_force_scan[1] = div64_u64(scan * fp, denominator);
	}
1903 1904 1905 1906
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1907

1908 1909 1910 1911 1912
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922

		/*
		 * If zone is small or memcg is small, nr[l] can be 0.
		 * This results no-scan on this priority and priority drop down.
		 * For global direct reclaim, it can visit next zone and tend
		 * not to have problems. For global kswapd, it's for zone
		 * balancing and it need to scan a small amounts. When using
		 * memcg, priority drop can cause big latency. So, it's better
		 * to scan small amount. See may_noscan above.
		 */
1923 1924
		if (!scan && force_scan)
			scan = nr_force_scan[file];
1925
		nr[l] = scan;
1926
	}
1927
}
1928

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
static inline bool should_continue_reclaim(struct zone *zone,
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1945
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1946 1947
		return false;

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
	switch (compaction_suitable(zone, sc->order)) {
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1992 1993 1994
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1995
static void shrink_zone(int priority, struct zone *zone,
1996
				struct scan_control *sc)
L
Linus Torvalds 已提交
1997
{
1998
	unsigned long nr[NR_LRU_LISTS];
1999
	unsigned long nr_to_scan;
2000
	enum lru_list l;
2001
	unsigned long nr_reclaimed, nr_scanned;
2002
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2003

2004 2005
restart:
	nr_reclaimed = 0;
2006
	nr_scanned = sc->nr_scanned;
2007
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
2008

2009 2010
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
2011
		for_each_evictable_lru(l) {
2012
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
2013 2014
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
2015
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
2016

2017 2018
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
2019
			}
L
Linus Torvalds 已提交
2020
		}
2021 2022 2023 2024 2025 2026 2027 2028
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
2029
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2030
			break;
L
Linus Torvalds 已提交
2031
	}
2032
	sc->nr_reclaimed += nr_reclaimed;
2033

2034 2035 2036 2037
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2038
	if (inactive_anon_is_low(zone, sc))
2039 2040
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

2041 2042 2043 2044 2045
	/* reclaim/compaction might need reclaim to continue */
	if (should_continue_reclaim(zone, nr_reclaimed,
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

2046
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
2047 2048 2049 2050 2051 2052 2053
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2054 2055
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2056 2057
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2058 2059 2060
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2061 2062 2063 2064
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
2065
static void shrink_zones(int priority, struct zonelist *zonelist,
2066
					struct scan_control *sc)
L
Linus Torvalds 已提交
2067
{
2068
	struct zoneref *z;
2069
	struct zone *zone;
2070 2071
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2072

2073 2074
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2075
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2076
			continue;
2077 2078 2079 2080
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2081
		if (scanning_global_lru(sc)) {
2082 2083
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2084
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2085
				continue;	/* Let kswapd poll it */
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2099
		}
2100

2101
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2102
	}
2103 2104 2105 2106 2107 2108 2109
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2110
/* All zones in zonelist are unreclaimable? */
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2123 2124
		if (!zone->all_unreclaimable)
			return false;
2125 2126
	}

2127
	return true;
L
Linus Torvalds 已提交
2128
}
2129

L
Linus Torvalds 已提交
2130 2131 2132 2133 2134 2135 2136 2137
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2138 2139 2140 2141
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2142 2143 2144
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2145
 */
2146
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2147 2148
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2149 2150
{
	int priority;
2151
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2152
	struct reclaim_state *reclaim_state = current->reclaim_state;
2153
	struct zoneref *z;
2154
	struct zone *zone;
2155
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
2156

2157
	get_mems_allowed();
2158 2159
	delayacct_freepages_start();

2160
	if (scanning_global_lru(sc))
2161
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2162 2163

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2164
		sc->nr_scanned = 0;
2165
		if (!priority)
2166
			disable_swap_token(sc->mem_cgroup);
2167
		shrink_zones(priority, zonelist, sc);
2168 2169 2170 2171
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2172
		if (scanning_global_lru(sc)) {
2173
			unsigned long lru_pages = 0;
2174 2175
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2176 2177 2178 2179 2180 2181
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2182
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2183
			if (reclaim_state) {
2184
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2185 2186
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2187
		}
2188
		total_scanned += sc->nr_scanned;
2189
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2199 2200
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2201
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2202
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2203 2204 2205
		}

		/* Take a nap, wait for some writeback to complete */
2206
		if (!sc->hibernation_mode && sc->nr_scanned &&
2207 2208 2209 2210
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2211 2212
						&cpuset_current_mems_allowed,
						&preferred_zone);
2213 2214
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2215
	}
2216

L
Linus Torvalds 已提交
2217
out:
2218
	delayacct_freepages_end();
2219
	put_mems_allowed();
2220

2221 2222 2223
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2224 2225 2226 2227 2228 2229 2230 2231
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2232
	/* top priority shrink_zones still had more to do? don't OOM, then */
2233
	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2234 2235 2236
		return 1;

	return 0;
L
Linus Torvalds 已提交
2237 2238
}

2239
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2240
				gfp_t gfp_mask, nodemask_t *nodemask)
2241
{
2242
	unsigned long nr_reclaimed;
2243 2244 2245
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2246
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2247
		.may_unmap = 1,
2248
		.may_swap = 1,
2249 2250
		.order = order,
		.mem_cgroup = NULL,
2251
		.nodemask = nodemask,
2252
	};
2253 2254 2255
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2256

2257 2258 2259 2260
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2261
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2262 2263 2264 2265

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2266 2267
}

2268
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2269

2270
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2271 2272 2273 2274
					gfp_t gfp_mask, bool noswap,
					struct zone *zone,
					struct memcg_scanrecord *rec,
					unsigned long *scanned)
2275 2276
{
	struct scan_control sc = {
2277
		.nr_scanned = 0,
2278
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2279 2280 2281 2282 2283
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
		.mem_cgroup = mem,
2284
		.memcg_record = rec,
2285
	};
S
Shaohua Li 已提交
2286
	ktime_t start, end;
2287

2288 2289
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2290 2291 2292 2293 2294

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

S
Shaohua Li 已提交
2295
	start = ktime_get();
2296 2297 2298 2299 2300 2301 2302 2303
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
S
Shaohua Li 已提交
2304
	end = ktime_get();
2305 2306

	if (rec)
S
Shaohua Li 已提交
2307
		rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2308
	*scanned = sc.nr_scanned;
2309 2310 2311

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2312 2313 2314
	return sc.nr_reclaimed;
}

2315
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2316
					   gfp_t gfp_mask,
2317 2318
					   bool noswap,
					   struct memcg_scanrecord *rec)
2319
{
2320
	struct zonelist *zonelist;
2321
	unsigned long nr_reclaimed;
S
Shaohua Li 已提交
2322
	ktime_t start, end;
2323
	int nid;
2324 2325
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2326
		.may_unmap = 1,
2327
		.may_swap = !noswap,
2328
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2329 2330
		.order = 0,
		.mem_cgroup = mem_cont,
2331
		.memcg_record = rec,
2332
		.nodemask = NULL, /* we don't care the placement */
2333 2334 2335 2336 2337
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2338 2339
	};

S
Shaohua Li 已提交
2340
	start = ktime_get();
2341 2342 2343 2344 2345 2346 2347 2348
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
	nid = mem_cgroup_select_victim_node(mem_cont);

	zonelist = NODE_DATA(nid)->node_zonelists;
2349 2350 2351 2352 2353

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2354
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
S
Shaohua Li 已提交
2355
	end = ktime_get();
2356
	if (rec)
S
Shaohua Li 已提交
2357
		rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2358 2359 2360 2361

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2362 2363 2364
}
#endif

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2376
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2390 2391
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2392 2393
}

2394
/* is kswapd sleeping prematurely? */
2395 2396
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2397
{
2398
	int i;
2399 2400
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2401 2402 2403

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2404
		return true;
2405

2406
	/* Check the watermark levels */
2407
	for (i = 0; i <= classzone_idx; i++) {
2408 2409 2410 2411 2412
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2413 2414 2415 2416 2417 2418 2419 2420
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2421
			continue;
2422
		}
2423

2424
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2425
							i, 0))
2426 2427 2428
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2429
	}
2430

2431 2432 2433 2434 2435 2436
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2437
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2438 2439
	else
		return !all_zones_ok;
2440 2441
}

L
Linus Torvalds 已提交
2442 2443
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2444
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2445
 *
2446
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2457 2458 2459 2460 2461
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2462
 */
2463
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2464
							int *classzone_idx)
L
Linus Torvalds 已提交
2465 2466
{
	int all_zones_ok;
2467
	unsigned long balanced;
L
Linus Torvalds 已提交
2468 2469
	int priority;
	int i;
2470
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2471
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2472
	struct reclaim_state *reclaim_state = current->reclaim_state;
2473 2474
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2475 2476
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2477
		.may_unmap = 1,
2478
		.may_swap = 1,
2479 2480 2481 2482 2483
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2484
		.order = order,
2485
		.mem_cgroup = NULL,
2486
	};
2487 2488 2489
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2490 2491
loop_again:
	total_scanned = 0;
2492
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2493
	sc.may_writepage = !laptop_mode;
2494
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2495 2496 2497

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2498
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2499

2500 2501
		/* The swap token gets in the way of swapout... */
		if (!priority)
2502
			disable_swap_token(NULL);
2503

L
Linus Torvalds 已提交
2504
		all_zones_ok = 1;
2505
		balanced = 0;
L
Linus Torvalds 已提交
2506

2507 2508 2509 2510 2511 2512
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2513

2514 2515
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2516

2517
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2518
				continue;
L
Linus Torvalds 已提交
2519

2520 2521 2522 2523
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2524
			if (inactive_anon_is_low(zone, &sc))
2525 2526 2527
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2528
			if (!zone_watermark_ok_safe(zone, order,
2529
					high_wmark_pages(zone), 0, 0)) {
2530
				end_zone = i;
A
Andrew Morton 已提交
2531
				break;
L
Linus Torvalds 已提交
2532 2533
			}
		}
A
Andrew Morton 已提交
2534 2535 2536
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2537 2538 2539
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2540
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2554
			int nr_slab;
2555
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2556

2557
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2558 2559
				continue;

2560
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2561 2562 2563
				continue;

			sc.nr_scanned = 0;
2564

2565
			nr_soft_scanned = 0;
2566 2567 2568
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2569 2570 2571 2572 2573
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2574

2575
			/*
2576 2577 2578 2579 2580 2581
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2582
			 */
2583 2584 2585 2586
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2587
			if (!zone_watermark_ok_safe(zone, order,
2588
					high_wmark_pages(zone) + balance_gap,
2589
					end_zone, 0)) {
2590
				shrink_zone(priority, zone, &sc);
2591

2592 2593 2594 2595 2596 2597 2598 2599 2600
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2601 2602 2603 2604 2605 2606
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2607
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2608
				sc.may_writepage = 1;
2609

2610 2611 2612
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2613
				continue;
2614
			}
2615

2616
			if (!zone_watermark_ok_safe(zone, order,
2617 2618 2619 2620 2621 2622 2623
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2624
				if (!zone_watermark_ok_safe(zone, order,
2625 2626
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2627 2628 2629 2630 2631 2632 2633 2634 2635
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2636
				if (i <= *classzone_idx)
2637
					balanced += zone->present_pages;
2638
			}
2639

L
Linus Torvalds 已提交
2640
		}
2641
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2642 2643 2644 2645 2646
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2647 2648 2649 2650 2651 2652
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2653 2654 2655 2656 2657 2658 2659

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2660
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2661 2662 2663
			break;
	}
out:
2664 2665 2666

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2667 2668
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2669
	 */
2670
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2671
		cond_resched();
2672 2673 2674

		try_to_freeze();

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2692 2693 2694
		goto loop_again;
	}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
	}

2725 2726 2727 2728 2729 2730
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2731
	*classzone_idx = end_zone;
2732
	return order;
L
Linus Torvalds 已提交
2733 2734
}

2735
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2746
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2747 2748 2749 2750 2751 2752 2753 2754 2755
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2756
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2779 2780
/*
 * The background pageout daemon, started as a kernel thread
2781
 * from the init process.
L
Linus Torvalds 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2794 2795
	unsigned long order, new_order;
	int classzone_idx, new_classzone_idx;
L
Linus Torvalds 已提交
2796 2797
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2798

L
Linus Torvalds 已提交
2799 2800 2801
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2802
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2803

2804 2805
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2806
	if (!cpumask_empty(cpumask))
2807
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2822
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2823
	set_freezable();
L
Linus Torvalds 已提交
2824

2825 2826
	order = new_order = 0;
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2827
	for ( ; ; ) {
2828
		int ret;
2829

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
		if (classzone_idx >= new_classzone_idx && order == new_order) {
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2842
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2843 2844
			/*
			 * Don't sleep if someone wants a larger 'order'
2845
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2846 2847
			 */
			order = new_order;
2848
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2849
		} else {
2850
			kswapd_try_to_sleep(pgdat, order, classzone_idx);
L
Linus Torvalds 已提交
2851
			order = pgdat->kswapd_max_order;
2852
			classzone_idx = pgdat->classzone_idx;
2853
			pgdat->kswapd_max_order = 0;
2854
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2855 2856
		}

2857 2858 2859 2860 2861 2862 2863 2864
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2865 2866
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2867
			order = balance_pgdat(pgdat, order, &classzone_idx);
2868
		}
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874 2875
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2876
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2877 2878 2879
{
	pg_data_t *pgdat;

2880
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2881 2882
		return;

2883
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2884
		return;
2885
	pgdat = zone->zone_pgdat;
2886
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2887
		pgdat->kswapd_max_order = order;
2888 2889
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2890
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2891
		return;
2892 2893 2894 2895
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2896
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2897 2898
}

2899 2900 2901 2902 2903 2904 2905 2906
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2907
{
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2932 2933
}

2934
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2935
/*
2936
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2937 2938 2939 2940 2941
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2942
 */
2943
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2944
{
2945 2946
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2947 2948 2949
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2950
		.may_writepage = 1,
2951 2952 2953
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
2954
	};
2955 2956 2957 2958
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2959 2960
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2961

2962 2963 2964 2965
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2966

2967
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2968

2969 2970 2971
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2972

2973
	return nr_reclaimed;
L
Linus Torvalds 已提交
2974
}
2975
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2976 2977 2978 2979 2980

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2981
static int __devinit cpu_callback(struct notifier_block *nfb,
2982
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2983
{
2984
	int nid;
L
Linus Torvalds 已提交
2985

2986
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2987
		for_each_node_state(nid, N_HIGH_MEMORY) {
2988
			pg_data_t *pgdat = NODE_DATA(nid);
2989 2990 2991
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2992

2993
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2994
				/* One of our CPUs online: restore mask */
2995
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2996 2997 2998 2999 3000
		}
	}
	return NOTIFY_OK;
}

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3034 3035
static int __init kswapd_init(void)
{
3036
	int nid;
3037

L
Linus Torvalds 已提交
3038
	swap_setup();
3039
	for_each_node_state(nid, N_HIGH_MEMORY)
3040
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3041 3042 3043 3044 3045
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3056
#define RECLAIM_OFF 0
3057
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3058 3059 3060
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3061 3062 3063 3064 3065 3066 3067
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3068 3069 3070 3071 3072 3073
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3074 3075 3076 3077 3078 3079
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3122 3123 3124
/*
 * Try to free up some pages from this zone through reclaim.
 */
3125
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3126
{
3127
	/* Minimum pages needed in order to stay on node */
3128
	const unsigned long nr_pages = 1 << order;
3129 3130
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3131
	int priority;
3132 3133
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3134
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3135
		.may_swap = 1,
3136 3137
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3138
		.gfp_mask = gfp_mask,
3139
		.order = order,
3140
	};
3141 3142 3143
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3144
	unsigned long nr_slab_pages0, nr_slab_pages1;
3145 3146

	cond_resched();
3147 3148 3149 3150 3151 3152
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3153
	lockdep_set_current_reclaim_state(gfp_mask);
3154 3155
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3156

3157
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3158 3159 3160 3161 3162 3163
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3164
			shrink_zone(priority, zone, &sc);
3165
			priority--;
3166
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3167
	}
3168

3169 3170
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3171
		/*
3172
		 * shrink_slab() does not currently allow us to determine how
3173 3174 3175 3176
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3177
		 *
3178 3179
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3180
		 */
3181 3182 3183 3184
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3185
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3186 3187 3188 3189 3190 3191 3192 3193
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3194 3195 3196 3197 3198

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3199 3200 3201
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3202 3203
	}

3204
	p->reclaim_state = NULL;
3205
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3206
	lockdep_clear_current_reclaim_state();
3207
	return sc.nr_reclaimed >= nr_pages;
3208
}
3209 3210 3211 3212

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3213
	int ret;
3214 3215

	/*
3216 3217
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3218
	 *
3219 3220 3221 3222 3223
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3224
	 */
3225 3226
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3227
		return ZONE_RECLAIM_FULL;
3228

3229
	if (zone->all_unreclaimable)
3230
		return ZONE_RECLAIM_FULL;
3231

3232
	/*
3233
	 * Do not scan if the allocation should not be delayed.
3234
	 */
3235
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3236
		return ZONE_RECLAIM_NOSCAN;
3237 3238 3239 3240 3241 3242 3243

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3244
	node_id = zone_to_nid(zone);
3245
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3246
		return ZONE_RECLAIM_NOSCAN;
3247 3248

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3249 3250
		return ZONE_RECLAIM_NOSCAN;

3251 3252 3253
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3254 3255 3256
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3257
	return ret;
3258
}
3259
#endif
L
Lee Schermerhorn 已提交
3260 3261 3262 3263 3264 3265 3266

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3267 3268
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3269 3270
 *
 * Reasons page might not be evictable:
3271
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3272
 * (2) page is part of an mlocked VMA
3273
 *
L
Lee Schermerhorn 已提交
3274 3275 3276 3277
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3278 3279 3280
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3281 3282
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3283 3284 3285

	return 1;
}
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3305
		enum lru_list l = page_lru_base_type(page);
3306

3307 3308
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
3309
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3310 3311 3312 3313 3314 3315 3316 3317
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
3318
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3390
static void scan_zone_unevictable_pages(struct zone *zone)
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
3432
static void scan_all_zones_unevictable_pages(void)
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3448
			   void __user *buffer,
3449 3450
			   size_t *length, loff_t *ppos)
{
3451
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3452 3453 3454 3455 3456 3457 3458 3459

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

3460
#ifdef CONFIG_NUMA
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}
3507
#endif