vmscan.c 51.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	unsigned long nr_mapped;	/* From page_state */

	/* This context's GFP mask */
A
Al Viro 已提交
61
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
62 63 64

	int may_writepage;

65 66 67
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

L
Linus Torvalds 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
	 * In this context, it doesn't matter that we scan the
	 * whole list at once. */
	int swap_cluster_max;
};

/*
 * The list of shrinker callbacks used by to apply pressure to
 * ageable caches.
 */
struct shrinker {
	shrinker_t		shrinker;
	struct list_head	list;
	int			seeks;	/* seeks to recreate an obj */
	long			nr;	/* objs pending delete */
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
static long total_memory;

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

/*
 * Add a shrinker callback to be called from the vm
 */
struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
{
        struct shrinker *shrinker;

        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
        if (shrinker) {
	        shrinker->shrinker = theshrinker;
	        shrinker->seeks = seeks;
	        shrinker->nr = 0;
	        down_write(&shrinker_rwsem);
	        list_add_tail(&shrinker->list, &shrinker_list);
	        up_write(&shrinker_rwsem);
	}
	return shrinker;
}
EXPORT_SYMBOL(set_shrinker);

/*
 * Remove one
 */
void remove_shrinker(struct shrinker *shrinker)
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
	kfree(shrinker);
}
EXPORT_SYMBOL(remove_shrinker);

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
 * If the vm encounted mapped pages on the LRU it increase the pressure on
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
174 175
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
176
 */
177 178
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
179 180
{
	struct shrinker *shrinker;
181
	unsigned long ret = 0;
L
Linus Torvalds 已提交
182 183 184 185 186

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
187
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
188 189 190 191

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
192
		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
L
Linus Torvalds 已提交
193 194

		delta = (4 * scanned) / shrinker->seeks;
195
		delta *= max_pass;
L
Linus Torvalds 已提交
196 197
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
198 199 200 201 202 203 204 205 206 207 208 209 210
		if (shrinker->nr < 0) {
			printk(KERN_ERR "%s: nr=%ld\n",
					__FUNCTION__, shrinker->nr);
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
211 212 213 214 215 216 217

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
218
			int nr_before;
L
Linus Torvalds 已提交
219

220
			nr_before = (*shrinker->shrinker)(0, gfp_mask);
L
Linus Torvalds 已提交
221 222 223
			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
			if (shrink_ret == -1)
				break;
224 225
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234
			mod_page_state(slabs_scanned, this_scan);
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
235
	return ret;
L
Linus Torvalds 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
}

/* Called without lock on whether page is mapped, so answer is unstable */
static inline int page_mapping_inuse(struct page *page)
{
	struct address_space *mapping;

	/* Page is in somebody's page tables. */
	if (page_mapped(page))
		return 1;

	/* Be more reluctant to reclaim swapcache than pagecache */
	if (PageSwapCache(page))
		return 1;

	mapping = page_mapping(page);
	if (!mapping)
		return 0;

	/* File is mmap'd by somebody? */
	return mapping_mapped(mapping);
}

static inline int is_page_cache_freeable(struct page *page)
{
	return page_count(page) - !!PagePrivate(page) == 2;
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
266
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
	if (page_mapping(page) == mapping) {
		if (error == -ENOSPC)
			set_bit(AS_ENOSPC, &mapping->flags);
		else
			set_bit(AS_EIO, &mapping->flags);
	}
	unlock_page(page);
}

/*
 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
 */
static pageout_t pageout(struct page *page, struct address_space *mapping)
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
	 * If this process is currently in generic_file_write() against
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 * See swapfile.c:page_queue_congested().
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
329
		if (PagePrivate(page)) {
L
Linus Torvalds 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
				printk("%s: orphaned page\n", __FUNCTION__);
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
356
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}

		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
static int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (!mapping)
		return 0;		/* truncate got there first */

	write_lock_irq(&mapping->tree_lock);

	/*
	 * The non-racy check for busy page.  It is critical to check
	 * PageDirty _after_ making sure that the page is freeable and
	 * not in use by anybody. 	(pagecache + us == 2)
	 */
	if (unlikely(page_count(page) != 2))
		goto cannot_free;
	smp_rmb();
	if (unlikely(PageDirty(page)))
		goto cannot_free;

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
		write_unlock_irq(&mapping->tree_lock);
		swap_free(swap);
		__put_page(page);	/* The pagecache ref */
		return 1;
	}

	__remove_from_page_cache(page);
	write_unlock_irq(&mapping->tree_lock);
	__put_page(page);
	return 1;

cannot_free:
	write_unlock_irq(&mapping->tree_lock);
	return 0;
}

L
Linus Torvalds 已提交
408
/*
409
 * shrink_list return the number of reclaimed pages
L
Linus Torvalds 已提交
410
 */
411 412
static unsigned long shrink_list(struct list_head *page_list,
				struct scan_control *sc)
L
Linus Torvalds 已提交
413 414 415 416
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
417
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
		int referenced;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

		if (TestSetPageLocked(page))
			goto keep;

		BUG_ON(PageActive(page));

		sc->nr_scanned++;
439 440 441 442

		if (!sc->may_swap && page_mapped(page))
			goto keep_locked;

L
Linus Torvalds 已提交
443 444 445 446 447 448 449
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

		if (PageWriteback(page))
			goto keep_locked;

450
		referenced = page_referenced(page, 1);
L
Linus Torvalds 已提交
451 452 453 454 455 456 457 458 459
		/* In active use or really unfreeable?  Activate it. */
		if (referenced && page_mapping_inuse(page))
			goto activate_locked;

#ifdef CONFIG_SWAP
		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
460
		if (PageAnon(page) && !PageSwapCache(page)) {
461 462
			if (!sc->may_swap)
				goto keep_locked;
463
			if (!add_to_swap(page, GFP_ATOMIC))
L
Linus Torvalds 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476
				goto activate_locked;
		}
#endif /* CONFIG_SWAP */

		mapping = page_mapping(page);
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
477 478 479 480 481 482
			/*
			 * No unmapping if we do not swap
			 */
			if (!sc->may_swap)
				goto keep_locked;

483
			switch (try_to_unmap(page, 0)) {
L
Linus Torvalds 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
			if (referenced)
				goto keep_locked;
			if (!may_enter_fs)
				goto keep_locked;
498
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
				goto keep_locked;

			/* Page is dirty, try to write it out here */
			switch(pageout(page, mapping)) {
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
				if (PageWriteback(page) || PageDirty(page))
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
				if (TestSetPageLocked(page))
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
		 * will do this, as well as the blockdev mapping. 
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
		if (PagePrivate(page)) {
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
			if (!mapping && page_count(page) == 1)
				goto free_it;
		}

552 553
		if (!remove_mapping(mapping, page))
			goto keep_locked;
L
Linus Torvalds 已提交
554 555 556

free_it:
		unlock_page(page);
557
		nr_reclaimed++;
L
Linus Torvalds 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
		if (!pagevec_add(&freed_pvec, page))
			__pagevec_release_nonlru(&freed_pvec);
		continue;

activate_locked:
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
		BUG_ON(PageLRU(page));
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
		__pagevec_release_nonlru(&freed_pvec);
	mod_page_state(pgactivate, pgactivate);
575
	return nr_reclaimed;
L
Linus Torvalds 已提交
576 577
}

578
#ifdef CONFIG_MIGRATION
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static inline void move_to_lru(struct page *page)
{
	list_del(&page->lru);
	if (PageActive(page)) {
		/*
		 * lru_cache_add_active checks that
		 * the PG_active bit is off.
		 */
		ClearPageActive(page);
		lru_cache_add_active(page);
	} else {
		lru_cache_add(page);
	}
	put_page(page);
}

/*
596
 * Add isolated pages on the list back to the LRU.
597 598 599
 *
 * returns the number of pages put back.
 */
600
unsigned long putback_lru_pages(struct list_head *l)
601 602 603
{
	struct page *page;
	struct page *page2;
604
	unsigned long count = 0;
605 606 607 608 609 610 611 612

	list_for_each_entry_safe(page, page2, l, lru) {
		move_to_lru(page);
		count++;
	}
	return count;
}

613 614 615 616 617 618 619 620 621
/*
 * Non migratable page
 */
int fail_migrate_page(struct page *newpage, struct page *page)
{
	return -EIO;
}
EXPORT_SYMBOL(fail_migrate_page);

622 623 624 625 626 627 628 629 630
/*
 * swapout a single page
 * page is locked upon entry, unlocked on exit
 */
static int swap_page(struct page *page)
{
	struct address_space *mapping = page_mapping(page);

	if (page_mapped(page) && mapping)
631
		if (try_to_unmap(page, 1) != SWAP_SUCCESS)
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
			goto unlock_retry;

	if (PageDirty(page)) {
		/* Page is dirty, try to write it out here */
		switch(pageout(page, mapping)) {
		case PAGE_KEEP:
		case PAGE_ACTIVATE:
			goto unlock_retry;

		case PAGE_SUCCESS:
			goto retry;

		case PAGE_CLEAN:
			; /* try to free the page below */
		}
	}

	if (PagePrivate(page)) {
		if (!try_to_release_page(page, GFP_KERNEL) ||
		    (!mapping && page_count(page) == 1))
			goto unlock_retry;
	}

	if (remove_mapping(mapping, page)) {
		/* Success */
		unlock_page(page);
		return 0;
	}

unlock_retry:
	unlock_page(page);

retry:
665
	return -EAGAIN;
666
}
667
EXPORT_SYMBOL(swap_page);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

/*
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
 * Christoph Lameter <clameter@sgi.com>
 */

/*
 * Remove references for a page and establish the new page with the correct
 * basic settings to be able to stop accesses to the page.
 */
683
int migrate_page_remove_references(struct page *newpage,
684 685 686 687 688 689 690 691 692 693 694
				struct page *page, int nr_refs)
{
	struct address_space *mapping = page_mapping(page);
	struct page **radix_pointer;

	/*
	 * Avoid doing any of the following work if the page count
	 * indicates that the page is in use or truncate has removed
	 * the page.
	 */
	if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
695
		return -EAGAIN;
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

	/*
	 * Establish swap ptes for anonymous pages or destroy pte
	 * maps for files.
	 *
	 * In order to reestablish file backed mappings the fault handlers
	 * will take the radix tree_lock which may then be used to stop
  	 * processses from accessing this page until the new page is ready.
	 *
	 * A process accessing via a swap pte (an anonymous page) will take a
	 * page_lock on the old page which will block the process until the
	 * migration attempt is complete. At that time the PageSwapCache bit
	 * will be examined. If the page was migrated then the PageSwapCache
	 * bit will be clear and the operation to retrieve the page will be
	 * retried which will find the new page in the radix tree. Then a new
	 * direct mapping may be generated based on the radix tree contents.
	 *
	 * If the page was not migrated then the PageSwapCache bit
	 * is still set and the operation may continue.
	 */
716 717 718
	if (try_to_unmap(page, 1) == SWAP_FAIL)
		/* A vma has VM_LOCKED set -> Permanent failure */
		return -EPERM;
719 720 721 722 723

	/*
	 * Give up if we were unable to remove all mappings.
	 */
	if (page_mapcount(page))
724
		return -EAGAIN;
725 726 727 728 729 730 731 732 733 734

	write_lock_irq(&mapping->tree_lock);

	radix_pointer = (struct page **)radix_tree_lookup_slot(
						&mapping->page_tree,
						page_index(page));

	if (!page_mapping(page) || page_count(page) != nr_refs ||
			*radix_pointer != page) {
		write_unlock_irq(&mapping->tree_lock);
735
		return -EAGAIN;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	}

	/*
	 * Now we know that no one else is looking at the page.
	 *
	 * Certain minimal information about a page must be available
	 * in order for other subsystems to properly handle the page if they
	 * find it through the radix tree update before we are finished
	 * copying the page.
	 */
	get_page(newpage);
	newpage->index = page->index;
	newpage->mapping = page->mapping;
	if (PageSwapCache(page)) {
		SetPageSwapCache(newpage);
		set_page_private(newpage, page_private(page));
	}

	*radix_pointer = newpage;
	__put_page(page);
	write_unlock_irq(&mapping->tree_lock);

	return 0;
}
760
EXPORT_SYMBOL(migrate_page_remove_references);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

/*
 * Copy the page to its new location
 */
void migrate_page_copy(struct page *newpage, struct page *page)
{
	copy_highpage(newpage, page);

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
	if (PageActive(page))
		SetPageActive(newpage);
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

	if (PageDirty(page)) {
		clear_page_dirty_for_io(page);
		set_page_dirty(newpage);
 	}

	ClearPageSwapCache(page);
	ClearPageActive(page);
	ClearPagePrivate(page);
	set_page_private(page, 0);
	page->mapping = NULL;

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
}
800
EXPORT_SYMBOL(migrate_page_copy);
801 802 803 804 805 806 807 808 809

/*
 * Common logic to directly migrate a single page suitable for
 * pages that do not use PagePrivate.
 *
 * Pages are locked upon entry and exit.
 */
int migrate_page(struct page *newpage, struct page *page)
{
810 811
	int rc;

812 813
	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

814 815 816 817
	rc = migrate_page_remove_references(newpage, page, 2);

	if (rc)
		return rc;
818 819 820

	migrate_page_copy(newpage, page);

821 822 823 824 825 826 827 828 829
	/*
	 * Remove auxiliary swap entries and replace
	 * them with real ptes.
	 *
	 * Note that a real pte entry will allow processes that are not
	 * waiting on the page lock to use the new page via the page tables
	 * before the new page is unlocked.
	 */
	remove_from_swap(newpage);
830 831
	return 0;
}
832
EXPORT_SYMBOL(migrate_page);
833

834 835 836 837 838 839 840 841 842 843
/*
 * migrate_pages
 *
 * Two lists are passed to this function. The first list
 * contains the pages isolated from the LRU to be migrated.
 * The second list contains new pages that the pages isolated
 * can be moved to. If the second list is NULL then all
 * pages are swapped out.
 *
 * The function returns after 10 attempts or if no pages
844
 * are movable anymore because to has become empty
845 846
 * or no retryable pages exist anymore.
 *
847
 * Return: Number of pages not migrated when "to" ran empty.
848
 */
849
unsigned long migrate_pages(struct list_head *from, struct list_head *to,
850
		  struct list_head *moved, struct list_head *failed)
851
{
852 853
	unsigned long retry;
	unsigned long nr_failed = 0;
854 855 856 857
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
858
	int rc;
859 860 861 862 863 864 865

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

redo:
	retry = 0;

866
	list_for_each_entry_safe(page, page2, from, lru) {
867 868 869
		struct page *newpage = NULL;
		struct address_space *mapping;

870 871
		cond_resched();

872 873
		rc = 0;
		if (page_count(page) == 1)
874
			/* page was freed from under us. So we are done. */
875 876
			goto next;

877 878 879
		if (to && list_empty(to))
			break;

880 881
		/*
		 * Skip locked pages during the first two passes to give the
882 883 884
		 * functions holding the lock time to release the page. Later we
		 * use lock_page() to have a higher chance of acquiring the
		 * lock.
885
		 */
886
		rc = -EAGAIN;
887 888 889 890
		if (pass > 2)
			lock_page(page);
		else
			if (TestSetPageLocked(page))
891
				goto next;
892 893 894 895 896

		/*
		 * Only wait on writeback if we have already done a pass where
		 * we we may have triggered writeouts for lots of pages.
		 */
897
		if (pass > 0) {
898
			wait_on_page_writeback(page);
899
		} else {
900 901
			if (PageWriteback(page))
				goto unlock_page;
902
		}
903

904 905 906 907 908
		/*
		 * Anonymous pages must have swap cache references otherwise
		 * the information contained in the page maps cannot be
		 * preserved.
		 */
909
		if (PageAnon(page) && !PageSwapCache(page)) {
910
			if (!add_to_swap(page, GFP_KERNEL)) {
911 912
				rc = -ENOMEM;
				goto unlock_page;
913 914 915
			}
		}

916 917 918 919 920 921 922 923
		if (!to) {
			rc = swap_page(page);
			goto next;
		}

		newpage = lru_to_page(to);
		lock_page(newpage);

924
		/*
925
		 * Pages are properly locked and writeback is complete.
926 927
		 * Try to migrate the page.
		 */
928 929 930 931
		mapping = page_mapping(page);
		if (!mapping)
			goto unlock_both;

932
		if (mapping->a_ops->migratepage) {
933 934 935 936 937 938 939
			/*
			 * Most pages have a mapping and most filesystems
			 * should provide a migration function. Anonymous
			 * pages are part of swap space which also has its
			 * own migration function. This is the most common
			 * path for page migration.
			 */
940 941 942 943
			rc = mapping->a_ops->migratepage(newpage, page);
			goto unlock_both;
                }

944
		/*
945 946 947
		 * Default handling if a filesystem does not provide
		 * a migration function. We can only migrate clean
		 * pages so try to write out any dirty pages first.
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
		 */
		if (PageDirty(page)) {
			switch (pageout(page, mapping)) {
			case PAGE_KEEP:
			case PAGE_ACTIVATE:
				goto unlock_both;

			case PAGE_SUCCESS:
				unlock_page(newpage);
				goto next;

			case PAGE_CLEAN:
				; /* try to migrate the page below */
			}
                }
963

964
		/*
965 966
		 * Buffers are managed in a filesystem specific way.
		 * We must have no buffers or drop them.
967 968 969 970 971 972 973 974 975 976 977 978 979 980
		 */
		if (!page_has_buffers(page) ||
		    try_to_release_page(page, GFP_KERNEL)) {
			rc = migrate_page(newpage, page);
			goto unlock_both;
		}

		/*
		 * On early passes with mapped pages simply
		 * retry. There may be a lock held for some
		 * buffers that may go away. Later
		 * swap them out.
		 */
		if (pass > 4) {
981 982 983 984 985
			/*
			 * Persistently unable to drop buffers..... As a
			 * measure of last resort we fall back to
			 * swap_page().
			 */
986 987 988 989 990 991 992 993
			unlock_page(newpage);
			newpage = NULL;
			rc = swap_page(page);
			goto next;
		}

unlock_both:
		unlock_page(newpage);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

unlock_page:
		unlock_page(page);

next:
		if (rc == -EAGAIN) {
			retry++;
		} else if (rc) {
			/* Permanent failure */
			list_move(&page->lru, failed);
			nr_failed++;
		} else {
1006 1007 1008 1009
			if (newpage) {
				/* Successful migration. Return page to LRU */
				move_to_lru(newpage);
			}
1010 1011
			list_move(&page->lru, moved);
		}
1012 1013 1014 1015 1016 1017 1018 1019 1020
	}
	if (retry && pass++ < 10)
		goto redo;

	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

	return nr_failed + retry;
}
1021 1022 1023

/*
 * Isolate one page from the LRU lists and put it on the
1024
 * indicated list with elevated refcount.
1025 1026 1027 1028 1029 1030 1031
 *
 * Result:
 *  0 = page not on LRU list
 *  1 = page removed from LRU list and added to the specified list.
 */
int isolate_lru_page(struct page *page)
{
1032
	int ret = 0;
1033

1034 1035 1036
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
N
Nick Piggin 已提交
1037
		if (PageLRU(page)) {
1038 1039
			ret = 1;
			get_page(page);
N
Nick Piggin 已提交
1040
			ClearPageLRU(page);
1041 1042 1043 1044 1045 1046
			if (PageActive(page))
				del_page_from_active_list(zone, page);
			else
				del_page_from_inactive_list(zone, page);
		}
		spin_unlock_irq(&zone->lru_lock);
1047
	}
1048 1049

	return ret;
1050
}
1051
#endif
1052

L
Linus Torvalds 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
 *
 * returns how many pages were moved onto *@dst.
 */
1070 1071 1072
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
		unsigned long *scanned)
L
Linus Torvalds 已提交
1073
{
1074
	unsigned long nr_taken = 0;
L
Linus Torvalds 已提交
1075
	struct page *page;
1076
	unsigned long scan = 0;
L
Linus Torvalds 已提交
1077 1078

	while (scan++ < nr_to_scan && !list_empty(src)) {
1079
		struct list_head *target;
L
Linus Torvalds 已提交
1080 1081 1082
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1083 1084
		BUG_ON(!PageLRU(page));

1085
		list_del(&page->lru);
1086 1087
		target = src;
		if (likely(get_page_unless_zero(page))) {
1088
			/*
1089 1090 1091
			 * Be careful not to clear PageLRU until after we're
			 * sure the page is not being freed elsewhere -- the
			 * page release code relies on it.
1092
			 */
1093 1094 1095 1096
			ClearPageLRU(page);
			target = dst;
			nr_taken++;
		} /* else it is being freed elsewhere */
1097

1098
		list_add(&page->lru, target);
L
Linus Torvalds 已提交
1099 1100 1101 1102 1103 1104 1105
	}

	*scanned = scan;
	return nr_taken;
}

/*
1106
 * shrink_cache() return the number of reclaimed pages
L
Linus Torvalds 已提交
1107
 */
1108 1109
static unsigned long shrink_cache(unsigned long max_scan, struct zone *zone,
				struct scan_control *sc)
L
Linus Torvalds 已提交
1110 1111 1112
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
1113
	unsigned long nr_scanned = 0;
1114
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1115 1116 1117 1118 1119

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1120
	do {
L
Linus Torvalds 已提交
1121
		struct page *page;
1122 1123 1124
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
L
Linus Torvalds 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
					     &zone->inactive_list,
					     &page_list, &nr_scan);
		zone->nr_inactive -= nr_taken;
		zone->pages_scanned += nr_scan;
		spin_unlock_irq(&zone->lru_lock);

		if (nr_taken == 0)
			goto done;

1136
		nr_scanned += nr_scan;
L
Linus Torvalds 已提交
1137
		nr_freed = shrink_list(&page_list, sc);
1138
		nr_reclaimed += nr_freed;
N
Nick Piggin 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147
		local_irq_disable();
		if (current_is_kswapd()) {
			__mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
			__mod_page_state(kswapd_steal, nr_freed);
		} else
			__mod_page_state_zone(zone, pgscan_direct, nr_scan);
		__mod_page_state_zone(zone, pgsteal, nr_freed);

		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
1153 1154
			BUG_ON(PageLRU(page));
			SetPageLRU(page);
L
Linus Torvalds 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
			list_del(&page->lru);
			if (PageActive(page))
				add_page_to_active_list(zone, page);
			else
				add_page_to_inactive_list(zone, page);
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
1166
  	} while (nr_scanned < max_scan);
L
Linus Torvalds 已提交
1167 1168 1169
	spin_unlock_irq(&zone->lru_lock);
done:
	pagevec_release(&pvec);
1170
	return nr_reclaimed;
L
Linus Torvalds 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
static void
1191 1192
refill_inactive_zone(unsigned long nr_pages, struct zone *zone,
			struct scan_control *sc)
L
Linus Torvalds 已提交
1193
{
1194
	unsigned long pgmoved;
L
Linus Torvalds 已提交
1195
	int pgdeactivate = 0;
1196
	unsigned long pgscanned;
L
Linus Torvalds 已提交
1197 1198 1199 1200 1201 1202
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
	struct page *page;
	struct pagevec pvec;
	int reclaim_mapped = 0;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

	if (unlikely(sc->may_swap)) {
		long mapped_ratio;
		long distress;
		long swap_tendency;

		/*
		 * `distress' is a measure of how much trouble we're having
		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
		 */
		distress = 100 >> zone->prev_priority;

		/*
		 * The point of this algorithm is to decide when to start
		 * reclaiming mapped memory instead of just pagecache.  Work out
		 * how much memory
		 * is mapped.
		 */
		mapped_ratio = (sc->nr_mapped * 100) / total_memory;

		/*
		 * Now decide how much we really want to unmap some pages.  The
		 * mapped ratio is downgraded - just because there's a lot of
		 * mapped memory doesn't necessarily mean that page reclaim
		 * isn't succeeding.
		 *
		 * The distress ratio is important - we don't want to start
		 * going oom.
		 *
		 * A 100% value of vm_swappiness overrides this algorithm
		 * altogether.
		 */
		swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;

		/*
		 * Now use this metric to decide whether to start moving mapped
		 * memory onto the inactive list.
		 */
		if (swap_tendency >= 100)
			reclaim_mapped = 1;
	}
L
Linus Torvalds 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
				    &l_hold, &pgscanned);
	zone->pages_scanned += pgscanned;
	zone->nr_active -= pgmoved;
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
		if (page_mapped(page)) {
			if (!reclaim_mapped ||
			    (total_swap_pages == 0 && PageAnon(page)) ||
1260
			    page_referenced(page, 0)) {
L
Linus Torvalds 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
				list_add(&page->lru, &l_active);
				continue;
			}
		}
		list_add(&page->lru, &l_inactive);
	}

	pagevec_init(&pvec, 1);
	pgmoved = 0;
	spin_lock_irq(&zone->lru_lock);
	while (!list_empty(&l_inactive)) {
		page = lru_to_page(&l_inactive);
		prefetchw_prev_lru_page(page, &l_inactive, flags);
N
Nick Piggin 已提交
1274 1275
		BUG_ON(PageLRU(page));
		SetPageLRU(page);
N
Nick Piggin 已提交
1276 1277 1278
		BUG_ON(!PageActive(page));
		ClearPageActive(page);

L
Linus Torvalds 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		list_move(&page->lru, &zone->inactive_list);
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
			zone->nr_inactive += pgmoved;
			spin_unlock_irq(&zone->lru_lock);
			pgdeactivate += pgmoved;
			pgmoved = 0;
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	zone->nr_inactive += pgmoved;
	pgdeactivate += pgmoved;
	if (buffer_heads_over_limit) {
		spin_unlock_irq(&zone->lru_lock);
		pagevec_strip(&pvec);
		spin_lock_irq(&zone->lru_lock);
	}

	pgmoved = 0;
	while (!list_empty(&l_active)) {
		page = lru_to_page(&l_active);
		prefetchw_prev_lru_page(page, &l_active, flags);
N
Nick Piggin 已提交
1304 1305
		BUG_ON(PageLRU(page));
		SetPageLRU(page);
L
Linus Torvalds 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		BUG_ON(!PageActive(page));
		list_move(&page->lru, &zone->active_list);
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
			zone->nr_active += pgmoved;
			pgmoved = 0;
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	zone->nr_active += pgmoved;
N
Nick Piggin 已提交
1318 1319 1320 1321 1322
	spin_unlock(&zone->lru_lock);

	__mod_page_state_zone(zone, pgrefill, pgscanned);
	__mod_page_state(pgdeactivate, pgdeactivate);
	local_irq_enable();
L
Linus Torvalds 已提交
1323

N
Nick Piggin 已提交
1324
	pagevec_release(&pvec);
L
Linus Torvalds 已提交
1325 1326 1327 1328 1329
}

/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1330 1331
static unsigned long shrink_zone(int priority, struct zone *zone,
				struct scan_control *sc)
L
Linus Torvalds 已提交
1332 1333 1334
{
	unsigned long nr_active;
	unsigned long nr_inactive;
1335
	unsigned long nr_to_scan;
1336
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1337

1338 1339
	atomic_inc(&zone->reclaim_in_progress);

L
Linus Torvalds 已提交
1340 1341 1342 1343
	/*
	 * Add one to `nr_to_scan' just to make sure that the kernel will
	 * slowly sift through the active list.
	 */
1344
	zone->nr_scan_active += (zone->nr_active >> priority) + 1;
L
Linus Torvalds 已提交
1345 1346 1347 1348 1349 1350
	nr_active = zone->nr_scan_active;
	if (nr_active >= sc->swap_cluster_max)
		zone->nr_scan_active = 0;
	else
		nr_active = 0;

1351
	zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
L
Linus Torvalds 已提交
1352 1353 1354 1355 1356 1357 1358 1359
	nr_inactive = zone->nr_scan_inactive;
	if (nr_inactive >= sc->swap_cluster_max)
		zone->nr_scan_inactive = 0;
	else
		nr_inactive = 0;

	while (nr_active || nr_inactive) {
		if (nr_active) {
1360
			nr_to_scan = min(nr_active,
L
Linus Torvalds 已提交
1361
					(unsigned long)sc->swap_cluster_max);
1362 1363
			nr_active -= nr_to_scan;
			refill_inactive_zone(nr_to_scan, zone, sc);
L
Linus Torvalds 已提交
1364 1365 1366
		}

		if (nr_inactive) {
1367
			nr_to_scan = min(nr_inactive,
L
Linus Torvalds 已提交
1368
					(unsigned long)sc->swap_cluster_max);
1369
			nr_inactive -= nr_to_scan;
1370
			nr_reclaimed += shrink_cache(nr_to_scan, zone, sc);
L
Linus Torvalds 已提交
1371 1372 1373 1374
		}
	}

	throttle_vm_writeout();
1375 1376

	atomic_dec(&zone->reclaim_in_progress);
1377
	return nr_reclaimed;
L
Linus Torvalds 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * We reclaim from a zone even if that zone is over pages_high.  Because:
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
 * b) The zones may be over pages_high but they must go *over* pages_high to
 *    satisfy the `incremental min' zone defense algorithm.
 *
 * Returns the number of reclaimed pages.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1396 1397
static unsigned long shrink_caches(int priority, struct zone **zones,
					struct scan_control *sc)
L
Linus Torvalds 已提交
1398
{
1399
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1400 1401 1402 1403 1404
	int i;

	for (i = 0; zones[i] != NULL; i++) {
		struct zone *zone = zones[i];

1405
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1406 1407
			continue;

1408
		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
1409 1410
			continue;

1411 1412 1413
		zone->temp_priority = priority;
		if (zone->prev_priority > priority)
			zone->prev_priority = priority;
L
Linus Torvalds 已提交
1414

1415
		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
1416 1417
			continue;	/* Let kswapd poll it */

1418
		nr_reclaimed += shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1419
	}
1420
	return nr_reclaimed;
L
Linus Torvalds 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
}
 
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
 * caller can't do much about.  We kick pdflush and take explicit naps in the
 * hope that some of these pages can be written.  But if the allocating task
 * holds filesystem locks which prevent writeout this might not work, and the
 * allocation attempt will fail.
 */
1436
unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1437 1438 1439
{
	int priority;
	int ret = 0;
1440
	unsigned long total_scanned = 0;
1441
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1442 1443 1444
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
	int i;
1445 1446 1447 1448 1449 1450
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
		.swap_cluster_max = SWAP_CLUSTER_MAX,
		.may_swap = 1,
	};
L
Linus Torvalds 已提交
1451 1452 1453 1454 1455 1456

	inc_page_state(allocstall);

	for (i = 0; zones[i] != NULL; i++) {
		struct zone *zone = zones[i];

1457
		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466
			continue;

		zone->temp_priority = DEF_PRIORITY;
		lru_pages += zone->nr_active + zone->nr_inactive;
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		sc.nr_mapped = read_page_state(nr_mapped);
		sc.nr_scanned = 0;
1467 1468
		if (!priority)
			disable_swap_token();
1469
		nr_reclaimed += shrink_caches(priority, zones, &sc);
L
Linus Torvalds 已提交
1470 1471
		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
		if (reclaim_state) {
1472
			nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
1473 1474 1475
			reclaim_state->reclaimed_slab = 0;
		}
		total_scanned += sc.nr_scanned;
1476
		if (nr_reclaimed >= sc.swap_cluster_max) {
L
Linus Torvalds 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
			ret = 1;
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1488 1489
		if (total_scanned > sc.swap_cluster_max +
					sc.swap_cluster_max / 2) {
1490
			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
L
Linus Torvalds 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
			sc.may_writepage = 1;
		}

		/* Take a nap, wait for some writeback to complete */
		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
			blk_congestion_wait(WRITE, HZ/10);
	}
out:
	for (i = 0; zones[i] != 0; i++) {
		struct zone *zone = zones[i];

1502
		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
			continue;

		zone->prev_priority = zone->temp_priority;
	}
	return ret;
}

/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
 * they are all at pages_high.
 *
 * If `nr_pages' is non-zero then it is the number of pages which are to be
 * reclaimed, regardless of the zone occupancies.  This is a software suspend
 * special.
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 * zones which have free_pages > pages_high, but once a zone is found to have
 * free_pages <= pages_high, we scan that zone and the lower zones regardless
 * of the number of free pages in the lower zones.  This interoperates with
 * the page allocator fallback scheme to ensure that aging of pages is balanced
 * across the zones.
 */
1535 1536
static unsigned long balance_pgdat(pg_data_t *pgdat, unsigned long nr_pages,
				int order)
L
Linus Torvalds 已提交
1537
{
1538
	unsigned long to_free = nr_pages;
L
Linus Torvalds 已提交
1539 1540 1541
	int all_zones_ok;
	int priority;
	int i;
1542
	unsigned long total_scanned;
1543
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
1544
	struct reclaim_state *reclaim_state = current->reclaim_state;
1545 1546 1547 1548 1549
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.may_swap = 1,
		.swap_cluster_max = nr_pages ? nr_pages : SWAP_CLUSTER_MAX,
	};
L
Linus Torvalds 已提交
1550 1551 1552

loop_again:
	total_scanned = 0;
1553
	nr_reclaimed = 0;
1554
	sc.may_writepage = !laptop_mode,
L
Linus Torvalds 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	sc.nr_mapped = read_page_state(nr_mapped);

	inc_page_state(pageoutrun);

	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		zone->temp_priority = DEF_PRIORITY;
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;

1569 1570 1571 1572
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		all_zones_ok = 1;

		if (nr_pages == 0) {
			/*
			 * Scan in the highmem->dma direction for the highest
			 * zone which needs scanning
			 */
			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
				struct zone *zone = pgdat->node_zones + i;

1583
				if (!populated_zone(zone))
L
Linus Torvalds 已提交
1584 1585 1586 1587 1588 1589 1590
					continue;

				if (zone->all_unreclaimable &&
						priority != DEF_PRIORITY)
					continue;

				if (!zone_watermark_ok(zone, order,
R
Rohit Seth 已提交
1591
						zone->pages_high, 0, 0)) {
L
Linus Torvalds 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
					end_zone = i;
					goto scan;
				}
			}
			goto out;
		} else {
			end_zone = pgdat->nr_zones - 1;
		}
scan:
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			lru_pages += zone->nr_active + zone->nr_inactive;
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
1618
			int nr_slab;
L
Linus Torvalds 已提交
1619

1620
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
1621 1622 1623 1624 1625 1626 1627
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			if (nr_pages == 0) {	/* Not software suspend */
				if (!zone_watermark_ok(zone, order,
R
Rohit Seth 已提交
1628
						zone->pages_high, end_zone, 0))
L
Linus Torvalds 已提交
1629 1630 1631 1632 1633 1634
					all_zones_ok = 0;
			}
			zone->temp_priority = priority;
			if (zone->prev_priority > priority)
				zone->prev_priority = priority;
			sc.nr_scanned = 0;
1635
			nr_reclaimed += shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
1636
			reclaim_state->reclaimed_slab = 0;
1637 1638
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
1639
			nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
1640 1641 1642
			total_scanned += sc.nr_scanned;
			if (zone->all_unreclaimable)
				continue;
1643 1644
			if (nr_slab == 0 && zone->pages_scanned >=
				    (zone->nr_active + zone->nr_inactive) * 4)
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651
				zone->all_unreclaimable = 1;
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1652
			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
L
Linus Torvalds 已提交
1653 1654
				sc.may_writepage = 1;
		}
1655
		if (nr_pages && to_free > nr_reclaimed)
L
Linus Torvalds 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
			continue;	/* swsusp: need to do more work */
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
		if (total_scanned && priority < DEF_PRIORITY - 2)
			blk_congestion_wait(WRITE, HZ/10);

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
1672
		if ((nr_reclaimed >= SWAP_CLUSTER_MAX) && !nr_pages)
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
			break;
	}
out:
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		zone->prev_priority = zone->temp_priority;
	}
	if (!all_zones_ok) {
		cond_resched();
		goto loop_again;
	}

1686
	return nr_reclaimed;
L
Linus Torvalds 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
}

/*
 * The background pageout daemon, started as a kernel thread
 * from the init process. 
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
	cpumask_t cpumask;

	daemonize("kswapd%d", pgdat->node_id);
	cpumask = node_to_cpumask(pgdat->node_id);
	if (!cpus_empty(cpumask))
		set_cpus_allowed(tsk, cpumask);
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
1731
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
L
Linus Torvalds 已提交
1732 1733 1734 1735

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
1736 1737

		try_to_freeze();
L
Linus Torvalds 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
			schedule();
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

		balance_pgdat(pgdat, 0, order);
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

1766
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
1767 1768 1769
		return;

	pgdat = zone->zone_pgdat;
R
Rohit Seth 已提交
1770
	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
L
Linus Torvalds 已提交
1771 1772 1773
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
1774
	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
1775
		return;
1776
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
1777
		return;
1778
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
1779 1780 1781 1782 1783 1784 1785
}

#ifdef CONFIG_PM
/*
 * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
 * pages.
 */
1786
unsigned long shrink_all_memory(unsigned long nr_pages)
L
Linus Torvalds 已提交
1787 1788
{
	pg_data_t *pgdat;
1789 1790
	unsigned long nr_to_free = nr_pages;
	unsigned long ret = 0;
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795 1796
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};

	current->reclaim_state = &reclaim_state;
	for_each_pgdat(pgdat) {
1797 1798
		unsigned long freed;

L
Linus Torvalds 已提交
1799 1800 1801
		freed = balance_pgdat(pgdat, nr_to_free, 0);
		ret += freed;
		nr_to_free -= freed;
1802
		if ((long)nr_to_free <= 0)
L
Linus Torvalds 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
			break;
	}
	current->reclaim_state = NULL;
	return ret;
}
#endif

#ifdef CONFIG_HOTPLUG_CPU
/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
static int __devinit cpu_callback(struct notifier_block *nfb,
1816
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
{
	pg_data_t *pgdat;
	cpumask_t mask;

	if (action == CPU_ONLINE) {
		for_each_pgdat(pgdat) {
			mask = node_to_cpumask(pgdat->node_id);
			if (any_online_cpu(mask) != NR_CPUS)
				/* One of our CPUs online: restore mask */
				set_cpus_allowed(pgdat->kswapd, mask);
		}
	}
	return NOTIFY_OK;
}
#endif /* CONFIG_HOTPLUG_CPU */

static int __init kswapd_init(void)
{
	pg_data_t *pgdat;
1836

L
Linus Torvalds 已提交
1837
	swap_setup();
1838 1839 1840 1841 1842 1843 1844
	for_each_pgdat(pgdat) {
		pid_t pid;

		pid = kernel_thread(kswapd, pgdat, CLONE_KERNEL);
		BUG_ON(pid < 0);
		pgdat->kswapd = find_task_by_pid(pid);
	}
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850
	total_memory = nr_free_pagecache_pages();
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 *
 * In the future we may add flags to the mode. However, the page allocator
 * should only have to check that zone_reclaim_mode != 0 before calling
 * zone_reclaim().
 */
int zone_reclaim_mode __read_mostly;

1865 1866 1867 1868
#define RECLAIM_OFF 0
#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1869
#define RECLAIM_SLAB (1<<3)	/* Do a global slab shrink if the zone is out of memory */
1870

1871 1872 1873
/*
 * Mininum time between zone reclaim scans
 */
1874
int zone_reclaim_interval __read_mostly = 30*HZ;
1875 1876 1877 1878 1879 1880 1881 1882

/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

1883 1884 1885
/*
 * Try to free up some pages from this zone through reclaim.
 */
1886
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1887
{
1888
	const unsigned long nr_pages = 1 << order;
1889 1890
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
1891
	int priority;
1892
	unsigned long nr_reclaimed = 0;
1893 1894 1895 1896
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
		.nr_mapped = read_page_state(nr_mapped),
1897 1898
		.swap_cluster_max = max_t(unsigned long, nr_pages,
					SWAP_CLUSTER_MAX),
1899 1900
		.gfp_mask = gfp_mask,
	};
1901 1902 1903

	disable_swap_token();
	cond_resched();
1904 1905 1906 1907 1908 1909
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1910 1911
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
1912

1913 1914 1915 1916
	/*
	 * Free memory by calling shrink zone with increasing priorities
	 * until we have enough memory freed.
	 */
1917
	priority = ZONE_RECLAIM_PRIORITY;
1918
	do {
1919
		nr_reclaimed += shrink_zone(priority, zone, &sc);
1920
		priority--;
1921
	} while (priority >= 0 && nr_reclaimed < nr_pages);
1922

1923
	if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
		/*
		 * shrink_slab does not currently allow us to determine
		 * how many pages were freed in the zone. So we just
		 * shake the slab and then go offnode for a single allocation.
		 *
		 * shrink_slab will free memory on all zones and may take
		 * a long time.
		 */
		shrink_slab(sc.nr_scanned, gfp_mask, order);
	}

1935
	p->reclaim_state = NULL;
1936
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1937

1938
	if (nr_reclaimed == 0)
1939 1940
		zone->last_unsuccessful_zone_reclaim = jiffies;

1941
	return nr_reclaimed >= nr_pages;
1942
}
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	cpumask_t mask;
	int node_id;

	/*
	 * Do not reclaim if there was a recent unsuccessful attempt at zone
	 * reclaim.  In that case we let allocations go off node for the
	 * zone_reclaim_interval.  Otherwise we would scan for each off-node
	 * page allocation.
	 */
	if (time_before(jiffies,
		zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
			return 0;

	/*
	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
	 * not have reclaimable pages and if we should not delay the allocation
	 * then do not scan.
	 */
	if (!(gfp_mask & __GFP_WAIT) ||
		zone->all_unreclaimable ||
		atomic_read(&zone->reclaim_in_progress) > 0 ||
		(current->flags & PF_MEMALLOC))
			return 0;

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
	node_id = zone->zone_pgdat->node_id;
	mask = node_to_cpumask(node_id);
	if (!cpus_empty(mask) && node_id != numa_node_id())
		return 0;
	return __zone_reclaim(zone, gfp_mask, order);
}
1982
#endif