vmscan.c 97.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

57
/*
58 59 60 61 62
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 64
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
65
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66
 *			order-0 pages and then compact the zone
67
 */
68 69 70 71 72 73
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74

L
Linus Torvalds 已提交
75 76 77 78
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

79 80 81
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

82 83 84
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

85 86
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
87
	/* This context's GFP mask */
A
Al Viro 已提交
88
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
89 90 91

	int may_writepage;

92 93
	/* Can mapped pages be reclaimed? */
	int may_unmap;
94

95 96 97
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
98
	int order;
99

100
	/*
101 102
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
103
	 */
104
	reclaim_mode_t reclaim_mode;
105

106 107 108
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

109 110 111 112 113
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
150
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
151 152 153 154

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

155
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
156
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157
#else
158
#define scanning_global_lru(sc)	(1)
159 160
#endif

161 162 163
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
164
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
165 166
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

167 168 169
	return &zone->reclaim_stat;
}

170 171
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
172
{
173
	if (!scanning_global_lru(sc))
174 175
		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
				zone_to_nid(zone), zone_idx(zone), BIT(lru));
176

177 178 179 180
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
181 182 183
/*
 * Add a shrinker callback to be called from the vm
 */
184
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
185
{
186 187 188 189
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
190
}
191
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
192 193 194 195

/*
 * Remove one
 */
196
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
197 198 199 200 201
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
202
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
203

204 205 206 207 208 209 210 211
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
221
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
222 223 224 225 226 227 228
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
229 230
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
231
 */
232
unsigned long shrink_slab(struct shrink_control *shrink,
233
			  unsigned long nr_pages_scanned,
234
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
235 236
{
	struct shrinker *shrinker;
237
	unsigned long ret = 0;
L
Linus Torvalds 已提交
238

239 240
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
241

242 243 244 245 246
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
247 248 249 250

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
251
		unsigned long max_pass;
252
		int shrink_ret = 0;
253 254
		long nr;
		long new_nr;
255 256
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
257

258 259 260 261 262 263 264 265 266 267
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
		do {
			nr = shrinker->nr;
		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);

		total_scan = nr;
268 269
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
270
		delta *= max_pass;
L
Linus Torvalds 已提交
271
		do_div(delta, lru_pages + 1);
272 273
		total_scan += delta;
		if (total_scan < 0) {
274 275
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
276 277
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
278 279
		}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

295 296 297 298 299
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
300 301
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
302

303
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
304 305 306
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

307
		while (total_scan >= batch_size) {
308
			int nr_before;
L
Linus Torvalds 已提交
309

310 311
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
312
							batch_size);
L
Linus Torvalds 已提交
313 314
			if (shrink_ret == -1)
				break;
315 316
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
317 318
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
319 320 321 322

			cond_resched();
		}

323 324 325 326 327 328 329 330 331 332 333 334 335
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
		do {
			nr = shrinker->nr;
			new_nr = total_scan + nr;
			if (total_scan <= 0)
				break;
		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
336 337
	}
	up_read(&shrinker_rwsem);
338 339
out:
	cond_resched();
340
	return ret;
L
Linus Torvalds 已提交
341 342
}

343
static void set_reclaim_mode(int priority, struct scan_control *sc,
344 345
				   bool sync)
{
346
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347 348

	/*
349 350 351
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
352
	 */
353
	if (COMPACTION_BUILD)
354
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355
	else
356
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357 358

	/*
359 360 361
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
362 363
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364
		sc->reclaim_mode |= syncmode;
365
	else if (sc->order && priority < DEF_PRIORITY - 2)
366
		sc->reclaim_mode |= syncmode;
367
	else
368
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 370
}

371
static void reset_reclaim_mode(struct scan_control *sc)
372
{
373
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 375
}

L
Linus Torvalds 已提交
376 377
static inline int is_page_cache_freeable(struct page *page)
{
378 379 380 381 382
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
383
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
384 385
}

386 387
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
388
{
389
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
390 391 392 393 394
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
395 396 397 398

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
417
	lock_page(page);
418 419
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
420 421 422
	unlock_page(page);
}

423 424 425 426 427 428 429 430 431 432 433 434
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
435
/*
A
Andrew Morton 已提交
436 437
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
438
 */
439
static pageout_t pageout(struct page *page, struct address_space *mapping,
440
			 struct scan_control *sc)
L
Linus Torvalds 已提交
441 442 443 444 445 446 447 448
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
449
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
465
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
466 467
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
468
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
469 470 471 472 473 474 475
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
476
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
477 478 479 480 481 482 483
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
484 485
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
486 487 488 489 490 491 492
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
493
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
494 495 496
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
497 498 499 500 501 502

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
503
		if (PageWriteback(page) &&
504
		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
505 506
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
507 508 509 510
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
511
		trace_mm_vmscan_writepage(page,
512
			trace_reclaim_flags(page, sc->reclaim_mode));
513
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
514 515 516 517 518 519
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

520
/*
N
Nick Piggin 已提交
521 522
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
523
 */
N
Nick Piggin 已提交
524
static int __remove_mapping(struct address_space *mapping, struct page *page)
525
{
526 527
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
528

N
Nick Piggin 已提交
529
	spin_lock_irq(&mapping->tree_lock);
530
	/*
N
Nick Piggin 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
554
	 */
N
Nick Piggin 已提交
555
	if (!page_freeze_refs(page, 2))
556
		goto cannot_free;
N
Nick Piggin 已提交
557 558 559
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
560
		goto cannot_free;
N
Nick Piggin 已提交
561
	}
562 563 564 565

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
566
		spin_unlock_irq(&mapping->tree_lock);
567
		swapcache_free(swap, page);
N
Nick Piggin 已提交
568
	} else {
569 570 571 572
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

573
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
574
		spin_unlock_irq(&mapping->tree_lock);
575
		mem_cgroup_uncharge_cache_page(page);
576 577 578

		if (freepage != NULL)
			freepage(page);
579 580 581 582 583
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
584
	spin_unlock_irq(&mapping->tree_lock);
585 586 587
	return 0;
}

N
Nick Piggin 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
621
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
635
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
636 637 638 639 640 641 642 643
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
644 645 646 647 648 649 650 651 652 653
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

672 673 674 675 676
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
677 678 679
	put_page(page);		/* drop ref from isolate */
}

680 681 682
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
683
	PAGEREF_KEEP,
684 685 686 687 688 689
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
690
	int referenced_ptes, referenced_page;
691 692
	unsigned long vm_flags;

693 694
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
695 696

	/* Lumpy reclaim - ignore references */
697
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
698 699 700 701 702 703 704 705 706
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
731 732

	/* Reclaim if clean, defer dirty pages to writeback */
733
	if (referenced_page && !PageSwapBacked(page))
734 735 736
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
737 738
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
757
/*
A
Andrew Morton 已提交
758
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
759
 */
A
Andrew Morton 已提交
760
static unsigned long shrink_page_list(struct list_head *page_list,
761
				      struct zone *zone,
762
				      struct scan_control *sc)
L
Linus Torvalds 已提交
763 764
{
	LIST_HEAD(ret_pages);
765
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
766
	int pgactivate = 0;
767 768
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
769
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
770 771 772 773

	cond_resched();

	while (!list_empty(page_list)) {
774
		enum page_references references;
L
Linus Torvalds 已提交
775 776 777 778 779 780 781 782 783
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
784
		if (!trylock_page(page))
L
Linus Torvalds 已提交
785 786
			goto keep;

N
Nick Piggin 已提交
787
		VM_BUG_ON(PageActive(page));
788
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
789 790

		sc->nr_scanned++;
791

N
Nick Piggin 已提交
792 793
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
794

795
		if (!sc->may_unmap && page_mapped(page))
796 797
			goto keep_locked;

L
Linus Torvalds 已提交
798 799 800 801
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

802 803 804 805 806 807 808 809 810 811 812 813
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
814
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
815
			    may_enter_fs)
816
				wait_on_page_writeback(page);
817 818 819 820
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
821
		}
L
Linus Torvalds 已提交
822

823 824 825
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
826
			goto activate_locked;
827 828
		case PAGEREF_KEEP:
			goto keep_locked;
829 830 831 832
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
833 834 835 836 837

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
838
		if (PageAnon(page) && !PageSwapCache(page)) {
839 840
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
841
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
842
				goto activate_locked;
843
			may_enter_fs = 1;
N
Nick Piggin 已提交
844
		}
L
Linus Torvalds 已提交
845 846 847 848 849 850 851 852

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
853
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
854 855 856 857
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
858 859
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
860 861 862 863 864 865
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
866 867
			nr_dirty++;

868
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
869
				goto keep_locked;
870
			if (!may_enter_fs)
L
Linus Torvalds 已提交
871
				goto keep_locked;
872
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
873 874 875
				goto keep_locked;

			/* Page is dirty, try to write it out here */
876
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
877
			case PAGE_KEEP:
878
				nr_congested++;
L
Linus Torvalds 已提交
879 880 881 882
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
883 884 885
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
886
					goto keep;
887

L
Linus Torvalds 已提交
888 889 890 891
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
892
				if (!trylock_page(page))
L
Linus Torvalds 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
912
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
913 914 915 916 917 918 919 920 921 922
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
923
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
924 925
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
942 943
		}

N
Nick Piggin 已提交
944
		if (!mapping || !__remove_mapping(mapping, page))
945
			goto keep_locked;
L
Linus Torvalds 已提交
946

N
Nick Piggin 已提交
947 948 949 950 951 952 953 954
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
955
free_it:
956
		nr_reclaimed++;
957 958 959 960 961 962

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
963 964
		continue;

N
Nick Piggin 已提交
965
cull_mlocked:
966 967
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
968 969
		unlock_page(page);
		putback_lru_page(page);
970
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
971 972
		continue;

L
Linus Torvalds 已提交
973
activate_locked:
974 975
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
976
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
977
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
978 979 980 981 982
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
983
		reset_reclaim_mode(sc);
984
keep_lumpy:
L
Linus Torvalds 已提交
985
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
986
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
987
	}
988

989 990 991 992 993 994
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
K
KAMEZAWA Hiroyuki 已提交
995
	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
996 997
		zone_set_flag(zone, ZONE_CONGESTED);

998 999
	free_page_list(&free_pages);

L
Linus Torvalds 已提交
1000
	list_splice(&ret_pages, page_list);
1001
	count_vm_events(PGACTIVATE, pgactivate);
1002
	return nr_reclaimed;
L
Linus Torvalds 已提交
1003 1004
}

A
Andy Whitcroft 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1015
int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
A
Andy Whitcroft 已提交
1016
{
1017
	bool all_lru_mode;
A
Andy Whitcroft 已提交
1018 1019 1020 1021 1022 1023
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

1024 1025 1026
	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);

A
Andy Whitcroft 已提交
1027 1028 1029 1030 1031
	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
1032
	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
A
Andy Whitcroft 已提交
1033 1034
		return ret;

1035
	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1036 1037
		return ret;

L
Lee Schermerhorn 已提交
1038 1039 1040 1041 1042 1043 1044 1045
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
1046
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1047

1048 1049 1050
	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
		return ret;

A
Andy Whitcroft 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1078 1079
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1080
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1081 1082 1083
 *
 * returns how many pages were moved onto *@dst.
 */
1084 1085
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1086 1087
		unsigned long *scanned, int order, isolate_mode_t mode,
		int file)
L
Linus Torvalds 已提交
1088
{
1089
	unsigned long nr_taken = 0;
1090 1091 1092
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1093
	unsigned long scan;
L
Linus Torvalds 已提交
1094

1095
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1096 1097 1098 1099 1100 1101
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1102 1103 1104
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1105
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1106

1107
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1108 1109
		case 0:
			list_move(&page->lru, dst);
1110
			mem_cgroup_del_lru(page);
1111
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1112 1113 1114 1115 1116
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1117
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1118
			continue;
1119

A
Andy Whitcroft 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
L
Lucas De Marchi 已提交
1132
		 * as the mem_map is guaranteed valid out to MAX_ORDER,
A
Andy Whitcroft 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1152

A
Andy Whitcroft 已提交
1153 1154
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1155
				break;
1156 1157 1158 1159 1160 1161 1162

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1163 1164
			    !PageSwapCache(cursor_page))
				break;
1165

1166
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1167
				list_move(&cursor_page->lru, dst);
1168
				mem_cgroup_del_lru(cursor_page);
1169
				nr_taken += hpage_nr_pages(page);
1170 1171 1172
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1173
				scan++;
1174
			} else {
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
				/*
				 * Check if the page is freed already.
				 *
				 * We can't use page_count() as that
				 * requires compound_head and we don't
				 * have a pin on the page here. If a
				 * page is tail, we may or may not
				 * have isolated the head, so assume
				 * it's not free, it'd be tricky to
				 * track the head status without a
				 * page pin.
				 */
				if (!PageTail(cursor_page) &&
				    !atomic_read(&cursor_page->_count))
1189 1190
					continue;
				break;
A
Andy Whitcroft 已提交
1191 1192
			}
		}
1193 1194 1195 1196

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1197 1198 1199
	}

	*scanned = scan;
1200 1201 1202 1203 1204 1205

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1206 1207 1208
	return nr_taken;
}

1209 1210 1211
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
1212 1213
					isolate_mode_t mode,
					struct zone *z,	int active, int file)
1214
{
1215
	int lru = LRU_BASE;
1216
	if (active)
1217 1218 1219 1220
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1221
								mode, file);
1222 1223
}

A
Andy Whitcroft 已提交
1224 1225 1226 1227
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1228 1229
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1230 1231
{
	int nr_active = 0;
1232
	int lru;
A
Andy Whitcroft 已提交
1233 1234
	struct page *page;

1235
	list_for_each_entry(page, page_list, lru) {
1236
		int numpages = hpage_nr_pages(page);
1237
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1238
		if (PageActive(page)) {
1239
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1240
			ClearPageActive(page);
1241
			nr_active += numpages;
A
Andy Whitcroft 已提交
1242
		}
1243
		if (count)
1244
			count[lru] += numpages;
1245
	}
A
Andy Whitcroft 已提交
1246 1247 1248 1249

	return nr_active;
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1261 1262 1263
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1279 1280
	VM_BUG_ON(!page_count(page));

1281 1282 1283 1284
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1285
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1286
			int lru = page_lru(page);
1287
			ret = 0;
1288
			get_page(page);
1289
			ClearPageLRU(page);
1290 1291

			del_page_from_lru_list(zone, page, lru);
1292 1293 1294 1295 1296 1297
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1323 1324 1325 1326
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1327
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1328 1329 1330 1331 1332
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1333
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1352
		SetPageLRU(page);
1353
		lru = page_lru(page);
1354
		add_page_to_lru_list(zone, page, lru);
1355 1356
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1357 1358
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
/*
 * Returns true if the caller should wait to clean dirty/writeback pages.
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1424
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1425 1426
		return false;

1427
	/* If we have reclaimed everything on the isolated list, no stall */
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1445
/*
A
Andrew Morton 已提交
1446 1447
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1448
 */
1449 1450 1451
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1452 1453
{
	LIST_HEAD(page_list);
1454
	unsigned long nr_scanned;
1455
	unsigned long nr_reclaimed = 0;
1456 1457 1458
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1459
	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1460

1461
	while (unlikely(too_many_isolated(zone, file, sc))) {
1462
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1463 1464 1465 1466 1467 1468

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1469
	set_reclaim_mode(priority, sc, false);
1470 1471 1472
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
		reclaim_mode |= ISOLATE_ACTIVE;

L
Linus Torvalds 已提交
1473 1474
	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1475

1476
	if (scanning_global_lru(sc)) {
1477 1478
		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1479 1480 1481 1482 1483 1484 1485 1486
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
1487 1488 1489
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
			&nr_scanned, sc->order, reclaim_mode, zone,
			sc->mem_cgroup, 0, file);
1490 1491 1492 1493 1494
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1495

1496 1497 1498 1499
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1500

1501
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1502

1503
	spin_unlock_irq(&zone->lru_lock);
1504

1505
	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1506

1507 1508
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1509
		set_reclaim_mode(priority, sc, true);
1510
		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1511
	}
1512

1513 1514 1515 1516
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1517

1518
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1519 1520 1521 1522 1523

	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1524
		trace_shrink_flags(file, sc->reclaim_mode));
1525
	return nr_reclaimed;
L
Linus Torvalds 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
1564
		pgmoved += hpage_nr_pages(page);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1578

A
Andrew Morton 已提交
1579
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1580
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1581
{
1582
	unsigned long nr_taken;
1583
	unsigned long pgscanned;
1584
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1585
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1586
	LIST_HEAD(l_active);
1587
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1588
	struct page *page;
1589
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1590
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1591 1592 1593

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1594
	if (scanning_global_lru(sc)) {
1595 1596 1597 1598
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1599
		zone->pages_scanned += pgscanned;
1600 1601 1602 1603 1604 1605 1606 1607 1608
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1609
	}
1610

1611
	reclaim_stat->recent_scanned[file] += nr_taken;
1612

1613
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1614
	if (file)
1615
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1616
	else
1617
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1618
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1619 1620 1621 1622 1623 1624
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1625

L
Lee Schermerhorn 已提交
1626 1627 1628 1629 1630
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1631
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1632
			nr_rotated += hpage_nr_pages(page);
1633 1634 1635 1636 1637 1638 1639 1640 1641
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1642
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1643 1644 1645 1646
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1647

1648
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1649 1650 1651
		list_add(&page->lru, &l_inactive);
	}

1652
	/*
1653
	 * Move pages back to the lru list.
1654
	 */
1655
	spin_lock_irq(&zone->lru_lock);
1656
	/*
1657 1658 1659 1660
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1661
	 */
1662
	reclaim_stat->recent_rotated[file] += nr_rotated;
1663

1664 1665 1666 1667
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1668
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1669
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1670 1671
}

1672
#ifdef CONFIG_SWAP
1673
static int inactive_anon_is_low_global(struct zone *zone)
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1698 1699 1700 1701 1702 1703 1704
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1705
	if (scanning_global_lru(sc))
1706 1707
		low = inactive_anon_is_low_global(zone);
	else
1708
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1709 1710
	return low;
}
1711 1712 1713 1714 1715 1716 1717
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1718

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1755 1756 1757 1758 1759 1760 1761 1762 1763
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1764
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1765 1766
	struct zone *zone, struct scan_control *sc, int priority)
{
1767 1768
	int file = is_file_lru(lru);

1769 1770 1771
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1772 1773 1774
		return 0;
	}

R
Rik van Riel 已提交
1775
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1776 1777
}

1778 1779 1780 1781 1782 1783 1784
static int vmscan_swappiness(struct scan_control *sc)
{
	if (scanning_global_lru(sc))
		return vm_swappiness;
	return mem_cgroup_swappiness(sc->mem_cgroup);
}

1785 1786 1787 1788 1789 1790
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1791
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1792
 */
1793 1794
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1795 1796 1797 1798
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1799
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1800 1801 1802
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;
1803
	bool force_scan = false;
1804
	unsigned long nr_force_scan[2];
1805

1806 1807 1808 1809 1810 1811
	/* kswapd does zone balancing and needs to scan this zone */
	if (scanning_global_lru(sc) && current_is_kswapd())
		force_scan = true;
	/* memcg may have small limit and need to avoid priority drop */
	if (!scanning_global_lru(sc))
		force_scan = true;
1812 1813 1814 1815 1816 1817 1818

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
1819 1820
		nr_force_scan[0] = 0;
		nr_force_scan[1] = SWAP_CLUSTER_MAX;
1821 1822
		goto out;
	}
1823

1824 1825 1826 1827 1828
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);

1829
	if (scanning_global_lru(sc)) {
1830 1831 1832
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1833
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1834 1835 1836
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
1837 1838
			nr_force_scan[0] = SWAP_CLUSTER_MAX;
			nr_force_scan[1] = 0;
1839
			goto out;
1840
		}
1841 1842
	}

1843 1844 1845 1846
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1847 1848
	anon_prio = vmscan_swappiness(sc);
	file_prio = 200 - vmscan_swappiness(sc);
1849

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1861
	spin_lock_irq(&zone->lru_lock);
1862 1863 1864
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1865 1866
	}

1867 1868 1869
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1870 1871 1872
	}

	/*
1873 1874 1875
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1876
	 */
1877 1878
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1879

1880 1881
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1882
	spin_unlock_irq(&zone->lru_lock);
1883

1884 1885 1886
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
1887 1888 1889 1890 1891
	if (force_scan) {
		unsigned long scan = SWAP_CLUSTER_MAX;
		nr_force_scan[0] = div64_u64(scan * ap, denominator);
		nr_force_scan[1] = div64_u64(scan * fp, denominator);
	}
1892 1893 1894 1895
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1896

1897 1898 1899 1900 1901
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

		/*
		 * If zone is small or memcg is small, nr[l] can be 0.
		 * This results no-scan on this priority and priority drop down.
		 * For global direct reclaim, it can visit next zone and tend
		 * not to have problems. For global kswapd, it's for zone
		 * balancing and it need to scan a small amounts. When using
		 * memcg, priority drop can cause big latency. So, it's better
		 * to scan small amount. See may_noscan above.
		 */
1912 1913
		if (!scan && force_scan)
			scan = nr_force_scan[file];
1914
		nr[l] = scan;
1915
	}
1916
}
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
static inline bool should_continue_reclaim(struct zone *zone,
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1934
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1935 1936
		return false;

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
	switch (compaction_suitable(zone, sc->order)) {
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1981 1982 1983
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1984
static void shrink_zone(int priority, struct zone *zone,
1985
				struct scan_control *sc)
L
Linus Torvalds 已提交
1986
{
1987
	unsigned long nr[NR_LRU_LISTS];
1988
	unsigned long nr_to_scan;
1989
	enum lru_list l;
1990
	unsigned long nr_reclaimed, nr_scanned;
1991
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1992

1993 1994
restart:
	nr_reclaimed = 0;
1995
	nr_scanned = sc->nr_scanned;
1996
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1997

1998 1999
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
2000
		for_each_evictable_lru(l) {
2001
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
2002 2003
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
2004
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
2005

2006 2007
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
2008
			}
L
Linus Torvalds 已提交
2009
		}
2010 2011 2012 2013 2014 2015 2016 2017
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
2018
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2019
			break;
L
Linus Torvalds 已提交
2020
	}
2021
	sc->nr_reclaimed += nr_reclaimed;
2022

2023 2024 2025 2026
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2027
	if (inactive_anon_is_low(zone, sc))
2028 2029
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

2030 2031 2032 2033 2034
	/* reclaim/compaction might need reclaim to continue */
	if (should_continue_reclaim(zone, nr_reclaimed,
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

2035
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041 2042
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2043 2044
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2045 2046
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2047 2048 2049
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2050 2051 2052 2053
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
2054
static void shrink_zones(int priority, struct zonelist *zonelist,
2055
					struct scan_control *sc)
L
Linus Torvalds 已提交
2056
{
2057
	struct zoneref *z;
2058
	struct zone *zone;
2059 2060
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2061

2062 2063
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2064
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2065
			continue;
2066 2067 2068 2069
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2070
		if (scanning_global_lru(sc)) {
2071 2072
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2073
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2074
				continue;	/* Let kswapd poll it */
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2088
		}
2089

2090
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2091
	}
2092 2093 2094 2095 2096 2097 2098
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2099
/* All zones in zonelist are unreclaimable? */
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2112 2113
		if (!zone->all_unreclaimable)
			return false;
2114 2115
	}

2116
	return true;
L
Linus Torvalds 已提交
2117
}
2118

L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124 2125 2126
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2127 2128 2129 2130
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2131 2132 2133
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2134
 */
2135
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2136 2137
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2138 2139
{
	int priority;
2140
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2141
	struct reclaim_state *reclaim_state = current->reclaim_state;
2142
	struct zoneref *z;
2143
	struct zone *zone;
2144
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
2145

2146
	get_mems_allowed();
2147 2148
	delayacct_freepages_start();

2149
	if (scanning_global_lru(sc))
2150
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2151 2152

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2153
		sc->nr_scanned = 0;
2154
		if (!priority)
2155
			disable_swap_token(sc->mem_cgroup);
2156
		shrink_zones(priority, zonelist, sc);
2157 2158 2159 2160
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2161
		if (scanning_global_lru(sc)) {
2162
			unsigned long lru_pages = 0;
2163 2164
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2165 2166 2167 2168 2169 2170
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2171
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2172
			if (reclaim_state) {
2173
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2174 2175
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2176
		}
2177
		total_scanned += sc->nr_scanned;
2178
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2188 2189
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2190
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2191
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2192 2193 2194
		}

		/* Take a nap, wait for some writeback to complete */
2195
		if (!sc->hibernation_mode && sc->nr_scanned &&
2196 2197 2198 2199
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2200 2201
						&cpuset_current_mems_allowed,
						&preferred_zone);
2202 2203
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2204
	}
2205

L
Linus Torvalds 已提交
2206
out:
2207
	delayacct_freepages_end();
2208
	put_mems_allowed();
2209

2210 2211 2212
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2213 2214 2215 2216 2217 2218 2219 2220
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2221
	/* top priority shrink_zones still had more to do? don't OOM, then */
2222
	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2223 2224 2225
		return 1;

	return 0;
L
Linus Torvalds 已提交
2226 2227
}

2228
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2229
				gfp_t gfp_mask, nodemask_t *nodemask)
2230
{
2231
	unsigned long nr_reclaimed;
2232 2233 2234
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2235
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2236
		.may_unmap = 1,
2237
		.may_swap = 1,
2238 2239
		.order = order,
		.mem_cgroup = NULL,
2240
		.nodemask = nodemask,
2241
	};
2242 2243 2244
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2245

2246 2247 2248 2249
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2250
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2251 2252 2253 2254

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2255 2256
}

2257
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2258

2259 2260
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
2261 2262
						struct zone *zone,
						unsigned long *nr_scanned)
2263 2264
{
	struct scan_control sc = {
2265
		.nr_scanned = 0,
2266
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2267 2268 2269 2270 2271 2272
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
		.mem_cgroup = mem,
	};
2273

2274 2275
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2276 2277 2278 2279 2280

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2281 2282 2283 2284 2285 2286 2287 2288
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
2289 2290 2291

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2292
	*nr_scanned = sc.nr_scanned;
2293 2294 2295
	return sc.nr_reclaimed;
}

2296
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2297
					   gfp_t gfp_mask,
2298
					   bool noswap)
2299
{
2300
	struct zonelist *zonelist;
2301
	unsigned long nr_reclaimed;
2302
	int nid;
2303 2304
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2305
		.may_unmap = 1,
2306
		.may_swap = !noswap,
2307
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2308 2309
		.order = 0,
		.mem_cgroup = mem_cont,
2310
		.nodemask = NULL, /* we don't care the placement */
2311 2312 2313 2314 2315
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2316 2317
	};

2318 2319 2320 2321 2322 2323 2324 2325
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
	nid = mem_cgroup_select_victim_node(mem_cont);

	zonelist = NODE_DATA(nid)->node_zonelists;
2326 2327 2328 2329 2330

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2331
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2332 2333 2334 2335

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2336 2337 2338
}
#endif

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2350
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2364 2365
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2366 2367
}

2368
/* is kswapd sleeping prematurely? */
2369 2370
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2371
{
2372
	int i;
2373 2374
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2375 2376 2377

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2378
		return true;
2379

2380
	/* Check the watermark levels */
2381
	for (i = 0; i <= classzone_idx; i++) {
2382 2383 2384 2385 2386
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2387 2388 2389 2390 2391 2392 2393 2394
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2395
			continue;
2396
		}
2397

2398
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2399
							i, 0))
2400 2401 2402
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2403
	}
2404

2405 2406 2407 2408 2409 2410
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2411
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2412 2413
	else
		return !all_zones_ok;
2414 2415
}

L
Linus Torvalds 已提交
2416 2417
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2418
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2419
 *
2420
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2431 2432 2433 2434 2435
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2436
 */
2437
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2438
							int *classzone_idx)
L
Linus Torvalds 已提交
2439 2440
{
	int all_zones_ok;
2441
	unsigned long balanced;
L
Linus Torvalds 已提交
2442 2443
	int priority;
	int i;
2444
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2445
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2446
	struct reclaim_state *reclaim_state = current->reclaim_state;
2447 2448
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2449 2450
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2451
		.may_unmap = 1,
2452
		.may_swap = 1,
2453 2454 2455 2456 2457
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2458
		.order = order,
2459
		.mem_cgroup = NULL,
2460
	};
2461 2462 2463
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2464 2465
loop_again:
	total_scanned = 0;
2466
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2467
	sc.may_writepage = !laptop_mode;
2468
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2469 2470 2471

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2472
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2473

2474 2475
		/* The swap token gets in the way of swapout... */
		if (!priority)
2476
			disable_swap_token(NULL);
2477

L
Linus Torvalds 已提交
2478
		all_zones_ok = 1;
2479
		balanced = 0;
L
Linus Torvalds 已提交
2480

2481 2482 2483 2484 2485 2486
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2487

2488 2489
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2490

2491
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2492
				continue;
L
Linus Torvalds 已提交
2493

2494 2495 2496 2497
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2498
			if (inactive_anon_is_low(zone, &sc))
2499 2500 2501
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2502
			if (!zone_watermark_ok_safe(zone, order,
2503
					high_wmark_pages(zone), 0, 0)) {
2504
				end_zone = i;
A
Andrew Morton 已提交
2505
				break;
2506 2507 2508
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2509 2510
			}
		}
A
Andrew Morton 已提交
2511 2512 2513
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2514 2515 2516
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2517
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2531
			int nr_slab;
2532
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2533

2534
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2535 2536
				continue;

2537
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2538 2539 2540
				continue;

			sc.nr_scanned = 0;
2541

2542
			nr_soft_scanned = 0;
2543 2544 2545
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2546 2547 2548 2549 2550
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2551

2552
			/*
2553 2554 2555 2556 2557 2558
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2559
			 */
2560 2561 2562 2563
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2564
			if (!zone_watermark_ok_safe(zone, order,
2565
					high_wmark_pages(zone) + balance_gap,
2566
					end_zone, 0)) {
2567
				shrink_zone(priority, zone, &sc);
2568

2569 2570 2571 2572 2573 2574 2575 2576 2577
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2578 2579 2580 2581 2582 2583
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2584
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2585
				sc.may_writepage = 1;
2586

2587 2588 2589
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2590
				continue;
2591
			}
2592

2593
			if (!zone_watermark_ok_safe(zone, order,
2594 2595 2596 2597 2598 2599 2600
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2601
				if (!zone_watermark_ok_safe(zone, order,
2602 2603
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2604 2605 2606 2607 2608 2609 2610 2611 2612
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2613
				if (i <= *classzone_idx)
2614
					balanced += zone->present_pages;
2615
			}
2616

L
Linus Torvalds 已提交
2617
		}
2618
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2619 2620 2621 2622 2623
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2624 2625 2626 2627 2628 2629
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2630 2631 2632 2633 2634 2635 2636

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2637
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2638 2639 2640
			break;
	}
out:
2641 2642 2643

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2644 2645
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2646
	 */
2647
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2648
		cond_resched();
2649 2650 2651

		try_to_freeze();

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2669 2670 2671
		goto loop_again;
	}

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
	}

2702 2703 2704 2705 2706 2707
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2708
	*classzone_idx = end_zone;
2709
	return order;
L
Linus Torvalds 已提交
2710 2711
}

2712
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2723
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2724 2725 2726 2727 2728 2729 2730 2731 2732
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2733
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2756 2757
/*
 * The background pageout daemon, started as a kernel thread
2758
 * from the init process.
L
Linus Torvalds 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2771 2772
	unsigned long order, new_order;
	int classzone_idx, new_classzone_idx;
L
Linus Torvalds 已提交
2773 2774
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2775

L
Linus Torvalds 已提交
2776 2777 2778
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2779
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2780

2781 2782
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2783
	if (!cpumask_empty(cpumask))
2784
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2799
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2800
	set_freezable();
L
Linus Torvalds 已提交
2801

2802 2803
	order = new_order = 0;
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2804
	for ( ; ; ) {
2805
		int ret;
2806

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
		if (classzone_idx >= new_classzone_idx && order == new_order) {
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2819
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2820 2821
			/*
			 * Don't sleep if someone wants a larger 'order'
2822
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2823 2824
			 */
			order = new_order;
2825
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2826
		} else {
2827
			kswapd_try_to_sleep(pgdat, order, classzone_idx);
L
Linus Torvalds 已提交
2828
			order = pgdat->kswapd_max_order;
2829
			classzone_idx = pgdat->classzone_idx;
2830
			pgdat->kswapd_max_order = 0;
2831
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2832 2833
		}

2834 2835 2836 2837 2838 2839 2840 2841
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2842 2843
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2844
			order = balance_pgdat(pgdat, order, &classzone_idx);
2845
		}
L
Linus Torvalds 已提交
2846 2847 2848 2849 2850 2851 2852
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2853
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2854 2855 2856
{
	pg_data_t *pgdat;

2857
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2858 2859
		return;

2860
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2861
		return;
2862
	pgdat = zone->zone_pgdat;
2863
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2864
		pgdat->kswapd_max_order = order;
2865 2866
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2867
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2868
		return;
2869 2870 2871 2872
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2873
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2874 2875
}

2876 2877 2878 2879 2880 2881 2882 2883
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2884
{
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2909 2910
}

2911
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2912
/*
2913
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2914 2915 2916 2917 2918
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2919
 */
2920
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2921
{
2922 2923
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2924 2925 2926
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2927
		.may_writepage = 1,
2928 2929 2930
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
2931
	};
2932 2933 2934 2935
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2936 2937
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2938

2939 2940 2941 2942
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2943

2944
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2945

2946 2947 2948
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2949

2950
	return nr_reclaimed;
L
Linus Torvalds 已提交
2951
}
2952
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2953 2954 2955 2956 2957

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2958
static int __devinit cpu_callback(struct notifier_block *nfb,
2959
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2960
{
2961
	int nid;
L
Linus Torvalds 已提交
2962

2963
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2964
		for_each_node_state(nid, N_HIGH_MEMORY) {
2965
			pg_data_t *pgdat = NODE_DATA(nid);
2966 2967 2968
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2969

2970
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2971
				/* One of our CPUs online: restore mask */
2972
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2973 2974 2975 2976 2977
		}
	}
	return NOTIFY_OK;
}

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3011 3012
static int __init kswapd_init(void)
{
3013
	int nid;
3014

L
Linus Torvalds 已提交
3015
	swap_setup();
3016
	for_each_node_state(nid, N_HIGH_MEMORY)
3017
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3018 3019 3020 3021 3022
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3033
#define RECLAIM_OFF 0
3034
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3035 3036 3037
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3038 3039 3040 3041 3042 3043 3044
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3045 3046 3047 3048 3049 3050
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3051 3052 3053 3054 3055 3056
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3099 3100 3101
/*
 * Try to free up some pages from this zone through reclaim.
 */
3102
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3103
{
3104
	/* Minimum pages needed in order to stay on node */
3105
	const unsigned long nr_pages = 1 << order;
3106 3107
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3108
	int priority;
3109 3110
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3111
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3112
		.may_swap = 1,
3113 3114
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3115
		.gfp_mask = gfp_mask,
3116
		.order = order,
3117
	};
3118 3119 3120
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3121
	unsigned long nr_slab_pages0, nr_slab_pages1;
3122 3123

	cond_resched();
3124 3125 3126 3127 3128 3129
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3130
	lockdep_set_current_reclaim_state(gfp_mask);
3131 3132
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3133

3134
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3135 3136 3137 3138 3139 3140
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3141
			shrink_zone(priority, zone, &sc);
3142
			priority--;
3143
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3144
	}
3145

3146 3147
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3148
		/*
3149
		 * shrink_slab() does not currently allow us to determine how
3150 3151 3152 3153
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3154
		 *
3155 3156
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3157
		 */
3158 3159 3160 3161
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3162
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3163 3164 3165 3166 3167 3168 3169 3170
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3171 3172 3173 3174 3175

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3176 3177 3178
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3179 3180
	}

3181
	p->reclaim_state = NULL;
3182
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3183
	lockdep_clear_current_reclaim_state();
3184
	return sc.nr_reclaimed >= nr_pages;
3185
}
3186 3187 3188 3189

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3190
	int ret;
3191 3192

	/*
3193 3194
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3195
	 *
3196 3197 3198 3199 3200
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3201
	 */
3202 3203
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3204
		return ZONE_RECLAIM_FULL;
3205

3206
	if (zone->all_unreclaimable)
3207
		return ZONE_RECLAIM_FULL;
3208

3209
	/*
3210
	 * Do not scan if the allocation should not be delayed.
3211
	 */
3212
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3213
		return ZONE_RECLAIM_NOSCAN;
3214 3215 3216 3217 3218 3219 3220

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3221
	node_id = zone_to_nid(zone);
3222
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3223
		return ZONE_RECLAIM_NOSCAN;
3224 3225

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3226 3227
		return ZONE_RECLAIM_NOSCAN;

3228 3229 3230
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3231 3232 3233
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3234
	return ret;
3235
}
3236
#endif
L
Lee Schermerhorn 已提交
3237 3238 3239 3240 3241 3242 3243

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3244 3245
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3246 3247
 *
 * Reasons page might not be evictable:
3248
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3249
 * (2) page is part of an mlocked VMA
3250
 *
L
Lee Schermerhorn 已提交
3251 3252 3253 3254
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3255 3256 3257
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3258 3259
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3260 3261 3262

	return 1;
}
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3282
		enum lru_list l = page_lru_base_type(page);
3283

3284 3285
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
3286
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3287 3288 3289 3290 3291 3292 3293 3294
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
3295
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3367
static void scan_zone_unevictable_pages(struct zone *zone)
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
3409
static void scan_all_zones_unevictable_pages(void)
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3425
			   void __user *buffer,
3426 3427
			   size_t *length, loff_t *ppos)
{
3428
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3429 3430 3431 3432 3433 3434 3435 3436

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

3437
#ifdef CONFIG_NUMA
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}
3484
#endif