vmscan.c 102.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

57
/*
58 59 60 61 62
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 64
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
65
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66
 *			order-0 pages and then compact the zone
67
 */
68 69 70 71 72 73
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74

L
Linus Torvalds 已提交
75 76 77 78
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

79 80 81
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

82 83 84
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

85 86
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
87
	/* This context's GFP mask */
A
Al Viro 已提交
88
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
89 90 91

	int may_writepage;

92 93
	/* Can mapped pages be reclaimed? */
	int may_unmap;
94

95 96 97
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
98
	int order;
99

100
	/*
101 102
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
103
	 */
104
	reclaim_mode_t reclaim_mode;
105

106 107 108 109 110
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
111

112 113 114 115 116
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
117 118
};

119 120 121 122 123
struct mem_cgroup_zone {
	struct mem_cgroup *mem_cgroup;
	struct zone *zone;
};

L
Linus Torvalds 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
158
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
159 160 161 162

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

163
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
164 165
static bool global_reclaim(struct scan_control *sc)
{
166
	return !sc->target_mem_cgroup;
167 168
}

169
static bool scanning_global_lru(struct mem_cgroup_zone *mz)
170
{
171
	return !mz->mem_cgroup;
172
}
173
#else
174 175 176 177 178
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}

179
static bool scanning_global_lru(struct mem_cgroup_zone *mz)
180 181 182
{
	return true;
}
183 184
#endif

185
static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
186
{
187 188
	if (!scanning_global_lru(mz))
		return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
K
KOSAKI Motohiro 已提交
189

190
	return &mz->zone->reclaim_stat;
191 192
}

193 194
static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
				       enum lru_list lru)
195
{
196 197 198 199 200
	if (!scanning_global_lru(mz))
		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
						    zone_to_nid(mz->zone),
						    zone_idx(mz->zone),
						    BIT(lru));
201

202
	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
203 204 205
}


L
Linus Torvalds 已提交
206 207 208
/*
 * Add a shrinker callback to be called from the vm
 */
209
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
210
{
211
	atomic_long_set(&shrinker->nr_in_batch, 0);
212 213 214
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
215
}
216
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
217 218 219 220

/*
 * Remove one
 */
221
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
222 223 224 225 226
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
227
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
228

229 230 231 232 233 234 235 236
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
237 238 239 240 241 242 243 244 245
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
246
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
247 248 249 250 251 252 253
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
254 255
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
256
 */
257
unsigned long shrink_slab(struct shrink_control *shrink,
258
			  unsigned long nr_pages_scanned,
259
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
260 261
{
	struct shrinker *shrinker;
262
	unsigned long ret = 0;
L
Linus Torvalds 已提交
263

264 265
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
266

267 268 269 270 271
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
272 273 274

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
275 276
		long total_scan;
		long max_pass;
277
		int shrink_ret = 0;
278 279
		long nr;
		long new_nr;
280 281
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
282

283 284 285 286
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

287 288 289 290 291
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
292
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
293 294

		total_scan = nr;
295
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
296
		delta *= max_pass;
L
Linus Torvalds 已提交
297
		do_div(delta, lru_pages + 1);
298 299
		total_scan += delta;
		if (total_scan < 0) {
300 301
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
302 303
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
304 305
		}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

321 322 323 324 325
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
326 327
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
328

329
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
330 331 332
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

333
		while (total_scan >= batch_size) {
334
			int nr_before;
L
Linus Torvalds 已提交
335

336 337
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
338
							batch_size);
L
Linus Torvalds 已提交
339 340
			if (shrink_ret == -1)
				break;
341 342
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
343 344
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
345 346 347 348

			cond_resched();
		}

349 350 351 352 353
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
354 355 356 357 358
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
359 360

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
361 362
	}
	up_read(&shrinker_rwsem);
363 364
out:
	cond_resched();
365
	return ret;
L
Linus Torvalds 已提交
366 367
}

368
static void set_reclaim_mode(int priority, struct scan_control *sc,
369 370
				   bool sync)
{
371
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
372 373

	/*
374 375 376
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
377
	 */
378
	if (COMPACTION_BUILD)
379
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380
	else
381
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
382 383

	/*
384 385 386
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
387 388
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389
		sc->reclaim_mode |= syncmode;
390
	else if (sc->order && priority < DEF_PRIORITY - 2)
391
		sc->reclaim_mode |= syncmode;
392
	else
393
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
394 395
}

396
static void reset_reclaim_mode(struct scan_control *sc)
397
{
398
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
399 400
}

L
Linus Torvalds 已提交
401 402
static inline int is_page_cache_freeable(struct page *page)
{
403 404 405 406 407
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
408
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
409 410
}

411 412
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
413
{
414
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
415 416 417 418 419
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
420 421 422 423

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
442
	lock_page(page);
443 444
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
445 446 447
	unlock_page(page);
}

448 449 450 451 452 453 454 455 456 457 458 459
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
460
/*
A
Andrew Morton 已提交
461 462
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
463
 */
464
static pageout_t pageout(struct page *page, struct address_space *mapping,
465
			 struct scan_control *sc)
L
Linus Torvalds 已提交
466 467 468 469 470 471 472 473
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
474
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
490
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
491 492
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
493
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
494 495 496 497 498 499 500
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
501
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
502 503 504 505 506 507 508
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
509 510
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
511 512 513 514 515 516 517
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
518
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
519 520 521
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
522

L
Linus Torvalds 已提交
523 524 525 526
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
527
		trace_mm_vmscan_writepage(page,
528
			trace_reclaim_flags(page, sc->reclaim_mode));
529
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
530 531 532 533 534 535
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

536
/*
N
Nick Piggin 已提交
537 538
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
539
 */
N
Nick Piggin 已提交
540
static int __remove_mapping(struct address_space *mapping, struct page *page)
541
{
542 543
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
544

N
Nick Piggin 已提交
545
	spin_lock_irq(&mapping->tree_lock);
546
	/*
N
Nick Piggin 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
570
	 */
N
Nick Piggin 已提交
571
	if (!page_freeze_refs(page, 2))
572
		goto cannot_free;
N
Nick Piggin 已提交
573 574 575
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
576
		goto cannot_free;
N
Nick Piggin 已提交
577
	}
578 579 580 581

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
582
		spin_unlock_irq(&mapping->tree_lock);
583
		swapcache_free(swap, page);
N
Nick Piggin 已提交
584
	} else {
585 586 587 588
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

589
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
590
		spin_unlock_irq(&mapping->tree_lock);
591
		mem_cgroup_uncharge_cache_page(page);
592 593 594

		if (freepage != NULL)
			freepage(page);
595 596 597 598 599
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
600
	spin_unlock_irq(&mapping->tree_lock);
601 602 603
	return 0;
}

N
Nick Piggin 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
637
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
651
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
652 653 654 655 656 657 658 659
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
660
		/*
661 662 663 664 665
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
		 * isolation/check_move_unevictable_page,
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666 667
		 * the page back to the evictable list.
		 *
668
		 * The other side is TestClearPageMlocked() or shmem_lock().
669 670
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

689 690 691 692 693
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
694 695 696
	put_page(page);		/* drop ref from isolate */
}

697 698 699
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
700
	PAGEREF_KEEP,
701 702 703 704
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
705
						  struct mem_cgroup_zone *mz,
706 707
						  struct scan_control *sc)
{
708
	int referenced_ptes, referenced_page;
709 710
	unsigned long vm_flags;

711
	referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712
	referenced_page = TestClearPageReferenced(page);
713 714

	/* Lumpy reclaim - ignore references */
715
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716 717 718 719 720 721 722 723 724
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

744
		if (referenced_page || referenced_ptes > 1)
745 746
			return PAGEREF_ACTIVATE;

747 748 749 750 751 752
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

753 754
		return PAGEREF_KEEP;
	}
755 756

	/* Reclaim if clean, defer dirty pages to writeback */
757
	if (referenced_page && !PageSwapBacked(page))
758 759 760
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
761 762
}

L
Linus Torvalds 已提交
763
/*
A
Andrew Morton 已提交
764
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
765
 */
A
Andrew Morton 已提交
766
static unsigned long shrink_page_list(struct list_head *page_list,
767
				      struct mem_cgroup_zone *mz,
768
				      struct scan_control *sc,
769 770 771
				      int priority,
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
772 773
{
	LIST_HEAD(ret_pages);
774
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
775
	int pgactivate = 0;
776 777
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
778
	unsigned long nr_reclaimed = 0;
779
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
780 781 782 783

	cond_resched();

	while (!list_empty(page_list)) {
784
		enum page_references references;
L
Linus Torvalds 已提交
785 786 787 788 789 790 791 792 793
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
794
		if (!trylock_page(page))
L
Linus Torvalds 已提交
795 796
			goto keep;

N
Nick Piggin 已提交
797
		VM_BUG_ON(PageActive(page));
798
		VM_BUG_ON(page_zone(page) != mz->zone);
L
Linus Torvalds 已提交
799 800

		sc->nr_scanned++;
801

N
Nick Piggin 已提交
802 803
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
804

805
		if (!sc->may_unmap && page_mapped(page))
806 807
			goto keep_locked;

L
Linus Torvalds 已提交
808 809 810 811
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

812 813 814 815
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
816
			nr_writeback++;
817
			/*
818 819 820 821
			 * Synchronous reclaim cannot queue pages for
			 * writeback due to the possibility of stack overflow
			 * but if it encounters a page under writeback, wait
			 * for the IO to complete.
822
			 */
823
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824
			    may_enter_fs)
825
				wait_on_page_writeback(page);
826 827 828 829
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
830
		}
L
Linus Torvalds 已提交
831

832
		references = page_check_references(page, mz, sc);
833 834
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
835
			goto activate_locked;
836 837
		case PAGEREF_KEEP:
			goto keep_locked;
838 839 840 841
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
842 843 844 845 846

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
847
		if (PageAnon(page) && !PageSwapCache(page)) {
848 849
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
850
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
851
				goto activate_locked;
852
			may_enter_fs = 1;
N
Nick Piggin 已提交
853
		}
L
Linus Torvalds 已提交
854 855 856 857 858 859 860 861

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
862
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
863 864 865 866
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
867 868
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
869 870 871 872 873 874
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
875 876
			nr_dirty++;

877 878
			/*
			 * Only kswapd can writeback filesystem pages to
879 880
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
881
			 */
882 883
			if (page_is_file_cache(page) &&
					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
884 885 886 887 888 889 890 891 892
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

893 894 895
				goto keep_locked;
			}

896
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
897
				goto keep_locked;
898
			if (!may_enter_fs)
L
Linus Torvalds 已提交
899
				goto keep_locked;
900
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
901 902 903
				goto keep_locked;

			/* Page is dirty, try to write it out here */
904
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
905
			case PAGE_KEEP:
906
				nr_congested++;
L
Linus Torvalds 已提交
907 908 909 910
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
911 912 913
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
914
					goto keep;
915

L
Linus Torvalds 已提交
916 917 918 919
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
920
				if (!trylock_page(page))
L
Linus Torvalds 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
940
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
941 942 943 944 945 946 947 948 949 950
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
951
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
952 953
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
970 971
		}

N
Nick Piggin 已提交
972
		if (!mapping || !__remove_mapping(mapping, page))
973
			goto keep_locked;
L
Linus Torvalds 已提交
974

N
Nick Piggin 已提交
975 976 977 978 979 980 981 982
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
983
free_it:
984
		nr_reclaimed++;
985 986 987 988 989 990

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
991 992
		continue;

N
Nick Piggin 已提交
993
cull_mlocked:
994 995
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
996 997
		unlock_page(page);
		putback_lru_page(page);
998
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
999 1000
		continue;

L
Linus Torvalds 已提交
1001
activate_locked:
1002 1003
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1004
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1005
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
1011
		reset_reclaim_mode(sc);
1012
keep_lumpy:
L
Linus Torvalds 已提交
1013
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1014
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1015
	}
1016

1017 1018 1019 1020 1021 1022
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
1023
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024
		zone_set_flag(mz->zone, ZONE_CONGESTED);
1025

1026
	free_hot_cold_page_list(&free_pages, 1);
1027

L
Linus Torvalds 已提交
1028
	list_splice(&ret_pages, page_list);
1029
	count_vm_events(PGACTIVATE, pgactivate);
1030 1031
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
1032
	return nr_reclaimed;
L
Linus Torvalds 已提交
1033 1034
}

A
Andy Whitcroft 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1045
int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
A
Andy Whitcroft 已提交
1046
{
1047
	bool all_lru_mode;
A
Andy Whitcroft 已提交
1048 1049 1050 1051 1052 1053
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

1054 1055 1056
	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);

A
Andy Whitcroft 已提交
1057 1058 1059 1060 1061
	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
1062
	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
A
Andy Whitcroft 已提交
1063 1064
		return ret;

1065
	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066 1067
		return ret;

L
Lee Schermerhorn 已提交
1068 1069 1070 1071 1072 1073 1074 1075
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
1076
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1111

1112 1113 1114
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1142 1143
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1144
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1145 1146 1147
 *
 * returns how many pages were moved onto *@dst.
 */
1148 1149
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1150 1151
		unsigned long *scanned, int order, isolate_mode_t mode,
		int file)
L
Linus Torvalds 已提交
1152
{
1153
	unsigned long nr_taken = 0;
1154 1155 1156
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1157
	unsigned long scan;
L
Linus Torvalds 已提交
1158

1159
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1160 1161 1162 1163 1164 1165
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1166 1167 1168
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1169
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1170

1171
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1172
		case 0:
1173
			mem_cgroup_lru_del(page);
A
Andy Whitcroft 已提交
1174
			list_move(&page->lru, dst);
1175
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1176 1177 1178 1179 1180 1181
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1182

A
Andy Whitcroft 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
L
Lucas De Marchi 已提交
1195
		 * as the mem_map is guaranteed valid out to MAX_ORDER,
A
Andy Whitcroft 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1215

A
Andy Whitcroft 已提交
1216 1217
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1218
				break;
1219 1220 1221 1222 1223 1224

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
1225
			if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1226 1227
			    !PageSwapCache(cursor_page))
				break;
1228

1229
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1230 1231
				unsigned int isolated_pages;

1232
				mem_cgroup_lru_del(cursor_page);
A
Andy Whitcroft 已提交
1233
				list_move(&cursor_page->lru, dst);
1234 1235 1236
				isolated_pages = hpage_nr_pages(cursor_page);
				nr_taken += isolated_pages;
				nr_lumpy_taken += isolated_pages;
1237
				if (PageDirty(cursor_page))
1238
					nr_lumpy_dirty += isolated_pages;
A
Andy Whitcroft 已提交
1239
				scan++;
1240
				pfn += isolated_pages - 1;
1241
			} else {
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
				/*
				 * Check if the page is freed already.
				 *
				 * We can't use page_count() as that
				 * requires compound_head and we don't
				 * have a pin on the page here. If a
				 * page is tail, we may or may not
				 * have isolated the head, so assume
				 * it's not free, it'd be tricky to
				 * track the head status without a
				 * page pin.
				 */
				if (!PageTail(cursor_page) &&
				    !atomic_read(&cursor_page->_count))
1256 1257
					continue;
				break;
A
Andy Whitcroft 已提交
1258 1259
			}
		}
1260 1261 1262 1263

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1264 1265 1266
	}

	*scanned = scan;
1267 1268 1269 1270 1271

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1272
			mode, file);
L
Linus Torvalds 已提交
1273 1274 1275
	return nr_taken;
}

1276 1277 1278 1279
static unsigned long isolate_pages(unsigned long nr, struct mem_cgroup_zone *mz,
				   struct list_head *dst,
				   unsigned long *scanned, int order,
				   isolate_mode_t mode, int active, int file)
1280
{
1281
	struct lruvec *lruvec;
1282
	int lru = LRU_BASE;
1283 1284

	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1285
	if (active)
1286 1287 1288
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
1289
	return isolate_lru_pages(nr, &lruvec->lists[lru], dst,
1290
				 scanned, order, mode, file);
1291 1292
}

A
Andy Whitcroft 已提交
1293 1294 1295 1296
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1297 1298
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1299 1300
{
	int nr_active = 0;
1301
	int lru;
A
Andy Whitcroft 已提交
1302 1303
	struct page *page;

1304
	list_for_each_entry(page, page_list, lru) {
1305
		int numpages = hpage_nr_pages(page);
1306
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1307
		if (PageActive(page)) {
1308
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1309
			ClearPageActive(page);
1310
			nr_active += numpages;
A
Andy Whitcroft 已提交
1311
		}
1312
		if (count)
1313
			count[lru] += numpages;
1314
	}
A
Andy Whitcroft 已提交
1315 1316 1317 1318

	return nr_active;
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1330 1331 1332
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1348 1349
	VM_BUG_ON(!page_count(page));

1350 1351 1352 1353
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1354
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1355
			int lru = page_lru(page);
1356
			ret = 0;
1357
			get_page(page);
1358
			ClearPageLRU(page);
1359 1360

			del_page_from_lru_list(zone, page, lru);
1361 1362 1363 1364 1365 1366
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1378
	if (!global_reclaim(sc))
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1392 1393 1394 1395
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1396 1397 1398
putback_lru_pages(struct mem_cgroup_zone *mz, struct scan_control *sc,
		  unsigned long nr_anon, unsigned long nr_file,
		  struct list_head *page_list)
1399 1400 1401
{
	struct page *page;
	struct pagevec pvec;
1402 1403
	struct zone *zone = mz->zone;
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1422
		SetPageLRU(page);
1423
		lru = page_lru(page);
1424
		add_page_to_lru_list(zone, page, lru);
1425 1426
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1427 1428
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1443 1444 1445 1446 1447 1448
static noinline_for_stack void
update_isolated_counts(struct mem_cgroup_zone *mz,
		       struct scan_control *sc,
		       unsigned long *nr_anon,
		       unsigned long *nr_file,
		       struct list_head *isolated_list)
1449 1450
{
	unsigned long nr_active;
1451
	struct zone *zone = mz->zone;
1452
	unsigned int count[NR_LRU_LISTS] = { 0, };
1453
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1476
/*
1477
 * Returns true if a direct reclaim should wait on pages under writeback.
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1496
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1497 1498
		return false;

1499
	/* If we have reclaimed everything on the isolated list, no stall */
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1517
/*
A
Andrew Morton 已提交
1518 1519
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1520
 */
1521
static noinline_for_stack unsigned long
1522 1523
shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
		     struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1524 1525
{
	LIST_HEAD(page_list);
1526
	unsigned long nr_scanned;
1527
	unsigned long nr_reclaimed = 0;
1528 1529 1530
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1531 1532
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1533
	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1534
	struct zone *zone = mz->zone;
1535

1536
	while (unlikely(too_many_isolated(zone, file, sc))) {
1537
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1538 1539 1540 1541 1542 1543

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1544
	set_reclaim_mode(priority, sc, false);
1545 1546 1547
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
		reclaim_mode |= ISOLATE_ACTIVE;

L
Linus Torvalds 已提交
1548
	lru_add_drain();
1549 1550 1551 1552 1553 1554

	if (!sc->may_unmap)
		reclaim_mode |= ISOLATE_UNMAPPED;
	if (!sc->may_writepage)
		reclaim_mode |= ISOLATE_CLEAN;

L
Linus Torvalds 已提交
1555
	spin_lock_irq(&zone->lru_lock);
1556

1557 1558 1559
	nr_taken = isolate_pages(nr_to_scan, mz, &page_list,
				 &nr_scanned, sc->order,
				 reclaim_mode, 0, file);
1560
	if (global_reclaim(sc)) {
1561 1562 1563 1564 1565 1566 1567 1568
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	}
1569

1570 1571 1572 1573
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1574

1575
	update_isolated_counts(mz, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1576

1577
	spin_unlock_irq(&zone->lru_lock);
1578

1579
	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1580
						&nr_dirty, &nr_writeback);
1581

1582 1583
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1584
		set_reclaim_mode(priority, sc, true);
1585
		nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1586
					priority, &nr_dirty, &nr_writeback);
1587
	}
1588

1589 1590 1591 1592
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1593

1594
	putback_lru_pages(mz, sc, nr_anon, nr_file, &page_list);
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1622 1623 1624 1625
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1626
		trace_shrink_flags(file, sc->reclaim_mode));
1627
	return nr_reclaimed;
L
Linus Torvalds 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1647

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
1659 1660
		struct lruvec *lruvec;

1661 1662 1663 1664 1665
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1666 1667
		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
		list_move(&page->lru, &lruvec->lists[lru]);
1668
		pgmoved += hpage_nr_pages(page);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1682

1683 1684 1685 1686
static void shrink_active_list(unsigned long nr_pages,
			       struct mem_cgroup_zone *mz,
			       struct scan_control *sc,
			       int priority, int file)
L
Linus Torvalds 已提交
1687
{
1688
	unsigned long nr_taken;
1689
	unsigned long pgscanned;
1690
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1691
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1692
	LIST_HEAD(l_active);
1693
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1694
	struct page *page;
1695
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1696
	unsigned long nr_rotated = 0;
1697
	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1698
	struct zone *zone = mz->zone;
L
Linus Torvalds 已提交
1699 1700

	lru_add_drain();
1701 1702 1703 1704 1705 1706

	if (!sc->may_unmap)
		reclaim_mode |= ISOLATE_UNMAPPED;
	if (!sc->may_writepage)
		reclaim_mode |= ISOLATE_CLEAN;

L
Linus Torvalds 已提交
1707
	spin_lock_irq(&zone->lru_lock);
1708 1709 1710 1711

	nr_taken = isolate_pages(nr_pages, mz, &l_hold,
				 &pgscanned, sc->order,
				 reclaim_mode, 1, file);
1712

1713 1714 1715
	if (global_reclaim(sc))
		zone->pages_scanned += pgscanned;

1716
	reclaim_stat->recent_scanned[file] += nr_taken;
1717

1718
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1719
	if (file)
1720
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1721
	else
1722
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1723
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728 1729
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1730

L
Lee Schermerhorn 已提交
1731 1732 1733 1734 1735
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1736
		if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1737
			nr_rotated += hpage_nr_pages(page);
1738 1739 1740 1741 1742 1743 1744 1745 1746
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1747
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1748 1749 1750 1751
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1752

1753
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1754 1755 1756
		list_add(&page->lru, &l_inactive);
	}

1757
	/*
1758
	 * Move pages back to the lru list.
1759
	 */
1760
	spin_lock_irq(&zone->lru_lock);
1761
	/*
1762 1763 1764 1765
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1766
	 */
1767
	reclaim_stat->recent_rotated[file] += nr_rotated;
1768

1769 1770 1771 1772
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1773
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1774
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1775 1776
}

1777
#ifdef CONFIG_SWAP
1778
static int inactive_anon_is_low_global(struct zone *zone)
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1791 1792 1793 1794 1795 1796 1797 1798
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1799
static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1800
{
1801 1802 1803 1804 1805 1806 1807
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1808 1809 1810 1811 1812
	if (!scanning_global_lru(mz))
		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
						       mz->zone);

	return inactive_anon_is_low_global(mz->zone);
1813
}
1814
#else
1815
static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1816 1817 1818 1819
{
	return 0;
}
#endif
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1833
 * @mz: memory cgroup and zone to check
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1845
static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1846
{
1847 1848 1849
	if (!scanning_global_lru(mz))
		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
						       mz->zone);
1850

1851
	return inactive_file_is_low_global(mz->zone);
1852 1853
}

1854
static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1855 1856
{
	if (file)
1857
		return inactive_file_is_low(mz);
1858
	else
1859
		return inactive_anon_is_low(mz);
1860 1861
}

1862
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1863 1864
				 struct mem_cgroup_zone *mz,
				 struct scan_control *sc, int priority)
1865
{
1866 1867
	int file = is_file_lru(lru);

1868
	if (is_active_lru(lru)) {
1869 1870
		if (inactive_list_is_low(mz, file))
			shrink_active_list(nr_to_scan, mz, sc, priority, file);
1871 1872 1873
		return 0;
	}

1874
	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1875 1876
}

1877 1878
static int vmscan_swappiness(struct mem_cgroup_zone *mz,
			     struct scan_control *sc)
1879
{
1880
	if (global_reclaim(sc))
1881
		return vm_swappiness;
1882
	return mem_cgroup_swappiness(mz->mem_cgroup);
1883 1884
}

1885 1886 1887 1888 1889 1890
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1891
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1892
 */
1893 1894
static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
			   unsigned long *nr, int priority)
1895 1896 1897 1898
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1899
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1900 1901 1902
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;
1903
	bool force_scan = false;
1904

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1915
	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1916
		force_scan = true;
1917
	if (!global_reclaim(sc))
1918
		force_scan = true;
1919 1920 1921 1922 1923 1924 1925 1926 1927

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1928

1929 1930 1931 1932
	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1933

1934
	if (global_reclaim(sc)) {
1935
		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1936 1937
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1938
		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1939 1940 1941 1942
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1943
		}
1944 1945
	}

1946 1947 1948 1949
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1950 1951
	anon_prio = vmscan_swappiness(mz, sc);
	file_prio = 200 - vmscan_swappiness(mz, sc);
1952

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1964
	spin_lock_irq(&mz->zone->lru_lock);
1965 1966 1967
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1968 1969
	}

1970 1971 1972
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1973 1974 1975
	}

	/*
1976 1977 1978
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1979
	 */
1980 1981
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1982

1983 1984
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1985
	spin_unlock_irq(&mz->zone->lru_lock);
1986

1987 1988 1989 1990 1991 1992 1993
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1994

1995
		scan = zone_nr_lru_pages(mz, l);
1996 1997
		if (priority || noswap) {
			scan >>= priority;
1998 1999
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
2000 2001
			scan = div64_u64(scan * fraction[file], denominator);
		}
2002
		nr[l] = scan;
2003
	}
2004
}
2005

2006 2007 2008 2009 2010 2011 2012
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
2013
static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2014 2015 2016 2017 2018 2019 2020 2021
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2022
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2023 2024
		return false;

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2047 2048 2049 2050 2051 2052

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2053
	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2054
	if (nr_swap_pages > 0)
2055
		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2056 2057 2058 2059 2060
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2061
	switch (compaction_suitable(mz->zone, sc->order)) {
2062 2063 2064 2065 2066 2067 2068 2069
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
2070 2071 2072
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2073 2074
static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
				   struct scan_control *sc)
L
Linus Torvalds 已提交
2075
{
2076
	unsigned long nr[NR_LRU_LISTS];
2077
	unsigned long nr_to_scan;
2078
	enum lru_list l;
2079
	unsigned long nr_reclaimed, nr_scanned;
2080
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2081
	struct blk_plug plug;
2082

2083 2084
restart:
	nr_reclaimed = 0;
2085
	nr_scanned = sc->nr_scanned;
2086
	get_scan_count(mz, sc, nr, priority);
L
Linus Torvalds 已提交
2087

2088
	blk_start_plug(&plug);
2089 2090
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
2091
		for_each_evictable_lru(l) {
2092
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
2093 2094
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
2095
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
2096

2097
				nr_reclaimed += shrink_list(l, nr_to_scan,
2098
							    mz, sc, priority);
2099
			}
L
Linus Torvalds 已提交
2100
		}
2101 2102 2103 2104 2105 2106 2107 2108
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
2109
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2110
			break;
L
Linus Torvalds 已提交
2111
	}
2112
	blk_finish_plug(&plug);
2113
	sc->nr_reclaimed += nr_reclaimed;
2114

2115 2116 2117 2118
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2119 2120
	if (inactive_anon_is_low(mz))
		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2121

2122
	/* reclaim/compaction might need reclaim to continue */
2123
	if (should_continue_reclaim(mz, nr_reclaimed,
2124 2125 2126
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

2127
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
2128 2129
}

2130 2131 2132
static void shrink_zone(int priority, struct zone *zone,
			struct scan_control *sc)
{
2133 2134
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
2135
		.zone = zone,
2136
		.priority = priority,
2137
	};
2138 2139 2140 2141 2142 2143 2144 2145
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};
2146

2147 2148 2149 2150 2151 2152
		shrink_mem_cgroup_zone(priority, &mz, sc);
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
2153 2154 2155 2156
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
2157 2158 2159 2160 2161 2162 2163
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
2164 2165
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
	if (compaction_deferred(zone))
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2202 2203 2204 2205 2206
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2207 2208
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2209 2210
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2211 2212 2213
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2214 2215 2216
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2217 2218
 *
 * This function returns true if a zone is being reclaimed for a costly
2219
 * high-order allocation and compaction is ready to begin. This indicates to
2220 2221
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2222
 */
2223
static bool shrink_zones(int priority, struct zonelist *zonelist,
2224
					struct scan_control *sc)
L
Linus Torvalds 已提交
2225
{
2226
	struct zoneref *z;
2227
	struct zone *zone;
2228 2229
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2230
	bool aborted_reclaim = false;
2231

2232 2233
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2234
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2235
			continue;
2236 2237 2238 2239
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2240
		if (global_reclaim(sc)) {
2241 2242
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2243
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2244
				continue;	/* Let kswapd poll it */
2245 2246
			if (COMPACTION_BUILD) {
				/*
2247 2248 2249 2250 2251 2252 2253
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
				 * noticable problem, like transparent huge page
				 * allocations.
2254
				 */
2255
				if (compaction_ready(zone, sc)) {
2256
					aborted_reclaim = true;
2257
					continue;
2258
				}
2259
			}
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2273
		}
2274

2275
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2276
	}
2277

2278
	return aborted_reclaim;
2279 2280 2281 2282 2283 2284 2285
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2286
/* All zones in zonelist are unreclaimable? */
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2299 2300
		if (!zone->all_unreclaimable)
			return false;
2301 2302
	}

2303
	return true;
L
Linus Torvalds 已提交
2304
}
2305

L
Linus Torvalds 已提交
2306 2307 2308 2309 2310 2311 2312 2313
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2314 2315 2316 2317
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2318 2319 2320
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2321
 */
2322
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2323 2324
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2325 2326
{
	int priority;
2327
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2328
	struct reclaim_state *reclaim_state = current->reclaim_state;
2329
	struct zoneref *z;
2330
	struct zone *zone;
2331
	unsigned long writeback_threshold;
2332
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2333

2334
	get_mems_allowed();
2335 2336
	delayacct_freepages_start();

2337
	if (global_reclaim(sc))
2338
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2339 2340

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2341
		sc->nr_scanned = 0;
2342
		if (!priority)
2343
			disable_swap_token(sc->target_mem_cgroup);
2344
		aborted_reclaim = shrink_zones(priority, zonelist, sc);
2345

2346 2347 2348 2349
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2350
		if (global_reclaim(sc)) {
2351
			unsigned long lru_pages = 0;
2352 2353
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2354 2355 2356 2357 2358 2359
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2360
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2361
			if (reclaim_state) {
2362
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2363 2364
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2365
		}
2366
		total_scanned += sc->nr_scanned;
2367
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2377 2378
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2379 2380
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2381
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2382 2383 2384
		}

		/* Take a nap, wait for some writeback to complete */
2385
		if (!sc->hibernation_mode && sc->nr_scanned &&
2386 2387 2388 2389
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2390 2391
						&cpuset_current_mems_allowed,
						&preferred_zone);
2392 2393
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2394
	}
2395

L
Linus Torvalds 已提交
2396
out:
2397
	delayacct_freepages_end();
2398
	put_mems_allowed();
2399

2400 2401 2402
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2403 2404 2405 2406 2407 2408 2409 2410
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2411 2412
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2413 2414
		return 1;

2415
	/* top priority shrink_zones still had more to do? don't OOM, then */
2416
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2417 2418 2419
		return 1;

	return 0;
L
Linus Torvalds 已提交
2420 2421
}

2422
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2423
				gfp_t gfp_mask, nodemask_t *nodemask)
2424
{
2425
	unsigned long nr_reclaimed;
2426 2427 2428
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2429
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2430
		.may_unmap = 1,
2431
		.may_swap = 1,
2432
		.order = order,
2433
		.target_mem_cgroup = NULL,
2434
		.nodemask = nodemask,
2435
	};
2436 2437 2438
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2439

2440 2441 2442 2443
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2444
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2445 2446 2447 2448

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2449 2450
}

2451
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2452

2453
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2454
						gfp_t gfp_mask, bool noswap,
2455 2456
						struct zone *zone,
						unsigned long *nr_scanned)
2457 2458
{
	struct scan_control sc = {
2459
		.nr_scanned = 0,
2460
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2461 2462 2463 2464
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2465
		.target_mem_cgroup = memcg,
2466
	};
2467
	struct mem_cgroup_zone mz = {
2468
		.mem_cgroup = memcg,
2469 2470
		.zone = zone,
	};
2471

2472 2473
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2474 2475 2476 2477 2478

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2479 2480 2481 2482 2483 2484 2485
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2486
	shrink_mem_cgroup_zone(0, &mz, &sc);
2487 2488 2489

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2490
	*nr_scanned = sc.nr_scanned;
2491 2492 2493
	return sc.nr_reclaimed;
}

2494
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2495
					   gfp_t gfp_mask,
2496
					   bool noswap)
2497
{
2498
	struct zonelist *zonelist;
2499
	unsigned long nr_reclaimed;
2500
	int nid;
2501 2502
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2503
		.may_unmap = 1,
2504
		.may_swap = !noswap,
2505
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2506
		.order = 0,
2507
		.target_mem_cgroup = memcg,
2508
		.nodemask = NULL, /* we don't care the placement */
2509 2510 2511 2512 2513
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2514 2515
	};

2516 2517 2518 2519 2520
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2521
	nid = mem_cgroup_select_victim_node(memcg);
2522 2523

	zonelist = NODE_DATA(nid)->node_zonelists;
2524 2525 2526 2527 2528

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2529
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2530 2531 2532 2533

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2534 2535 2536
}
#endif

2537 2538 2539
static void age_active_anon(struct zone *zone, struct scan_control *sc,
			    int priority)
{
2540
	struct mem_cgroup *memcg;
2541

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};

		if (inactive_anon_is_low(&mz))
			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
					   sc, priority, 0);

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2558 2559
}

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2571
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2585 2586
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2587 2588
}

2589
/* is kswapd sleeping prematurely? */
2590 2591
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2592
{
2593
	int i;
2594 2595
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2596 2597 2598

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2599
		return true;
2600

2601
	/* Check the watermark levels */
2602
	for (i = 0; i <= classzone_idx; i++) {
2603 2604 2605 2606 2607
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2608 2609 2610 2611 2612 2613 2614 2615
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2616
			continue;
2617
		}
2618

2619
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2620
							i, 0))
2621 2622 2623
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2624
	}
2625

2626 2627 2628 2629 2630 2631
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2632
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2633 2634
	else
		return !all_zones_ok;
2635 2636
}

L
Linus Torvalds 已提交
2637 2638
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2639
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2640
 *
2641
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2652 2653 2654 2655 2656
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2657
 */
2658
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2659
							int *classzone_idx)
L
Linus Torvalds 已提交
2660 2661
{
	int all_zones_ok;
2662
	unsigned long balanced;
L
Linus Torvalds 已提交
2663 2664
	int priority;
	int i;
2665
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2666
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2667
	struct reclaim_state *reclaim_state = current->reclaim_state;
2668 2669
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2670 2671
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2672
		.may_unmap = 1,
2673
		.may_swap = 1,
2674 2675 2676 2677 2678
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2679
		.order = order,
2680
		.target_mem_cgroup = NULL,
2681
	};
2682 2683 2684
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2685 2686
loop_again:
	total_scanned = 0;
2687
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2688
	sc.may_writepage = !laptop_mode;
2689
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2690 2691 2692

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2693
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2694

2695 2696
		/* The swap token gets in the way of swapout... */
		if (!priority)
2697
			disable_swap_token(NULL);
2698

L
Linus Torvalds 已提交
2699
		all_zones_ok = 1;
2700
		balanced = 0;
L
Linus Torvalds 已提交
2701

2702 2703 2704 2705 2706 2707
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2708

2709 2710
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2711

2712
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2713
				continue;
L
Linus Torvalds 已提交
2714

2715 2716 2717 2718
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2719
			age_active_anon(zone, &sc, priority);
2720

2721
			if (!zone_watermark_ok_safe(zone, order,
2722
					high_wmark_pages(zone), 0, 0)) {
2723
				end_zone = i;
A
Andrew Morton 已提交
2724
				break;
2725 2726 2727
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2728 2729
			}
		}
A
Andrew Morton 已提交
2730 2731 2732
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2733 2734 2735
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2736
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2750
			int nr_slab;
2751
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2752

2753
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2754 2755
				continue;

2756
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2757 2758 2759
				continue;

			sc.nr_scanned = 0;
2760

2761
			nr_soft_scanned = 0;
2762 2763 2764
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2765 2766 2767 2768 2769
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2770

2771
			/*
2772 2773 2774 2775 2776 2777
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2778
			 */
2779 2780 2781 2782
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2783
			if (!zone_watermark_ok_safe(zone, order,
2784
					high_wmark_pages(zone) + balance_gap,
2785
					end_zone, 0)) {
2786
				shrink_zone(priority, zone, &sc);
2787

2788 2789 2790 2791 2792 2793 2794 2795 2796
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2797 2798 2799 2800 2801 2802
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2803
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2804
				sc.may_writepage = 1;
2805

2806 2807 2808
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2809
				continue;
2810
			}
2811

2812
			if (!zone_watermark_ok_safe(zone, order,
2813 2814 2815 2816 2817 2818 2819
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2820
				if (!zone_watermark_ok_safe(zone, order,
2821 2822
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2823 2824 2825 2826 2827 2828 2829 2830 2831
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2832
				if (i <= *classzone_idx)
2833
					balanced += zone->present_pages;
2834
			}
2835

L
Linus Torvalds 已提交
2836
		}
2837
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2843 2844 2845 2846 2847 2848
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2849 2850 2851 2852 2853 2854 2855

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2856
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2857 2858 2859
			break;
	}
out:
2860 2861 2862

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2863 2864
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2865
	 */
2866
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2867
		cond_resched();
2868 2869 2870

		try_to_freeze();

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2888 2889 2890
		goto loop_again;
	}

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
2918 2919
			if (i <= *classzone_idx)
				balanced += zone->present_pages;
2920 2921 2922
		}
	}

2923 2924 2925 2926 2927 2928
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2929
	*classzone_idx = end_zone;
2930
	return order;
L
Linus Torvalds 已提交
2931 2932
}

2933
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2944
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2945 2946 2947 2948 2949 2950 2951 2952 2953
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2954
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2977 2978
/*
 * The background pageout daemon, started as a kernel thread
2979
 * from the init process.
L
Linus Torvalds 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2992
	unsigned long order, new_order;
2993
	unsigned balanced_order;
2994
	int classzone_idx, new_classzone_idx;
2995
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2996 2997
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2998

L
Linus Torvalds 已提交
2999 3000 3001
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3002
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3003

3004 3005
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3006
	if (!cpumask_empty(cpumask))
3007
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3022
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3023
	set_freezable();
L
Linus Torvalds 已提交
3024

3025
	order = new_order = 0;
3026
	balanced_order = 0;
3027
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3028
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3029
	for ( ; ; ) {
3030
		int ret;
3031

3032 3033 3034 3035 3036
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3037 3038
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3039 3040 3041 3042 3043 3044
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3045
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3046 3047
			/*
			 * Don't sleep if someone wants a larger 'order'
3048
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3049 3050
			 */
			order = new_order;
3051
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3052
		} else {
3053 3054
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3055
			order = pgdat->kswapd_max_order;
3056
			classzone_idx = pgdat->classzone_idx;
3057 3058
			new_order = order;
			new_classzone_idx = classzone_idx;
3059
			pgdat->kswapd_max_order = 0;
3060
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3061 3062
		}

3063 3064 3065 3066 3067 3068 3069 3070
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3071 3072
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3073 3074 3075
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3076
		}
L
Linus Torvalds 已提交
3077 3078 3079 3080 3081 3082 3083
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3084
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3085 3086 3087
{
	pg_data_t *pgdat;

3088
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3089 3090
		return;

3091
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3092
		return;
3093
	pgdat = zone->zone_pgdat;
3094
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3095
		pgdat->kswapd_max_order = order;
3096 3097
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3098
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3099
		return;
3100 3101 3102 3103
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3104
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3105 3106
}

3107 3108 3109 3110 3111 3112 3113 3114
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3115
{
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3140 3141
}

3142
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3143
/*
3144
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3145 3146 3147 3148 3149
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3150
 */
3151
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3152
{
3153 3154
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3155 3156 3157
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3158
		.may_writepage = 1,
3159 3160 3161
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
3162
	};
3163 3164 3165 3166
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3167 3168
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3169

3170 3171 3172 3173
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3174

3175
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3176

3177 3178 3179
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3180

3181
	return nr_reclaimed;
L
Linus Torvalds 已提交
3182
}
3183
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3184 3185 3186 3187 3188

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3189
static int __devinit cpu_callback(struct notifier_block *nfb,
3190
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3191
{
3192
	int nid;
L
Linus Torvalds 已提交
3193

3194
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3195
		for_each_node_state(nid, N_HIGH_MEMORY) {
3196
			pg_data_t *pgdat = NODE_DATA(nid);
3197 3198 3199
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3200

3201
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3202
				/* One of our CPUs online: restore mask */
3203
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3204 3205 3206 3207 3208
		}
	}
	return NOTIFY_OK;
}

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3242 3243
static int __init kswapd_init(void)
{
3244
	int nid;
3245

L
Linus Torvalds 已提交
3246
	swap_setup();
3247
	for_each_node_state(nid, N_HIGH_MEMORY)
3248
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3249 3250 3251 3252 3253
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3264
#define RECLAIM_OFF 0
3265
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3266 3267 3268
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3269 3270 3271 3272 3273 3274 3275
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3276 3277 3278 3279 3280 3281
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3282 3283 3284 3285 3286 3287
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3330 3331 3332
/*
 * Try to free up some pages from this zone through reclaim.
 */
3333
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3334
{
3335
	/* Minimum pages needed in order to stay on node */
3336
	const unsigned long nr_pages = 1 << order;
3337 3338
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3339
	int priority;
3340 3341
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3342
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3343
		.may_swap = 1,
3344 3345
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3346
		.gfp_mask = gfp_mask,
3347
		.order = order,
3348
	};
3349 3350 3351
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3352
	unsigned long nr_slab_pages0, nr_slab_pages1;
3353 3354

	cond_resched();
3355 3356 3357 3358 3359 3360
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3361
	lockdep_set_current_reclaim_state(gfp_mask);
3362 3363
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3364

3365
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3366 3367 3368 3369 3370 3371
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3372
			shrink_zone(priority, zone, &sc);
3373
			priority--;
3374
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3375
	}
3376

3377 3378
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3379
		/*
3380
		 * shrink_slab() does not currently allow us to determine how
3381 3382 3383 3384
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3385
		 *
3386 3387
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3388
		 */
3389 3390 3391 3392
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3393
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3394 3395 3396 3397 3398 3399 3400 3401
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3402 3403 3404 3405 3406

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3407 3408 3409
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3410 3411
	}

3412
	p->reclaim_state = NULL;
3413
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3414
	lockdep_clear_current_reclaim_state();
3415
	return sc.nr_reclaimed >= nr_pages;
3416
}
3417 3418 3419 3420

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3421
	int ret;
3422 3423

	/*
3424 3425
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3426
	 *
3427 3428 3429 3430 3431
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3432
	 */
3433 3434
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3435
		return ZONE_RECLAIM_FULL;
3436

3437
	if (zone->all_unreclaimable)
3438
		return ZONE_RECLAIM_FULL;
3439

3440
	/*
3441
	 * Do not scan if the allocation should not be delayed.
3442
	 */
3443
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3444
		return ZONE_RECLAIM_NOSCAN;
3445 3446 3447 3448 3449 3450 3451

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3452
	node_id = zone_to_nid(zone);
3453
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3454
		return ZONE_RECLAIM_NOSCAN;
3455 3456

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3457 3458
		return ZONE_RECLAIM_NOSCAN;

3459 3460 3461
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3462 3463 3464
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3465
	return ret;
3466
}
3467
#endif
L
Lee Schermerhorn 已提交
3468 3469 3470 3471 3472 3473 3474

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3475 3476
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3477 3478
 *
 * Reasons page might not be evictable:
3479
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3480
 * (2) page is part of an mlocked VMA
3481
 *
L
Lee Schermerhorn 已提交
3482 3483 3484 3485
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3486 3487 3488
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3489 3490
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3491 3492 3493

	return 1;
}
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
3508
	struct lruvec *lruvec;
3509

3510
	VM_BUG_ON(PageActive(page));
3511 3512 3513
retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3514
		enum lru_list l = page_lru_base_type(page);
3515

3516
		__dec_zone_state(zone, NR_UNEVICTABLE);
3517 3518 3519
		lruvec = mem_cgroup_lru_move_lists(zone, page,
						   LRU_UNEVICTABLE, l);
		list_move(&page->lru, &lruvec->lists[l]);
3520 3521 3522 3523 3524 3525 3526
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
3527 3528 3529
		lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
						   LRU_UNEVICTABLE);
		list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3589

3590
static void warn_scan_unevictable_pages(void)
3591
{
3592
	printk_once(KERN_WARNING
3593
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3594
		    "disabled for lack of a legitimate use case.  If you have "
3595 3596
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3597 3598 3599 3600 3601 3602 3603 3604 3605
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3606
			   void __user *buffer,
3607 3608
			   size_t *length, loff_t *ppos)
{
3609
	warn_scan_unevictable_pages();
3610
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3611 3612 3613 3614
	scan_unevictable_pages = 0;
	return 0;
}

3615
#ifdef CONFIG_NUMA
3616 3617 3618 3619 3620
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3621 3622
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3623 3624
					  char *buf)
{
3625
	warn_scan_unevictable_pages();
3626 3627 3628
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3629 3630
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3631 3632
					const char *buf, size_t count)
{
3633
	warn_scan_unevictable_pages();
3634 3635 3636 3637
	return 1;
}


3638
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3639 3640 3641 3642 3643
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3644
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3645 3646 3647 3648
}

void scan_unevictable_unregister_node(struct node *node)
{
3649
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3650
}
3651
#endif