vmscan.c 99.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

56
/*
57 58 59 60 61
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
62
 *			order-0 pages and then compact the zone
63
 */
64 65 66 67 68
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
69

L
Linus Torvalds 已提交
70 71 72 73
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

74 75 76
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

77 78 79
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

80 81
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
82
	/* This context's GFP mask */
A
Al Viro 已提交
83
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
84 85 86

	int may_writepage;

87 88
	/* Can mapped pages be reclaimed? */
	int may_unmap;
89

90 91 92
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
93
	int order;
94

95
	/*
96 97
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
98
	 */
99
	reclaim_mode_t reclaim_mode;
100

101 102 103 104 105
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
106

107 108 109 110 111
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
112 113
};

114 115 116 117 118
struct mem_cgroup_zone {
	struct mem_cgroup *mem_cgroup;
	struct zone *zone;
};

L
Linus Torvalds 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
153
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
154 155 156 157

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

158
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
159 160
static bool global_reclaim(struct scan_control *sc)
{
161
	return !sc->target_mem_cgroup;
162 163
}

164
static bool scanning_global_lru(struct mem_cgroup_zone *mz)
165
{
166
	return !mz->mem_cgroup;
167
}
168
#else
169 170 171 172 173
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}

174
static bool scanning_global_lru(struct mem_cgroup_zone *mz)
175 176 177
{
	return true;
}
178 179
#endif

180
static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
181
{
182 183
	if (!scanning_global_lru(mz))
		return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
K
KOSAKI Motohiro 已提交
184

185
	return &mz->zone->reclaim_stat;
186 187
}

188 189
static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
				       enum lru_list lru)
190
{
191 192 193 194 195
	if (!scanning_global_lru(mz))
		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
						    zone_to_nid(mz->zone),
						    zone_idx(mz->zone),
						    BIT(lru));
196

197
	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
198 199 200
}


L
Linus Torvalds 已提交
201 202 203
/*
 * Add a shrinker callback to be called from the vm
 */
204
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
205
{
206
	atomic_long_set(&shrinker->nr_in_batch, 0);
207 208 209
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
210
}
211
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
212 213 214 215

/*
 * Remove one
 */
216
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
217 218 219 220 221
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
222
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
223

224 225 226 227 228 229 230 231
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
241
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
242 243 244 245 246 247 248
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
249 250
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
251
 */
252
unsigned long shrink_slab(struct shrink_control *shrink,
253
			  unsigned long nr_pages_scanned,
254
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
255 256
{
	struct shrinker *shrinker;
257
	unsigned long ret = 0;
L
Linus Torvalds 已提交
258

259 260
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
261

262 263 264 265 266
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
267 268 269

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
270 271
		long total_scan;
		long max_pass;
272
		int shrink_ret = 0;
273 274
		long nr;
		long new_nr;
275 276
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
277

278 279 280 281
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

282 283 284 285 286
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
287
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
288 289

		total_scan = nr;
290
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
291
		delta *= max_pass;
L
Linus Torvalds 已提交
292
		do_div(delta, lru_pages + 1);
293 294
		total_scan += delta;
		if (total_scan < 0) {
295 296
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
297 298
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
299 300
		}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

316 317 318 319 320
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
321 322
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
323

324
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
325 326 327
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

328
		while (total_scan >= batch_size) {
329
			int nr_before;
L
Linus Torvalds 已提交
330

331 332
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
333
							batch_size);
L
Linus Torvalds 已提交
334 335
			if (shrink_ret == -1)
				break;
336 337
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
338 339
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
340 341 342 343

			cond_resched();
		}

344 345 346 347 348
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
349 350 351 352 353
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
354 355

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
356 357
	}
	up_read(&shrinker_rwsem);
358 359
out:
	cond_resched();
360
	return ret;
L
Linus Torvalds 已提交
361 362
}

363
static void set_reclaim_mode(int priority, struct scan_control *sc,
364 365
				   bool sync)
{
M
Mel Gorman 已提交
366
	/* Sync reclaim used only for compaction */
367
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
368 369

	/*
M
Mel Gorman 已提交
370
	 * Restrict reclaim/compaction to costly allocations or when
371
	 * under memory pressure
372
	 */
M
Mel Gorman 已提交
373 374 375 376
	if (COMPACTION_BUILD && sc->order &&
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
			 priority < DEF_PRIORITY - 2))
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION | syncmode;
377
	else
378
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
379 380
}

381
static void reset_reclaim_mode(struct scan_control *sc)
382
{
383
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
384 385
}

L
Linus Torvalds 已提交
386 387
static inline int is_page_cache_freeable(struct page *page)
{
388 389 390 391 392
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
393
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
394 395
}

396 397
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
398
{
399
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
423
	lock_page(page);
424 425
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
426 427 428
	unlock_page(page);
}

429 430 431 432 433 434 435 436 437 438 439 440
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
441
/*
A
Andrew Morton 已提交
442 443
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
444
 */
445
static pageout_t pageout(struct page *page, struct address_space *mapping,
446
			 struct scan_control *sc)
L
Linus Torvalds 已提交
447 448 449 450 451 452 453 454
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
455
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
471
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
472 473
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
474
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
475 476 477 478 479 480 481
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
482
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
483 484 485 486 487 488 489
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
490 491
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
492 493 494 495 496 497 498
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
499
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
500 501 502
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
503

L
Linus Torvalds 已提交
504 505 506 507
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
508
		trace_mm_vmscan_writepage(page,
509
			trace_reclaim_flags(page, sc->reclaim_mode));
510
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
511 512 513 514 515 516
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

517
/*
N
Nick Piggin 已提交
518 519
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
520
 */
N
Nick Piggin 已提交
521
static int __remove_mapping(struct address_space *mapping, struct page *page)
522
{
523 524
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
525

N
Nick Piggin 已提交
526
	spin_lock_irq(&mapping->tree_lock);
527
	/*
N
Nick Piggin 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
551
	 */
N
Nick Piggin 已提交
552
	if (!page_freeze_refs(page, 2))
553
		goto cannot_free;
N
Nick Piggin 已提交
554 555 556
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
557
		goto cannot_free;
N
Nick Piggin 已提交
558
	}
559 560 561 562

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
563
		spin_unlock_irq(&mapping->tree_lock);
564
		swapcache_free(swap, page);
N
Nick Piggin 已提交
565
	} else {
566 567 568 569
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

570
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
571
		spin_unlock_irq(&mapping->tree_lock);
572
		mem_cgroup_uncharge_cache_page(page);
573 574 575

		if (freepage != NULL)
			freepage(page);
576 577 578 579 580
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
581
	spin_unlock_irq(&mapping->tree_lock);
582 583 584
	return 0;
}

N
Nick Piggin 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
618
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
632
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
633 634 635 636 637 638 639 640
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
641
		/*
642 643 644
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
645
		 * isolation/check_move_unevictable_pages,
646
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
647 648
		 * the page back to the evictable list.
		 *
649
		 * The other side is TestClearPageMlocked() or shmem_lock().
650 651
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

670 671 672 673 674
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
675 676 677
	put_page(page);		/* drop ref from isolate */
}

678 679 680
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
681
	PAGEREF_KEEP,
682 683 684 685
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
686
						  struct mem_cgroup_zone *mz,
687 688
						  struct scan_control *sc)
{
689
	int referenced_ptes, referenced_page;
690 691
	unsigned long vm_flags;

692
	referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
693
	referenced_page = TestClearPageReferenced(page);
694 695 696 697 698 699 700 701

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

721
		if (referenced_page || referenced_ptes > 1)
722 723
			return PAGEREF_ACTIVATE;

724 725 726 727 728 729
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

730 731
		return PAGEREF_KEEP;
	}
732 733

	/* Reclaim if clean, defer dirty pages to writeback */
734
	if (referenced_page && !PageSwapBacked(page))
735 736 737
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
738 739
}

L
Linus Torvalds 已提交
740
/*
A
Andrew Morton 已提交
741
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
742
 */
A
Andrew Morton 已提交
743
static unsigned long shrink_page_list(struct list_head *page_list,
744
				      struct mem_cgroup_zone *mz,
745
				      struct scan_control *sc,
746 747 748
				      int priority,
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
749 750
{
	LIST_HEAD(ret_pages);
751
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
752
	int pgactivate = 0;
753 754
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
755
	unsigned long nr_reclaimed = 0;
756
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
757 758 759 760

	cond_resched();

	while (!list_empty(page_list)) {
761
		enum page_references references;
L
Linus Torvalds 已提交
762 763 764 765 766 767 768 769 770
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
771
		if (!trylock_page(page))
L
Linus Torvalds 已提交
772 773
			goto keep;

N
Nick Piggin 已提交
774
		VM_BUG_ON(PageActive(page));
775
		VM_BUG_ON(page_zone(page) != mz->zone);
L
Linus Torvalds 已提交
776 777

		sc->nr_scanned++;
778

N
Nick Piggin 已提交
779 780
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
781

782
		if (!sc->may_unmap && page_mapped(page))
783 784
			goto keep_locked;

L
Linus Torvalds 已提交
785 786 787 788
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

789 790 791 792
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
793
			nr_writeback++;
794
			/*
795 796 797 798
			 * Synchronous reclaim cannot queue pages for
			 * writeback due to the possibility of stack overflow
			 * but if it encounters a page under writeback, wait
			 * for the IO to complete.
799
			 */
800
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
801
			    may_enter_fs)
802
				wait_on_page_writeback(page);
803 804
			else {
				unlock_page(page);
M
Mel Gorman 已提交
805
				goto keep_reclaim_mode;
806
			}
807
		}
L
Linus Torvalds 已提交
808

809
		references = page_check_references(page, mz, sc);
810 811
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
812
			goto activate_locked;
813 814
		case PAGEREF_KEEP:
			goto keep_locked;
815 816 817 818
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
819 820 821 822 823

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
824
		if (PageAnon(page) && !PageSwapCache(page)) {
825 826
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
827
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
828
				goto activate_locked;
829
			may_enter_fs = 1;
N
Nick Piggin 已提交
830
		}
L
Linus Torvalds 已提交
831 832 833 834 835 836 837 838

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
839
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
840 841 842 843
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
844 845
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
846 847 848 849 850 851
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
852 853
			nr_dirty++;

854 855
			/*
			 * Only kswapd can writeback filesystem pages to
856 857
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
858
			 */
859 860
			if (page_is_file_cache(page) &&
					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
861 862 863 864 865 866 867 868 869
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

870 871 872
				goto keep_locked;
			}

873
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
874
				goto keep_locked;
875
			if (!may_enter_fs)
L
Linus Torvalds 已提交
876
				goto keep_locked;
877
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
878 879 880
				goto keep_locked;

			/* Page is dirty, try to write it out here */
881
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
882
			case PAGE_KEEP:
883
				nr_congested++;
L
Linus Torvalds 已提交
884 885 886 887
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
888
				if (PageWriteback(page))
M
Mel Gorman 已提交
889
					goto keep_reclaim_mode;
890
				if (PageDirty(page))
L
Linus Torvalds 已提交
891
					goto keep;
892

L
Linus Torvalds 已提交
893 894 895 896
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
897
				if (!trylock_page(page))
L
Linus Torvalds 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
917
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
918 919 920 921 922 923 924 925 926 927
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
928
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
929 930
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
947 948
		}

N
Nick Piggin 已提交
949
		if (!mapping || !__remove_mapping(mapping, page))
950
			goto keep_locked;
L
Linus Torvalds 已提交
951

N
Nick Piggin 已提交
952 953 954 955 956 957 958 959
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
960
free_it:
961
		nr_reclaimed++;
962 963 964 965 966 967

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
968 969
		continue;

N
Nick Piggin 已提交
970
cull_mlocked:
971 972
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
973 974
		unlock_page(page);
		putback_lru_page(page);
975
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
976 977
		continue;

L
Linus Torvalds 已提交
978
activate_locked:
979 980
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
981
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
982
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
983 984 985 986 987
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
988
		reset_reclaim_mode(sc);
M
Mel Gorman 已提交
989
keep_reclaim_mode:
L
Linus Torvalds 已提交
990
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
991
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
992
	}
993

994 995 996 997 998 999
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
1000
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1001
		zone_set_flag(mz->zone, ZONE_CONGESTED);
1002

1003
	free_hot_cold_page_list(&free_pages, 1);
1004

L
Linus Torvalds 已提交
1005
	list_splice(&ret_pages, page_list);
1006
	count_vm_events(PGACTIVATE, pgactivate);
1007 1008
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
1009
	return nr_reclaimed;
L
Linus Torvalds 已提交
1010 1011
}

A
Andy Whitcroft 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1022
int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
A
Andy Whitcroft 已提交
1023
{
1024
	bool all_lru_mode;
A
Andy Whitcroft 已提交
1025 1026 1027 1028 1029 1030
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

1031 1032 1033
	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);

A
Andy Whitcroft 已提交
1034 1035 1036 1037 1038
	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
1039
	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
A
Andy Whitcroft 已提交
1040 1041
		return ret;

1042
	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1043 1044
		return ret;

M
Mel Gorman 已提交
1045
	/* Do not give back unevictable pages for compaction */
L
Lee Schermerhorn 已提交
1046 1047 1048
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
1049
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1084

1085 1086 1087
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
H
Hugh Dickins 已提交
1112
 * @mz:		The mem_cgroup_zone to pull pages from.
L
Linus Torvalds 已提交
1113
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1114
 * @nr_scanned:	The number of pages that were scanned.
1115
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1116
 * @mode:	One of the LRU isolation modes
H
Hugh Dickins 已提交
1117
 * @active:	True [1] if isolating active pages
1118
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1119 1120 1121
 *
 * returns how many pages were moved onto *@dst.
 */
1122
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
H
Hugh Dickins 已提交
1123
		struct mem_cgroup_zone *mz, struct list_head *dst,
1124 1125
		unsigned long *nr_scanned, struct scan_control *sc,
		isolate_mode_t mode, int active, int file)
L
Linus Torvalds 已提交
1126
{
H
Hugh Dickins 已提交
1127 1128
	struct lruvec *lruvec;
	struct list_head *src;
1129
	unsigned long nr_taken = 0;
1130
	unsigned long scan;
H
Hugh Dickins 已提交
1131 1132 1133 1134 1135 1136 1137 1138
	int lru = LRU_BASE;

	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
	if (active)
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	src = &lruvec->lists[lru];
L
Linus Torvalds 已提交
1139

1140
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1141 1142
		struct page *page;

L
Linus Torvalds 已提交
1143 1144 1145
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1146
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1147

1148
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1149
		case 0:
1150
			mem_cgroup_lru_del(page);
A
Andy Whitcroft 已提交
1151
			list_move(&page->lru, dst);
1152
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1153 1154 1155 1156 1157 1158
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1159

A
Andy Whitcroft 已提交
1160 1161 1162
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1163 1164
	}

H
Hugh Dickins 已提交
1165
	*nr_scanned = scan;
1166

1167
	trace_mm_vmscan_lru_isolate(sc->order,
1168 1169
			nr_to_scan, scan,
			nr_taken,
1170
			mode, file);
L
Linus Torvalds 已提交
1171 1172 1173
	return nr_taken;
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1185 1186 1187
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1203 1204
	VM_BUG_ON(!page_count(page));

1205 1206 1207 1208
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1209
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1210
			int lru = page_lru(page);
1211
			ret = 0;
1212
			get_page(page);
1213
			ClearPageLRU(page);
1214 1215

			del_page_from_lru_list(zone, page, lru);
1216 1217 1218 1219 1220 1221
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1233
	if (!global_reclaim(sc))
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1247
static noinline_for_stack void
1248 1249
putback_inactive_pages(struct mem_cgroup_zone *mz,
		       struct list_head *page_list)
1250
{
1251
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1252 1253
	struct zone *zone = mz->zone;
	LIST_HEAD(pages_to_free);
1254 1255 1256 1257 1258

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1259
		struct page *page = lru_to_page(page_list);
1260
		int lru;
1261

1262 1263 1264 1265 1266 1267 1268 1269
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1270
		SetPageLRU(page);
1271
		lru = page_lru(page);
1272
		add_page_to_lru_list(zone, page, lru);
1273 1274
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1275 1276
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1277
		}
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1289 1290 1291
		}
	}

1292 1293 1294 1295
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1296 1297
}

1298 1299
static noinline_for_stack void
update_isolated_counts(struct mem_cgroup_zone *mz,
1300
		       struct list_head *page_list,
1301
		       unsigned long *nr_anon,
1302
		       unsigned long *nr_file)
1303
{
1304
	struct zone *zone = mz->zone;
1305
	unsigned int count[NR_LRU_LISTS] = { 0, };
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	unsigned long nr_active = 0;
	struct page *page;
	int lru;

	/*
	 * Count pages and clear active flags
	 */
	list_for_each_entry(page, page_list, lru) {
		int numpages = hpage_nr_pages(page);
		lru = page_lru_base_type(page);
		if (PageActive(page)) {
			lru += LRU_ACTIVE;
			ClearPageActive(page);
			nr_active += numpages;
		}
		count[lru] += numpages;
	}
1323

1324
	preempt_disable();
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];

1339 1340 1341
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
	preempt_enable();
1342 1343
}

1344
/*
1345
 * Returns true if a direct reclaim should wait on pages under writeback.
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
M
Mel Gorman 已提交
1357
	int stall_priority;
1358 1359 1360 1361 1362

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

M
Mel Gorman 已提交
1363
	/* Only stall for memory compaction */
1364
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1365 1366
		return false;

1367
	/* If we have reclaimed everything on the isolated list, no stall */
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
M
Mel Gorman 已提交
1378
		stall_priority = DEF_PRIORITY;
1379
	else
M
Mel Gorman 已提交
1380
		stall_priority = DEF_PRIORITY / 3;
1381

M
Mel Gorman 已提交
1382
	return priority <= stall_priority;
1383 1384
}

L
Linus Torvalds 已提交
1385
/*
A
Andrew Morton 已提交
1386 1387
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1388
 */
1389
static noinline_for_stack unsigned long
1390 1391
shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
		     struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1392 1393
{
	LIST_HEAD(page_list);
1394
	unsigned long nr_scanned;
1395
	unsigned long nr_reclaimed = 0;
1396 1397 1398
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1399 1400
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1401
	isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1402
	struct zone *zone = mz->zone;
1403
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1404

1405
	while (unlikely(too_many_isolated(zone, file, sc))) {
1406
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1407 1408 1409 1410 1411 1412

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1413
	set_reclaim_mode(priority, sc, false);
1414

L
Linus Torvalds 已提交
1415
	lru_add_drain();
1416 1417

	if (!sc->may_unmap)
1418
		isolate_mode |= ISOLATE_UNMAPPED;
1419
	if (!sc->may_writepage)
1420
		isolate_mode |= ISOLATE_CLEAN;
1421

L
Linus Torvalds 已提交
1422
	spin_lock_irq(&zone->lru_lock);
1423

1424 1425
	nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
				     sc, isolate_mode, 0, file);
1426
	if (global_reclaim(sc)) {
1427 1428 1429 1430 1431 1432 1433 1434
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	}
1435
	spin_unlock_irq(&zone->lru_lock);
1436

1437
	if (nr_taken == 0)
1438
		return 0;
A
Andy Whitcroft 已提交
1439

1440 1441
	update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);

1442
	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1443
						&nr_dirty, &nr_writeback);
1444

1445 1446
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1447
		set_reclaim_mode(priority, sc, true);
1448
		nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1449
					priority, &nr_dirty, &nr_writeback);
1450
	}
1451

1452 1453
	spin_lock_irq(&zone->lru_lock);

1454 1455 1456
	reclaim_stat->recent_scanned[0] += nr_anon;
	reclaim_stat->recent_scanned[1] += nr_file;

Y
Ying Han 已提交
1457 1458 1459 1460 1461 1462 1463 1464
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1465

1466 1467 1468 1469 1470 1471 1472 1473
	putback_inactive_pages(mz, &page_list);

	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1501 1502 1503 1504
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1505
		trace_shrink_flags(file, sc->reclaim_mode));
1506
	return nr_reclaimed;
L
Linus Torvalds 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1526

1527 1528
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
1529
				     struct list_head *pages_to_free,
1530 1531 1532 1533 1534 1535
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct page *page;

	while (!list_empty(list)) {
1536 1537
		struct lruvec *lruvec;

1538 1539 1540 1541 1542
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1543 1544
		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
		list_move(&page->lru, &lruvec->lists[lru]);
1545
		pgmoved += hpage_nr_pages(page);
1546

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1558 1559 1560 1561 1562 1563
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1564

H
Hugh Dickins 已提交
1565
static void shrink_active_list(unsigned long nr_to_scan,
1566 1567 1568
			       struct mem_cgroup_zone *mz,
			       struct scan_control *sc,
			       int priority, int file)
L
Linus Torvalds 已提交
1569
{
1570
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1571
	unsigned long nr_scanned;
1572
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1573
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1574
	LIST_HEAD(l_active);
1575
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1576
	struct page *page;
1577
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1578
	unsigned long nr_rotated = 0;
1579
	isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1580
	struct zone *zone = mz->zone;
L
Linus Torvalds 已提交
1581 1582

	lru_add_drain();
1583

1584 1585
	reset_reclaim_mode(sc);

1586
	if (!sc->may_unmap)
1587
		isolate_mode |= ISOLATE_UNMAPPED;
1588
	if (!sc->may_writepage)
1589
		isolate_mode |= ISOLATE_CLEAN;
1590

L
Linus Torvalds 已提交
1591
	spin_lock_irq(&zone->lru_lock);
1592

1593
	nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1594
				     isolate_mode, 1, file);
1595
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1596
		zone->pages_scanned += nr_scanned;
1597

1598
	reclaim_stat->recent_scanned[file] += nr_taken;
1599

H
Hugh Dickins 已提交
1600
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1601
	if (file)
1602
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1603
	else
1604
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1605
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1606 1607 1608 1609 1610 1611
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1612

L
Lee Schermerhorn 已提交
1613 1614 1615 1616 1617
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1618 1619 1620 1621 1622 1623 1624 1625
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1626
		if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1627
			nr_rotated += hpage_nr_pages(page);
1628 1629 1630 1631 1632 1633 1634 1635 1636
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1637
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1638 1639 1640 1641
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1642

1643
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1644 1645 1646
		list_add(&page->lru, &l_inactive);
	}

1647
	/*
1648
	 * Move pages back to the lru list.
1649
	 */
1650
	spin_lock_irq(&zone->lru_lock);
1651
	/*
1652 1653 1654 1655
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1656
	 */
1657
	reclaim_stat->recent_rotated[file] += nr_rotated;
1658

1659
	move_active_pages_to_lru(zone, &l_active, &l_hold,
1660
						LRU_ACTIVE + file * LRU_FILE);
1661
	move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1662
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1663
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1664
	spin_unlock_irq(&zone->lru_lock);
1665 1666

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1667 1668
}

1669
#ifdef CONFIG_SWAP
1670
static int inactive_anon_is_low_global(struct zone *zone)
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1683 1684 1685 1686 1687 1688 1689 1690
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1691
static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1692
{
1693 1694 1695 1696 1697 1698 1699
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1700 1701 1702 1703 1704
	if (!scanning_global_lru(mz))
		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
						       mz->zone);

	return inactive_anon_is_low_global(mz->zone);
1705
}
1706
#else
1707
static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1708 1709 1710 1711
{
	return 0;
}
#endif
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1725
 * @mz: memory cgroup and zone to check
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1737
static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1738
{
1739 1740 1741
	if (!scanning_global_lru(mz))
		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
						       mz->zone);
1742

1743
	return inactive_file_is_low_global(mz->zone);
1744 1745
}

1746
static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1747 1748
{
	if (file)
1749
		return inactive_file_is_low(mz);
1750
	else
1751
		return inactive_anon_is_low(mz);
1752 1753
}

1754
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1755 1756
				 struct mem_cgroup_zone *mz,
				 struct scan_control *sc, int priority)
1757
{
1758 1759
	int file = is_file_lru(lru);

1760
	if (is_active_lru(lru)) {
1761 1762
		if (inactive_list_is_low(mz, file))
			shrink_active_list(nr_to_scan, mz, sc, priority, file);
1763 1764 1765
		return 0;
	}

1766
	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1767 1768
}

1769 1770
static int vmscan_swappiness(struct mem_cgroup_zone *mz,
			     struct scan_control *sc)
1771
{
1772
	if (global_reclaim(sc))
1773
		return vm_swappiness;
1774
	return mem_cgroup_swappiness(mz->mem_cgroup);
1775 1776
}

1777 1778 1779 1780 1781 1782
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1783
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1784
 */
1785 1786
static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
			   unsigned long *nr, int priority)
1787 1788 1789 1790
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1791
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1792
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1793
	enum lru_list lru;
1794
	int noswap = 0;
1795
	bool force_scan = false;
1796

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1807
	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1808
		force_scan = true;
1809
	if (!global_reclaim(sc))
1810
		force_scan = true;
1811 1812 1813 1814 1815 1816 1817 1818 1819

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1820

1821 1822 1823 1824
	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1825

1826
	if (global_reclaim(sc)) {
1827
		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1828 1829
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1830
		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1831 1832 1833 1834
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1835
		}
1836 1837
	}

1838 1839 1840 1841
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1842 1843
	anon_prio = vmscan_swappiness(mz, sc);
	file_prio = 200 - vmscan_swappiness(mz, sc);
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1856
	spin_lock_irq(&mz->zone->lru_lock);
1857 1858 1859
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1860 1861
	}

1862 1863 1864
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1865 1866 1867
	}

	/*
1868 1869 1870
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1871
	 */
1872 1873
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1874

1875 1876
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1877
	spin_unlock_irq(&mz->zone->lru_lock);
1878

1879 1880 1881 1882
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1883 1884
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1885
		unsigned long scan;
1886

H
Hugh Dickins 已提交
1887
		scan = zone_nr_lru_pages(mz, lru);
1888 1889
		if (priority || noswap) {
			scan >>= priority;
1890 1891
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1892 1893
			scan = div64_u64(scan * fraction[file], denominator);
		}
H
Hugh Dickins 已提交
1894
		nr[lru] = scan;
1895
	}
1896
}
1897

1898 1899 1900 1901 1902 1903 1904
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
1905
static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1906 1907 1908 1909 1910 1911 1912 1913
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1914
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1915 1916
		return false;

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1939 1940 1941 1942 1943 1944

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1945
	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1946
	if (nr_swap_pages > 0)
1947
		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1948 1949 1950 1951 1952
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1953
	switch (compaction_suitable(mz->zone, sc->order)) {
1954 1955 1956 1957 1958 1959 1960 1961
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1962 1963 1964
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1965 1966
static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
				   struct scan_control *sc)
L
Linus Torvalds 已提交
1967
{
1968
	unsigned long nr[NR_LRU_LISTS];
1969
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1970
	enum lru_list lru;
1971
	unsigned long nr_reclaimed, nr_scanned;
1972
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1973
	struct blk_plug plug;
1974

1975 1976
restart:
	nr_reclaimed = 0;
1977
	nr_scanned = sc->nr_scanned;
1978
	get_scan_count(mz, sc, nr, priority);
L
Linus Torvalds 已提交
1979

1980
	blk_start_plug(&plug);
1981 1982
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1983 1984
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1985
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1986 1987
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1988

H
Hugh Dickins 已提交
1989
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1990
							    mz, sc, priority);
1991
			}
L
Linus Torvalds 已提交
1992
		}
1993 1994 1995 1996 1997 1998 1999 2000
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
2001
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2002
			break;
L
Linus Torvalds 已提交
2003
	}
2004
	blk_finish_plug(&plug);
2005
	sc->nr_reclaimed += nr_reclaimed;
2006

2007 2008 2009 2010
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2011 2012
	if (inactive_anon_is_low(mz))
		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2013

2014
	/* reclaim/compaction might need reclaim to continue */
2015
	if (should_continue_reclaim(mz, nr_reclaimed,
2016 2017 2018
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

2019
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
2020 2021
}

2022 2023 2024
static void shrink_zone(int priority, struct zone *zone,
			struct scan_control *sc)
{
2025 2026
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
2027
		.zone = zone,
2028
		.priority = priority,
2029
	};
2030 2031 2032 2033 2034 2035 2036 2037
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};
2038

2039 2040 2041 2042 2043 2044
		shrink_mem_cgroup_zone(priority, &mz, sc);
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
2045 2046 2047 2048
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
2049 2050 2051 2052 2053 2054 2055
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
2056 2057
}

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2084
	if (compaction_deferred(zone, sc->order))
2085 2086 2087 2088 2089 2090 2091 2092 2093
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2094 2095 2096 2097 2098
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2099 2100
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2101 2102
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2103 2104 2105
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2106 2107 2108
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2109 2110
 *
 * This function returns true if a zone is being reclaimed for a costly
2111
 * high-order allocation and compaction is ready to begin. This indicates to
2112 2113
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2114
 */
2115
static bool shrink_zones(int priority, struct zonelist *zonelist,
2116
					struct scan_control *sc)
L
Linus Torvalds 已提交
2117
{
2118
	struct zoneref *z;
2119
	struct zone *zone;
2120 2121
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2122
	bool aborted_reclaim = false;
2123

2124 2125 2126 2127 2128 2129 2130 2131
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2132 2133
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2134
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2135
			continue;
2136 2137 2138 2139
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2140
		if (global_reclaim(sc)) {
2141 2142
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2143
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2144
				continue;	/* Let kswapd poll it */
2145 2146
			if (COMPACTION_BUILD) {
				/*
2147 2148 2149 2150 2151
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2152 2153
				 * noticeable problem, like transparent huge
				 * page allocations.
2154
				 */
2155
				if (compaction_ready(zone, sc)) {
2156
					aborted_reclaim = true;
2157
					continue;
2158
				}
2159
			}
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2173
		}
2174

2175
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2176
	}
2177

2178
	return aborted_reclaim;
2179 2180 2181 2182 2183 2184 2185
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2186
/* All zones in zonelist are unreclaimable? */
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2199 2200
		if (!zone->all_unreclaimable)
			return false;
2201 2202
	}

2203
	return true;
L
Linus Torvalds 已提交
2204
}
2205

L
Linus Torvalds 已提交
2206 2207 2208 2209 2210 2211 2212 2213
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2214 2215 2216 2217
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2218 2219 2220
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2221
 */
2222
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2223 2224
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2225 2226
{
	int priority;
2227
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2228
	struct reclaim_state *reclaim_state = current->reclaim_state;
2229
	struct zoneref *z;
2230
	struct zone *zone;
2231
	unsigned long writeback_threshold;
2232
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2233

2234 2235
	delayacct_freepages_start();

2236
	if (global_reclaim(sc))
2237
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2238 2239

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2240
		sc->nr_scanned = 0;
2241
		aborted_reclaim = shrink_zones(priority, zonelist, sc);
2242

2243 2244 2245 2246
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2247
		if (global_reclaim(sc)) {
2248
			unsigned long lru_pages = 0;
2249 2250
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2251 2252 2253 2254 2255 2256
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2257
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2258
			if (reclaim_state) {
2259
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2260 2261
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2262
		}
2263
		total_scanned += sc->nr_scanned;
2264
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2274 2275
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2276 2277
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2278
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2279 2280 2281
		}

		/* Take a nap, wait for some writeback to complete */
2282
		if (!sc->hibernation_mode && sc->nr_scanned &&
2283 2284 2285 2286
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2287 2288
						&cpuset_current_mems_allowed,
						&preferred_zone);
2289 2290
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2291
	}
2292

L
Linus Torvalds 已提交
2293
out:
2294 2295
	delayacct_freepages_end();

2296 2297 2298
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2299 2300 2301 2302 2303 2304 2305 2306
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2307 2308
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2309 2310
		return 1;

2311
	/* top priority shrink_zones still had more to do? don't OOM, then */
2312
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2313 2314 2315
		return 1;

	return 0;
L
Linus Torvalds 已提交
2316 2317
}

2318
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2319
				gfp_t gfp_mask, nodemask_t *nodemask)
2320
{
2321
	unsigned long nr_reclaimed;
2322 2323 2324
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2325
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2326
		.may_unmap = 1,
2327
		.may_swap = 1,
2328
		.order = order,
2329
		.target_mem_cgroup = NULL,
2330
		.nodemask = nodemask,
2331
	};
2332 2333 2334
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2335

2336 2337 2338 2339
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2340
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2341 2342 2343 2344

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2345 2346
}

2347
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2348

2349
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2350
						gfp_t gfp_mask, bool noswap,
2351 2352
						struct zone *zone,
						unsigned long *nr_scanned)
2353 2354
{
	struct scan_control sc = {
2355
		.nr_scanned = 0,
2356
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2357 2358 2359 2360
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2361
		.target_mem_cgroup = memcg,
2362
	};
2363
	struct mem_cgroup_zone mz = {
2364
		.mem_cgroup = memcg,
2365 2366
		.zone = zone,
	};
2367

2368 2369
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2370 2371 2372 2373 2374

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2375 2376 2377 2378 2379 2380 2381
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2382
	shrink_mem_cgroup_zone(0, &mz, &sc);
2383 2384 2385

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2386
	*nr_scanned = sc.nr_scanned;
2387 2388 2389
	return sc.nr_reclaimed;
}

2390
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2391
					   gfp_t gfp_mask,
2392
					   bool noswap)
2393
{
2394
	struct zonelist *zonelist;
2395
	unsigned long nr_reclaimed;
2396
	int nid;
2397 2398
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2399
		.may_unmap = 1,
2400
		.may_swap = !noswap,
2401
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2402
		.order = 0,
2403
		.target_mem_cgroup = memcg,
2404
		.nodemask = NULL, /* we don't care the placement */
2405 2406 2407 2408 2409
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2410 2411
	};

2412 2413 2414 2415 2416
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2417
	nid = mem_cgroup_select_victim_node(memcg);
2418 2419

	zonelist = NODE_DATA(nid)->node_zonelists;
2420 2421 2422 2423 2424

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2425
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2426 2427 2428 2429

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2430 2431 2432
}
#endif

2433 2434 2435
static void age_active_anon(struct zone *zone, struct scan_control *sc,
			    int priority)
{
2436
	struct mem_cgroup *memcg;
2437

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};

		if (inactive_anon_is_low(&mz))
			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
					   sc, priority, 0);

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2454 2455
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2467
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2481 2482
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2483 2484
}

2485
/* is kswapd sleeping prematurely? */
2486 2487
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2488
{
2489
	int i;
2490 2491
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2492 2493 2494

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2495
		return true;
2496

2497
	/* Check the watermark levels */
2498
	for (i = 0; i <= classzone_idx; i++) {
2499 2500 2501 2502 2503
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2504 2505 2506 2507 2508 2509 2510 2511
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2512
			continue;
2513
		}
2514

2515
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2516
							i, 0))
2517 2518 2519
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2520
	}
2521

2522 2523 2524 2525 2526 2527
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2528
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2529 2530
	else
		return !all_zones_ok;
2531 2532
}

L
Linus Torvalds 已提交
2533 2534
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2535
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2536
 *
2537
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2548 2549 2550 2551 2552
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2553
 */
2554
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2555
							int *classzone_idx)
L
Linus Torvalds 已提交
2556 2557
{
	int all_zones_ok;
2558
	unsigned long balanced;
L
Linus Torvalds 已提交
2559 2560
	int priority;
	int i;
2561
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2562
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2563
	struct reclaim_state *reclaim_state = current->reclaim_state;
2564 2565
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2566 2567
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2568
		.may_unmap = 1,
2569
		.may_swap = 1,
2570 2571 2572 2573 2574
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2575
		.order = order,
2576
		.target_mem_cgroup = NULL,
2577
	};
2578 2579 2580
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2581 2582
loop_again:
	total_scanned = 0;
2583
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2584
	sc.may_writepage = !laptop_mode;
2585
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2586 2587 2588

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2589
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2590 2591

		all_zones_ok = 1;
2592
		balanced = 0;
L
Linus Torvalds 已提交
2593

2594 2595 2596 2597 2598 2599
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2600

2601 2602
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2603

2604
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2605
				continue;
L
Linus Torvalds 已提交
2606

2607 2608 2609 2610
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2611
			age_active_anon(zone, &sc, priority);
2612

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2624
			if (!zone_watermark_ok_safe(zone, order,
2625
					high_wmark_pages(zone), 0, 0)) {
2626
				end_zone = i;
A
Andrew Morton 已提交
2627
				break;
2628 2629 2630
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2631 2632
			}
		}
A
Andrew Morton 已提交
2633 2634 2635
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2636 2637 2638
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2639
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2653
			int nr_slab, testorder;
2654
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2655

2656
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2657 2658
				continue;

2659
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2660 2661 2662
				continue;

			sc.nr_scanned = 0;
2663

2664
			nr_soft_scanned = 0;
2665 2666 2667
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2668 2669 2670 2671 2672
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2673

2674
			/*
2675 2676 2677 2678 2679 2680
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2681
			 */
2682 2683 2684 2685
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
			if (COMPACTION_BUILD && order &&
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2699
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2700
				    !zone_watermark_ok_safe(zone, testorder,
2701
					high_wmark_pages(zone) + balance_gap,
2702
					end_zone, 0)) {
2703
				shrink_zone(priority, zone, &sc);
2704

2705 2706 2707 2708 2709 2710 2711 2712 2713
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2714 2715 2716 2717 2718 2719
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2720
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2721
				sc.may_writepage = 1;
2722

2723 2724 2725
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2726
				continue;
2727
			}
2728

2729
			if (!zone_watermark_ok_safe(zone, testorder,
2730 2731 2732 2733 2734 2735 2736
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2737
				if (!zone_watermark_ok_safe(zone, order,
2738 2739
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2740 2741 2742 2743 2744 2745 2746 2747 2748
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2749
				if (i <= *classzone_idx)
2750
					balanced += zone->present_pages;
2751
			}
2752

L
Linus Torvalds 已提交
2753
		}
2754
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2755 2756 2757 2758 2759
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2760 2761 2762 2763 2764 2765
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2766 2767 2768 2769 2770 2771 2772

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2773
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2774 2775 2776
			break;
	}
out:
2777 2778 2779

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2780 2781
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2782
	 */
2783
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2784
		cond_resched();
2785 2786 2787

		try_to_freeze();

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2805 2806 2807
		goto loop_again;
	}

2808 2809 2810 2811 2812 2813 2814 2815 2816
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2817 2818
		int zones_need_compaction = 1;

2819 2820 2821 2822 2823 2824 2825 2826 2827
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

2828
			/* Would compaction fail due to lack of free memory? */
2829 2830
			if (COMPACTION_BUILD &&
			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2831 2832
				goto loop_again;

2833 2834 2835 2836 2837 2838 2839
			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

2840 2841 2842 2843 2844
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;

2845 2846 2847
			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
2848 2849 2850

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2851 2852
	}

2853 2854 2855 2856 2857 2858
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2859
	*classzone_idx = end_zone;
2860
	return order;
L
Linus Torvalds 已提交
2861 2862
}

2863
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2874
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2875 2876 2877 2878 2879 2880 2881 2882 2883
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2884
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2907 2908
/*
 * The background pageout daemon, started as a kernel thread
2909
 * from the init process.
L
Linus Torvalds 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2922
	unsigned long order, new_order;
2923
	unsigned balanced_order;
2924
	int classzone_idx, new_classzone_idx;
2925
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2926 2927
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2928

L
Linus Torvalds 已提交
2929 2930 2931
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2932
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2933

2934 2935
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2936
	if (!cpumask_empty(cpumask))
2937
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2952
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2953
	set_freezable();
L
Linus Torvalds 已提交
2954

2955
	order = new_order = 0;
2956
	balanced_order = 0;
2957
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2958
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2959
	for ( ; ; ) {
2960
		int ret;
2961

2962 2963 2964 2965 2966
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2967 2968
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2969 2970 2971 2972 2973 2974
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2975
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2976 2977
			/*
			 * Don't sleep if someone wants a larger 'order'
2978
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2979 2980
			 */
			order = new_order;
2981
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2982
		} else {
2983 2984
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2985
			order = pgdat->kswapd_max_order;
2986
			classzone_idx = pgdat->classzone_idx;
2987 2988
			new_order = order;
			new_classzone_idx = classzone_idx;
2989
			pgdat->kswapd_max_order = 0;
2990
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2991 2992
		}

2993 2994 2995 2996 2997 2998 2999 3000
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3001 3002
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3003 3004 3005
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3006
		}
L
Linus Torvalds 已提交
3007 3008 3009 3010 3011 3012 3013
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3014
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3015 3016 3017
{
	pg_data_t *pgdat;

3018
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3019 3020
		return;

3021
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3022
		return;
3023
	pgdat = zone->zone_pgdat;
3024
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3025
		pgdat->kswapd_max_order = order;
3026 3027
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3028
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3029
		return;
3030 3031 3032 3033
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3034
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3035 3036
}

3037 3038 3039 3040 3041 3042 3043 3044
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3045
{
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3070 3071
}

3072
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3073
/*
3074
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3075 3076 3077 3078 3079
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3080
 */
3081
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3082
{
3083 3084
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3085 3086 3087
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3088
		.may_writepage = 1,
3089 3090 3091
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
3092
	};
3093 3094 3095 3096
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3097 3098
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3099

3100 3101 3102 3103
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3104

3105
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3106

3107 3108 3109
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3110

3111
	return nr_reclaimed;
L
Linus Torvalds 已提交
3112
}
3113
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3114 3115 3116 3117 3118

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3119
static int __devinit cpu_callback(struct notifier_block *nfb,
3120
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3121
{
3122
	int nid;
L
Linus Torvalds 已提交
3123

3124
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3125
		for_each_node_state(nid, N_HIGH_MEMORY) {
3126
			pg_data_t *pgdat = NODE_DATA(nid);
3127 3128 3129
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3130

3131
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3132
				/* One of our CPUs online: restore mask */
3133
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3134 3135 3136 3137 3138
		}
	}
	return NOTIFY_OK;
}

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3172 3173
static int __init kswapd_init(void)
{
3174
	int nid;
3175

L
Linus Torvalds 已提交
3176
	swap_setup();
3177
	for_each_node_state(nid, N_HIGH_MEMORY)
3178
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3179 3180 3181 3182 3183
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3194
#define RECLAIM_OFF 0
3195
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3196 3197 3198
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3199 3200 3201 3202 3203 3204 3205
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3206 3207 3208 3209 3210 3211
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3212 3213 3214 3215 3216 3217
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3260 3261 3262
/*
 * Try to free up some pages from this zone through reclaim.
 */
3263
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3264
{
3265
	/* Minimum pages needed in order to stay on node */
3266
	const unsigned long nr_pages = 1 << order;
3267 3268
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3269
	int priority;
3270 3271
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3272
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3273
		.may_swap = 1,
3274 3275
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3276
		.gfp_mask = gfp_mask,
3277
		.order = order,
3278
	};
3279 3280 3281
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3282
	unsigned long nr_slab_pages0, nr_slab_pages1;
3283 3284

	cond_resched();
3285 3286 3287 3288 3289 3290
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3291
	lockdep_set_current_reclaim_state(gfp_mask);
3292 3293
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3294

3295
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3296 3297 3298 3299 3300 3301
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3302
			shrink_zone(priority, zone, &sc);
3303
			priority--;
3304
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3305
	}
3306

3307 3308
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3309
		/*
3310
		 * shrink_slab() does not currently allow us to determine how
3311 3312 3313 3314
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3315
		 *
3316 3317
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3318
		 */
3319 3320 3321 3322
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3323
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3324 3325 3326 3327 3328 3329 3330 3331
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3332 3333 3334 3335 3336

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3337 3338 3339
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3340 3341
	}

3342
	p->reclaim_state = NULL;
3343
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3344
	lockdep_clear_current_reclaim_state();
3345
	return sc.nr_reclaimed >= nr_pages;
3346
}
3347 3348 3349 3350

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3351
	int ret;
3352 3353

	/*
3354 3355
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3356
	 *
3357 3358 3359 3360 3361
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3362
	 */
3363 3364
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3365
		return ZONE_RECLAIM_FULL;
3366

3367
	if (zone->all_unreclaimable)
3368
		return ZONE_RECLAIM_FULL;
3369

3370
	/*
3371
	 * Do not scan if the allocation should not be delayed.
3372
	 */
3373
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3374
		return ZONE_RECLAIM_NOSCAN;
3375 3376 3377 3378 3379 3380 3381

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3382
	node_id = zone_to_nid(zone);
3383
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3384
		return ZONE_RECLAIM_NOSCAN;
3385 3386

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3387 3388
		return ZONE_RECLAIM_NOSCAN;

3389 3390 3391
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3392 3393 3394
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3395
	return ret;
3396
}
3397
#endif
L
Lee Schermerhorn 已提交
3398 3399 3400 3401 3402 3403 3404

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3405 3406
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3407 3408
 *
 * Reasons page might not be evictable:
3409
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3410
 * (2) page is part of an mlocked VMA
3411
 *
L
Lee Schermerhorn 已提交
3412 3413 3414 3415
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3416 3417 3418
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3419 3420
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3421 3422 3423

	return 1;
}
3424

3425
#ifdef CONFIG_SHMEM
3426
/**
3427 3428 3429
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3430
 *
3431
 * Checks pages for evictability and moves them to the appropriate lru list.
3432 3433
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3434
 */
3435
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3436
{
3437
	struct lruvec *lruvec;
3438 3439 3440 3441
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3442

3443 3444 3445
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3446

3447 3448 3449 3450 3451 3452 3453 3454
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3455

3456 3457
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
		if (page_evictable(page, NULL)) {
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
			__dec_zone_state(zone, NR_UNEVICTABLE);
			lruvec = mem_cgroup_lru_move_lists(zone, page,
						LRU_UNEVICTABLE, lru);
			list_move(&page->lru, &lruvec->lists[lru]);
			__inc_zone_state(zone, NR_INACTIVE_ANON + lru);
			pgrescued++;
3470
		}
3471
	}
3472

3473 3474 3475 3476
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3477 3478
	}
}
3479
#endif /* CONFIG_SHMEM */
3480

3481
static void warn_scan_unevictable_pages(void)
3482
{
3483
	printk_once(KERN_WARNING
3484
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3485
		    "disabled for lack of a legitimate use case.  If you have "
3486 3487
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3488 3489 3490 3491 3492 3493 3494 3495 3496
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3497
			   void __user *buffer,
3498 3499
			   size_t *length, loff_t *ppos)
{
3500
	warn_scan_unevictable_pages();
3501
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3502 3503 3504 3505
	scan_unevictable_pages = 0;
	return 0;
}

3506
#ifdef CONFIG_NUMA
3507 3508 3509 3510 3511
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3512 3513
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3514 3515
					  char *buf)
{
3516
	warn_scan_unevictable_pages();
3517 3518 3519
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3520 3521
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3522 3523
					const char *buf, size_t count)
{
3524
	warn_scan_unevictable_pages();
3525 3526 3527 3528
	return 1;
}


3529
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3530 3531 3532 3533 3534
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3535
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3536 3537 3538 3539
}

void scan_unevictable_unregister_node(struct node *node)
{
3540
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3541
}
3542
#endif