vmscan.c 96.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

56
/*
57 58 59
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
60
 *			order-0 pages and then compact the zone
61
 */
62 63 64
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
65

L
Linus Torvalds 已提交
66 67 68 69
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

70 71 72
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

73 74 75
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

76 77
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
78
	/* This context's GFP mask */
A
Al Viro 已提交
79
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
80 81 82

	int may_writepage;

83 84
	/* Can mapped pages be reclaimed? */
	int may_unmap;
85

86 87 88
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
89
	int order;
90

91
	/*
92 93
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
94
	 */
95
	reclaim_mode_t reclaim_mode;
96

97 98 99 100 101
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
102

103 104 105 106 107
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
108 109
};

110 111 112 113 114
struct mem_cgroup_zone {
	struct mem_cgroup *mem_cgroup;
	struct zone *zone;
};

L
Linus Torvalds 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
149
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
150 151 152 153

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

154
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
155 156
static bool global_reclaim(struct scan_control *sc)
{
157
	return !sc->target_mem_cgroup;
158 159
}

160
static bool scanning_global_lru(struct mem_cgroup_zone *mz)
161
{
162
	return !mz->mem_cgroup;
163
}
164
#else
165 166 167 168 169
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}

170
static bool scanning_global_lru(struct mem_cgroup_zone *mz)
171 172 173
{
	return true;
}
174 175
#endif

176
static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
177
{
178 179
	if (!scanning_global_lru(mz))
		return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
K
KOSAKI Motohiro 已提交
180

181
	return &mz->zone->reclaim_stat;
182 183
}

184 185
static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
				       enum lru_list lru)
186
{
187 188 189 190 191
	if (!scanning_global_lru(mz))
		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
						    zone_to_nid(mz->zone),
						    zone_idx(mz->zone),
						    BIT(lru));
192

193
	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
194 195 196
}


L
Linus Torvalds 已提交
197 198 199
/*
 * Add a shrinker callback to be called from the vm
 */
200
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
201
{
202
	atomic_long_set(&shrinker->nr_in_batch, 0);
203 204 205
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
206
}
207
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
208 209 210 211

/*
 * Remove one
 */
212
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
213 214 215 216 217
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
218
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
219

220 221 222 223 224 225 226 227
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
228 229 230 231 232 233 234 235 236
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
237
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
238 239 240 241 242 243 244
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
245 246
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
247
 */
248
unsigned long shrink_slab(struct shrink_control *shrink,
249
			  unsigned long nr_pages_scanned,
250
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
251 252
{
	struct shrinker *shrinker;
253
	unsigned long ret = 0;
L
Linus Torvalds 已提交
254

255 256
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
257

258 259 260 261 262
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
263 264 265

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
266 267
		long total_scan;
		long max_pass;
268
		int shrink_ret = 0;
269 270
		long nr;
		long new_nr;
271 272
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
273

274 275 276 277
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

278 279 280 281 282
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
283
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
284 285

		total_scan = nr;
286
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
287
		delta *= max_pass;
L
Linus Torvalds 已提交
288
		do_div(delta, lru_pages + 1);
289 290
		total_scan += delta;
		if (total_scan < 0) {
291 292
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
293 294
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
295 296
		}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

312 313 314 315 316
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
317 318
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
319

320
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
321 322 323
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

324
		while (total_scan >= batch_size) {
325
			int nr_before;
L
Linus Torvalds 已提交
326

327 328
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
329
							batch_size);
L
Linus Torvalds 已提交
330 331
			if (shrink_ret == -1)
				break;
332 333
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
334 335
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
336 337 338 339

			cond_resched();
		}

340 341 342 343 344
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
345 346 347 348 349
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
350 351

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
352 353
	}
	up_read(&shrinker_rwsem);
354 355
out:
	cond_resched();
356
	return ret;
L
Linus Torvalds 已提交
357 358
}

359
static void set_reclaim_mode(int priority, struct scan_control *sc)
360 361
{
	/*
M
Mel Gorman 已提交
362
	 * Restrict reclaim/compaction to costly allocations or when
363
	 * under memory pressure
364
	 */
M
Mel Gorman 已提交
365 366 367
	if (COMPACTION_BUILD && sc->order &&
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
			 priority < DEF_PRIORITY - 2))
368
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
369
	else
370
		sc->reclaim_mode = RECLAIM_MODE_SINGLE;
371 372
}

373
static void reset_reclaim_mode(struct scan_control *sc)
374
{
375
	sc->reclaim_mode = RECLAIM_MODE_SINGLE;
376 377
}

L
Linus Torvalds 已提交
378 379
static inline int is_page_cache_freeable(struct page *page)
{
380 381 382 383 384
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
385
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
386 387
}

388 389
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
390
{
391
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
415
	lock_page(page);
416 417
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
418 419 420
	unlock_page(page);
}

421 422 423 424 425 426 427 428 429 430 431 432
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
433
/*
A
Andrew Morton 已提交
434 435
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
436
 */
437
static pageout_t pageout(struct page *page, struct address_space *mapping,
438
			 struct scan_control *sc)
L
Linus Torvalds 已提交
439 440 441 442 443 444 445 446
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
447
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
463
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
464 465
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
466
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
467 468 469 470 471 472 473
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
474
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
475 476 477 478 479 480 481
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
482 483
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
484 485 486 487 488 489 490
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
491
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
492 493 494
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
495

L
Linus Torvalds 已提交
496 497 498 499
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
500
		trace_mm_vmscan_writepage(page,
501
			trace_reclaim_flags(page, sc->reclaim_mode));
502
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
503 504 505 506 507 508
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

509
/*
N
Nick Piggin 已提交
510 511
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
512
 */
N
Nick Piggin 已提交
513
static int __remove_mapping(struct address_space *mapping, struct page *page)
514
{
515 516
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
517

N
Nick Piggin 已提交
518
	spin_lock_irq(&mapping->tree_lock);
519
	/*
N
Nick Piggin 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
543
	 */
N
Nick Piggin 已提交
544
	if (!page_freeze_refs(page, 2))
545
		goto cannot_free;
N
Nick Piggin 已提交
546 547 548
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
549
		goto cannot_free;
N
Nick Piggin 已提交
550
	}
551 552 553 554

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
555
		spin_unlock_irq(&mapping->tree_lock);
556
		swapcache_free(swap, page);
N
Nick Piggin 已提交
557
	} else {
558 559 560 561
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

562
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
563
		spin_unlock_irq(&mapping->tree_lock);
564
		mem_cgroup_uncharge_cache_page(page);
565 566 567

		if (freepage != NULL)
			freepage(page);
568 569 570 571 572
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
573
	spin_unlock_irq(&mapping->tree_lock);
574 575 576
	return 0;
}

N
Nick Piggin 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
610
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
624
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
625 626 627 628 629 630 631 632
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
633
		/*
634 635 636
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
637
		 * isolation/check_move_unevictable_pages,
638
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
639 640
		 * the page back to the evictable list.
		 *
641
		 * The other side is TestClearPageMlocked() or shmem_lock().
642 643
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

662 663 664 665 666
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
667 668 669
	put_page(page);		/* drop ref from isolate */
}

670 671 672
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
673
	PAGEREF_KEEP,
674 675 676 677
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
678
						  struct mem_cgroup_zone *mz,
679 680
						  struct scan_control *sc)
{
681
	int referenced_ptes, referenced_page;
682 683
	unsigned long vm_flags;

684
	referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
685
	referenced_page = TestClearPageReferenced(page);
686 687 688 689 690 691 692 693

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

713
		if (referenced_page || referenced_ptes > 1)
714 715
			return PAGEREF_ACTIVATE;

716 717 718 719 720 721
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

722 723
		return PAGEREF_KEEP;
	}
724 725

	/* Reclaim if clean, defer dirty pages to writeback */
726
	if (referenced_page && !PageSwapBacked(page))
727 728 729
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
730 731
}

L
Linus Torvalds 已提交
732
/*
A
Andrew Morton 已提交
733
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
734
 */
A
Andrew Morton 已提交
735
static unsigned long shrink_page_list(struct list_head *page_list,
736
				      struct mem_cgroup_zone *mz,
737
				      struct scan_control *sc,
738 739 740
				      int priority,
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
741 742
{
	LIST_HEAD(ret_pages);
743
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
744
	int pgactivate = 0;
745 746
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
747
	unsigned long nr_reclaimed = 0;
748
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
749 750 751 752

	cond_resched();

	while (!list_empty(page_list)) {
753
		enum page_references references;
L
Linus Torvalds 已提交
754 755 756 757 758 759 760 761 762
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
763
		if (!trylock_page(page))
L
Linus Torvalds 已提交
764 765
			goto keep;

N
Nick Piggin 已提交
766
		VM_BUG_ON(PageActive(page));
767
		VM_BUG_ON(page_zone(page) != mz->zone);
L
Linus Torvalds 已提交
768 769

		sc->nr_scanned++;
770

N
Nick Piggin 已提交
771 772
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
773

774
		if (!sc->may_unmap && page_mapped(page))
775 776
			goto keep_locked;

L
Linus Torvalds 已提交
777 778 779 780
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

781 782 783 784
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
785
			nr_writeback++;
786 787
			unlock_page(page);
			goto keep;
788
		}
L
Linus Torvalds 已提交
789

790
		references = page_check_references(page, mz, sc);
791 792
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
793
			goto activate_locked;
794 795
		case PAGEREF_KEEP:
			goto keep_locked;
796 797 798 799
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
800 801 802 803 804

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
805
		if (PageAnon(page) && !PageSwapCache(page)) {
806 807
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
808
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
809
				goto activate_locked;
810
			may_enter_fs = 1;
N
Nick Piggin 已提交
811
		}
L
Linus Torvalds 已提交
812 813 814 815 816 817 818 819

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
820
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
821 822 823 824
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
825 826
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
827 828 829 830 831 832
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
833 834
			nr_dirty++;

835 836
			/*
			 * Only kswapd can writeback filesystem pages to
837 838
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
839
			 */
840 841
			if (page_is_file_cache(page) &&
					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
842 843 844 845 846 847 848 849 850
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

851 852 853
				goto keep_locked;
			}

854
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
855
				goto keep_locked;
856
			if (!may_enter_fs)
L
Linus Torvalds 已提交
857
				goto keep_locked;
858
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
859 860 861
				goto keep_locked;

			/* Page is dirty, try to write it out here */
862
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
863
			case PAGE_KEEP:
864
				nr_congested++;
L
Linus Torvalds 已提交
865 866 867 868
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
869
				if (PageWriteback(page))
870
					goto keep;
871
				if (PageDirty(page))
L
Linus Torvalds 已提交
872
					goto keep;
873

L
Linus Torvalds 已提交
874 875 876 877
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
878
				if (!trylock_page(page))
L
Linus Torvalds 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
898
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
899 900 901 902 903 904 905 906 907 908
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
909
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
910 911
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
928 929
		}

N
Nick Piggin 已提交
930
		if (!mapping || !__remove_mapping(mapping, page))
931
			goto keep_locked;
L
Linus Torvalds 已提交
932

N
Nick Piggin 已提交
933 934 935 936 937 938 939 940
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
941
free_it:
942
		nr_reclaimed++;
943 944 945 946 947 948

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
949 950
		continue;

N
Nick Piggin 已提交
951
cull_mlocked:
952 953
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
954 955
		unlock_page(page);
		putback_lru_page(page);
956
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
957 958
		continue;

L
Linus Torvalds 已提交
959
activate_locked:
960 961
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
962
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
963
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
964 965 966 967 968 969
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
970
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
971
	}
972

973 974 975 976 977 978
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
979
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
980
		zone_set_flag(mz->zone, ZONE_CONGESTED);
981

982
	free_hot_cold_page_list(&free_pages, 1);
983

L
Linus Torvalds 已提交
984
	list_splice(&ret_pages, page_list);
985
	count_vm_events(PGACTIVATE, pgactivate);
986 987
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
988
	return nr_reclaimed;
L
Linus Torvalds 已提交
989 990
}

A
Andy Whitcroft 已提交
991 992 993 994 995 996 997 998 999 1000
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1001
int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
A
Andy Whitcroft 已提交
1002
{
1003
	bool all_lru_mode;
A
Andy Whitcroft 已提交
1004 1005 1006 1007 1008 1009
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

1010 1011 1012
	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);

A
Andy Whitcroft 已提交
1013 1014 1015 1016 1017
	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
1018
	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
A
Andy Whitcroft 已提交
1019 1020
		return ret;

1021
	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1022 1023
		return ret;

M
Mel Gorman 已提交
1024
	/* Do not give back unevictable pages for compaction */
L
Lee Schermerhorn 已提交
1025 1026 1027
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
1028
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1063

1064 1065 1066
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
H
Hugh Dickins 已提交
1091
 * @mz:		The mem_cgroup_zone to pull pages from.
L
Linus Torvalds 已提交
1092
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1093
 * @nr_scanned:	The number of pages that were scanned.
1094
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1095
 * @mode:	One of the LRU isolation modes
H
Hugh Dickins 已提交
1096
 * @active:	True [1] if isolating active pages
1097
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1098 1099 1100
 *
 * returns how many pages were moved onto *@dst.
 */
1101
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
H
Hugh Dickins 已提交
1102
		struct mem_cgroup_zone *mz, struct list_head *dst,
1103 1104
		unsigned long *nr_scanned, struct scan_control *sc,
		isolate_mode_t mode, int active, int file)
L
Linus Torvalds 已提交
1105
{
H
Hugh Dickins 已提交
1106 1107
	struct lruvec *lruvec;
	struct list_head *src;
1108
	unsigned long nr_taken = 0;
1109
	unsigned long scan;
H
Hugh Dickins 已提交
1110 1111 1112 1113 1114 1115 1116 1117
	int lru = LRU_BASE;

	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
	if (active)
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	src = &lruvec->lists[lru];
L
Linus Torvalds 已提交
1118

1119
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1120 1121
		struct page *page;

L
Linus Torvalds 已提交
1122 1123 1124
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1125
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1126

1127
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1128
		case 0:
1129
			mem_cgroup_lru_del(page);
A
Andy Whitcroft 已提交
1130
			list_move(&page->lru, dst);
1131
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1132 1133 1134 1135 1136 1137
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1138

A
Andy Whitcroft 已提交
1139 1140 1141
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1142 1143
	}

H
Hugh Dickins 已提交
1144
	*nr_scanned = scan;
1145

1146
	trace_mm_vmscan_lru_isolate(sc->order,
1147 1148
			nr_to_scan, scan,
			nr_taken,
1149
			mode, file);
L
Linus Torvalds 已提交
1150 1151 1152
	return nr_taken;
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1164 1165 1166
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1182 1183
	VM_BUG_ON(!page_count(page));

1184 1185 1186 1187
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1188
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1189
			int lru = page_lru(page);
1190
			ret = 0;
1191
			get_page(page);
1192
			ClearPageLRU(page);
1193 1194

			del_page_from_lru_list(zone, page, lru);
1195 1196 1197 1198 1199 1200
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1212
	if (!global_reclaim(sc))
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1226
static noinline_for_stack void
1227 1228
putback_inactive_pages(struct mem_cgroup_zone *mz,
		       struct list_head *page_list)
1229
{
1230
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1231 1232
	struct zone *zone = mz->zone;
	LIST_HEAD(pages_to_free);
1233 1234 1235 1236 1237

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1238
		struct page *page = lru_to_page(page_list);
1239
		int lru;
1240

1241 1242 1243 1244 1245 1246 1247 1248
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1249
		SetPageLRU(page);
1250
		lru = page_lru(page);
1251
		add_page_to_lru_list(zone, page, lru);
1252 1253
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1254 1255
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1256
		}
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1268 1269 1270
		}
	}

1271 1272 1273 1274
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1275 1276
}

1277 1278
static noinline_for_stack void
update_isolated_counts(struct mem_cgroup_zone *mz,
1279
		       struct list_head *page_list,
1280
		       unsigned long *nr_anon,
1281
		       unsigned long *nr_file)
1282
{
1283
	struct zone *zone = mz->zone;
1284
	unsigned int count[NR_LRU_LISTS] = { 0, };
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	unsigned long nr_active = 0;
	struct page *page;
	int lru;

	/*
	 * Count pages and clear active flags
	 */
	list_for_each_entry(page, page_list, lru) {
		int numpages = hpage_nr_pages(page);
		lru = page_lru_base_type(page);
		if (PageActive(page)) {
			lru += LRU_ACTIVE;
			ClearPageActive(page);
			nr_active += numpages;
		}
		count[lru] += numpages;
	}
1302

1303
	preempt_disable();
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];

1318 1319 1320
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
	preempt_enable();
1321 1322
}

L
Linus Torvalds 已提交
1323
/*
A
Andrew Morton 已提交
1324 1325
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1326
 */
1327
static noinline_for_stack unsigned long
1328 1329
shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
		     struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1330 1331
{
	LIST_HEAD(page_list);
1332
	unsigned long nr_scanned;
1333
	unsigned long nr_reclaimed = 0;
1334 1335 1336
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1337 1338
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1339
	isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1340
	struct zone *zone = mz->zone;
1341
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1342

1343
	while (unlikely(too_many_isolated(zone, file, sc))) {
1344
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1345 1346 1347 1348 1349 1350

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1351
	set_reclaim_mode(priority, sc);
1352

L
Linus Torvalds 已提交
1353
	lru_add_drain();
1354 1355

	if (!sc->may_unmap)
1356
		isolate_mode |= ISOLATE_UNMAPPED;
1357
	if (!sc->may_writepage)
1358
		isolate_mode |= ISOLATE_CLEAN;
1359

L
Linus Torvalds 已提交
1360
	spin_lock_irq(&zone->lru_lock);
1361

1362 1363
	nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
				     sc, isolate_mode, 0, file);
1364
	if (global_reclaim(sc)) {
1365 1366 1367 1368 1369 1370 1371 1372
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	}
1373
	spin_unlock_irq(&zone->lru_lock);
1374

1375
	if (nr_taken == 0)
1376
		return 0;
A
Andy Whitcroft 已提交
1377

1378 1379
	update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);

1380
	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1381
						&nr_dirty, &nr_writeback);
1382

1383 1384
	spin_lock_irq(&zone->lru_lock);

1385 1386 1387
	reclaim_stat->recent_scanned[0] += nr_anon;
	reclaim_stat->recent_scanned[1] += nr_file;

Y
Ying Han 已提交
1388 1389 1390 1391 1392 1393 1394 1395
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1396

1397 1398 1399 1400 1401 1402 1403 1404
	putback_inactive_pages(mz, &page_list);

	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1432 1433 1434 1435
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1436
		trace_shrink_flags(file, sc->reclaim_mode));
1437
	return nr_reclaimed;
L
Linus Torvalds 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1457

1458 1459
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
1460
				     struct list_head *pages_to_free,
1461 1462 1463 1464 1465 1466
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct page *page;

	while (!list_empty(list)) {
1467 1468
		struct lruvec *lruvec;

1469 1470 1471 1472 1473
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1474 1475
		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
		list_move(&page->lru, &lruvec->lists[lru]);
1476
		pgmoved += hpage_nr_pages(page);
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1489 1490 1491 1492 1493 1494
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1495

H
Hugh Dickins 已提交
1496
static void shrink_active_list(unsigned long nr_to_scan,
1497 1498 1499
			       struct mem_cgroup_zone *mz,
			       struct scan_control *sc,
			       int priority, int file)
L
Linus Torvalds 已提交
1500
{
1501
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1502
	unsigned long nr_scanned;
1503
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1504
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1505
	LIST_HEAD(l_active);
1506
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1507
	struct page *page;
1508
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1509
	unsigned long nr_rotated = 0;
1510
	isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1511
	struct zone *zone = mz->zone;
L
Linus Torvalds 已提交
1512 1513

	lru_add_drain();
1514

1515 1516
	reset_reclaim_mode(sc);

1517
	if (!sc->may_unmap)
1518
		isolate_mode |= ISOLATE_UNMAPPED;
1519
	if (!sc->may_writepage)
1520
		isolate_mode |= ISOLATE_CLEAN;
1521

L
Linus Torvalds 已提交
1522
	spin_lock_irq(&zone->lru_lock);
1523

1524
	nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1525
				     isolate_mode, 1, file);
1526
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1527
		zone->pages_scanned += nr_scanned;
1528

1529
	reclaim_stat->recent_scanned[file] += nr_taken;
1530

H
Hugh Dickins 已提交
1531
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1532
	if (file)
1533
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1534
	else
1535
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1536
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1543

L
Lee Schermerhorn 已提交
1544 1545 1546 1547 1548
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1549 1550 1551 1552 1553 1554 1555 1556
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1557
		if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1558
			nr_rotated += hpage_nr_pages(page);
1559 1560 1561 1562 1563 1564 1565 1566 1567
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1568
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1569 1570 1571 1572
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1573

1574
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1575 1576 1577
		list_add(&page->lru, &l_inactive);
	}

1578
	/*
1579
	 * Move pages back to the lru list.
1580
	 */
1581
	spin_lock_irq(&zone->lru_lock);
1582
	/*
1583 1584 1585 1586
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1587
	 */
1588
	reclaim_stat->recent_rotated[file] += nr_rotated;
1589

1590
	move_active_pages_to_lru(zone, &l_active, &l_hold,
1591
						LRU_ACTIVE + file * LRU_FILE);
1592
	move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1593
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1594
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1595
	spin_unlock_irq(&zone->lru_lock);
1596 1597

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1598 1599
}

1600
#ifdef CONFIG_SWAP
1601
static int inactive_anon_is_low_global(struct zone *zone)
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1614 1615 1616 1617 1618 1619 1620 1621
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1622
static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1623
{
1624 1625 1626 1627 1628 1629 1630
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1631 1632 1633 1634 1635
	if (!scanning_global_lru(mz))
		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
						       mz->zone);

	return inactive_anon_is_low_global(mz->zone);
1636
}
1637
#else
1638
static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1639 1640 1641 1642
{
	return 0;
}
#endif
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1656
 * @mz: memory cgroup and zone to check
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1668
static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1669
{
1670 1671 1672
	if (!scanning_global_lru(mz))
		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
						       mz->zone);
1673

1674
	return inactive_file_is_low_global(mz->zone);
1675 1676
}

1677
static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1678 1679
{
	if (file)
1680
		return inactive_file_is_low(mz);
1681
	else
1682
		return inactive_anon_is_low(mz);
1683 1684
}

1685
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1686 1687
				 struct mem_cgroup_zone *mz,
				 struct scan_control *sc, int priority)
1688
{
1689 1690
	int file = is_file_lru(lru);

1691
	if (is_active_lru(lru)) {
1692 1693
		if (inactive_list_is_low(mz, file))
			shrink_active_list(nr_to_scan, mz, sc, priority, file);
1694 1695 1696
		return 0;
	}

1697
	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1698 1699
}

1700 1701
static int vmscan_swappiness(struct mem_cgroup_zone *mz,
			     struct scan_control *sc)
1702
{
1703
	if (global_reclaim(sc))
1704
		return vm_swappiness;
1705
	return mem_cgroup_swappiness(mz->mem_cgroup);
1706 1707
}

1708 1709 1710 1711 1712 1713
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1714
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1715
 */
1716 1717
static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
			   unsigned long *nr, int priority)
1718 1719 1720 1721
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1722
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1723
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1724
	enum lru_list lru;
1725
	int noswap = 0;
1726
	bool force_scan = false;
1727

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1738
	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1739
		force_scan = true;
1740
	if (!global_reclaim(sc))
1741
		force_scan = true;
1742 1743 1744 1745 1746 1747 1748 1749 1750

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1751

1752 1753 1754 1755
	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1756

1757
	if (global_reclaim(sc)) {
1758
		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1759 1760
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1761
		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1762 1763 1764 1765
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1766
		}
1767 1768
	}

1769 1770 1771 1772
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1773 1774
	anon_prio = vmscan_swappiness(mz, sc);
	file_prio = 200 - vmscan_swappiness(mz, sc);
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1787
	spin_lock_irq(&mz->zone->lru_lock);
1788 1789 1790
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1791 1792
	}

1793 1794 1795
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1796 1797 1798
	}

	/*
1799 1800 1801
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1802
	 */
1803 1804
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1805

1806 1807
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1808
	spin_unlock_irq(&mz->zone->lru_lock);
1809

1810 1811 1812 1813
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1814 1815
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1816
		unsigned long scan;
1817

H
Hugh Dickins 已提交
1818
		scan = zone_nr_lru_pages(mz, lru);
1819 1820
		if (priority || noswap) {
			scan >>= priority;
1821 1822
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1823 1824
			scan = div64_u64(scan * fraction[file], denominator);
		}
H
Hugh Dickins 已提交
1825
		nr[lru] = scan;
1826
	}
1827
}
1828

1829 1830 1831 1832 1833 1834 1835
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
1836
static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1837 1838 1839 1840 1841 1842 1843 1844
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1845
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1846 1847
		return false;

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1870 1871 1872 1873 1874 1875

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1876
	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1877
	if (nr_swap_pages > 0)
1878
		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1879 1880 1881 1882 1883
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1884
	switch (compaction_suitable(mz->zone, sc->order)) {
1885 1886 1887 1888 1889 1890 1891 1892
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1893 1894 1895
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1896 1897
static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
				   struct scan_control *sc)
L
Linus Torvalds 已提交
1898
{
1899
	unsigned long nr[NR_LRU_LISTS];
1900
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1901
	enum lru_list lru;
1902
	unsigned long nr_reclaimed, nr_scanned;
1903
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1904
	struct blk_plug plug;
1905

1906 1907
restart:
	nr_reclaimed = 0;
1908
	nr_scanned = sc->nr_scanned;
1909
	get_scan_count(mz, sc, nr, priority);
L
Linus Torvalds 已提交
1910

1911
	blk_start_plug(&plug);
1912 1913
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1914 1915
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1916
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1917 1918
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1919

H
Hugh Dickins 已提交
1920
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1921
							    mz, sc, priority);
1922
			}
L
Linus Torvalds 已提交
1923
		}
1924 1925 1926 1927 1928 1929 1930 1931
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1932
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1933
			break;
L
Linus Torvalds 已提交
1934
	}
1935
	blk_finish_plug(&plug);
1936
	sc->nr_reclaimed += nr_reclaimed;
1937

1938 1939 1940 1941
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1942 1943
	if (inactive_anon_is_low(mz))
		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
1944

1945
	/* reclaim/compaction might need reclaim to continue */
1946
	if (should_continue_reclaim(mz, nr_reclaimed,
1947 1948 1949
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

1950
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1951 1952
}

1953 1954 1955
static void shrink_zone(int priority, struct zone *zone,
			struct scan_control *sc)
{
1956 1957
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
1958
		.zone = zone,
1959
		.priority = priority,
1960
	};
1961 1962 1963 1964 1965 1966 1967 1968
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};
1969

1970 1971 1972 1973 1974 1975
		shrink_mem_cgroup_zone(priority, &mz, sc);
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
1976 1977 1978 1979
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
1980 1981 1982 1983 1984 1985 1986
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
1987 1988
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2015
	if (compaction_deferred(zone, sc->order))
2016 2017 2018 2019 2020 2021 2022 2023 2024
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2025 2026 2027 2028 2029
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2030 2031
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2032 2033
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2034 2035 2036
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2037 2038 2039
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2040 2041
 *
 * This function returns true if a zone is being reclaimed for a costly
2042
 * high-order allocation and compaction is ready to begin. This indicates to
2043 2044
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2045
 */
2046
static bool shrink_zones(int priority, struct zonelist *zonelist,
2047
					struct scan_control *sc)
L
Linus Torvalds 已提交
2048
{
2049
	struct zoneref *z;
2050
	struct zone *zone;
2051 2052
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2053
	bool aborted_reclaim = false;
2054

2055 2056 2057 2058 2059 2060 2061 2062
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2063 2064
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2065
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2066
			continue;
2067 2068 2069 2070
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2071
		if (global_reclaim(sc)) {
2072 2073
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2074
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2075
				continue;	/* Let kswapd poll it */
2076 2077
			if (COMPACTION_BUILD) {
				/*
2078 2079 2080 2081 2082
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2083 2084
				 * noticeable problem, like transparent huge
				 * page allocations.
2085
				 */
2086
				if (compaction_ready(zone, sc)) {
2087
					aborted_reclaim = true;
2088
					continue;
2089
				}
2090
			}
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2104
		}
2105

2106
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2107
	}
2108

2109
	return aborted_reclaim;
2110 2111 2112 2113 2114 2115 2116
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2117
/* All zones in zonelist are unreclaimable? */
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2130 2131
		if (!zone->all_unreclaimable)
			return false;
2132 2133
	}

2134
	return true;
L
Linus Torvalds 已提交
2135
}
2136

L
Linus Torvalds 已提交
2137 2138 2139 2140 2141 2142 2143 2144
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2145 2146 2147 2148
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2149 2150 2151
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2152
 */
2153
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2154 2155
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2156 2157
{
	int priority;
2158
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2159
	struct reclaim_state *reclaim_state = current->reclaim_state;
2160
	struct zoneref *z;
2161
	struct zone *zone;
2162
	unsigned long writeback_threshold;
2163
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2164

2165 2166
	delayacct_freepages_start();

2167
	if (global_reclaim(sc))
2168
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2169 2170

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2171
		sc->nr_scanned = 0;
2172
		aborted_reclaim = shrink_zones(priority, zonelist, sc);
2173

2174 2175 2176 2177
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2178
		if (global_reclaim(sc)) {
2179
			unsigned long lru_pages = 0;
2180 2181
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2182 2183 2184 2185 2186 2187
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2188
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2189
			if (reclaim_state) {
2190
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2191 2192
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2193
		}
2194
		total_scanned += sc->nr_scanned;
2195
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2205 2206
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2207 2208
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2209
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2210 2211 2212
		}

		/* Take a nap, wait for some writeback to complete */
2213
		if (!sc->hibernation_mode && sc->nr_scanned &&
2214 2215 2216 2217
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2218 2219
						&cpuset_current_mems_allowed,
						&preferred_zone);
2220 2221
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2222
	}
2223

L
Linus Torvalds 已提交
2224
out:
2225 2226
	delayacct_freepages_end();

2227 2228 2229
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2230 2231 2232 2233 2234 2235 2236 2237
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2238 2239
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2240 2241
		return 1;

2242
	/* top priority shrink_zones still had more to do? don't OOM, then */
2243
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2244 2245 2246
		return 1;

	return 0;
L
Linus Torvalds 已提交
2247 2248
}

2249
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2250
				gfp_t gfp_mask, nodemask_t *nodemask)
2251
{
2252
	unsigned long nr_reclaimed;
2253 2254 2255
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2256
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2257
		.may_unmap = 1,
2258
		.may_swap = 1,
2259
		.order = order,
2260
		.target_mem_cgroup = NULL,
2261
		.nodemask = nodemask,
2262
	};
2263 2264 2265
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2266

2267 2268 2269 2270
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2271
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2272 2273 2274 2275

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2276 2277
}

2278
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2279

2280
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2281
						gfp_t gfp_mask, bool noswap,
2282 2283
						struct zone *zone,
						unsigned long *nr_scanned)
2284 2285
{
	struct scan_control sc = {
2286
		.nr_scanned = 0,
2287
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2288 2289 2290 2291
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2292
		.target_mem_cgroup = memcg,
2293
	};
2294
	struct mem_cgroup_zone mz = {
2295
		.mem_cgroup = memcg,
2296 2297
		.zone = zone,
	};
2298

2299 2300
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2301 2302 2303 2304 2305

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2306 2307 2308 2309 2310 2311 2312
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2313
	shrink_mem_cgroup_zone(0, &mz, &sc);
2314 2315 2316

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2317
	*nr_scanned = sc.nr_scanned;
2318 2319 2320
	return sc.nr_reclaimed;
}

2321
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2322
					   gfp_t gfp_mask,
2323
					   bool noswap)
2324
{
2325
	struct zonelist *zonelist;
2326
	unsigned long nr_reclaimed;
2327
	int nid;
2328 2329
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2330
		.may_unmap = 1,
2331
		.may_swap = !noswap,
2332
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2333
		.order = 0,
2334
		.target_mem_cgroup = memcg,
2335
		.nodemask = NULL, /* we don't care the placement */
2336 2337 2338 2339 2340
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2341 2342
	};

2343 2344 2345 2346 2347
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2348
	nid = mem_cgroup_select_victim_node(memcg);
2349 2350

	zonelist = NODE_DATA(nid)->node_zonelists;
2351 2352 2353 2354 2355

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2356
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2357 2358 2359 2360

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2361 2362 2363
}
#endif

2364 2365 2366
static void age_active_anon(struct zone *zone, struct scan_control *sc,
			    int priority)
{
2367
	struct mem_cgroup *memcg;
2368

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};

		if (inactive_anon_is_low(&mz))
			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
					   sc, priority, 0);

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2385 2386
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2398
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2412 2413
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2414 2415
}

2416
/* is kswapd sleeping prematurely? */
2417 2418
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2419
{
2420
	int i;
2421 2422
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2423 2424 2425

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2426
		return true;
2427

2428
	/* Check the watermark levels */
2429
	for (i = 0; i <= classzone_idx; i++) {
2430 2431 2432 2433 2434
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2435 2436 2437 2438 2439 2440 2441 2442
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2443
			continue;
2444
		}
2445

2446
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2447
							i, 0))
2448 2449 2450
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2451
	}
2452

2453 2454 2455 2456 2457 2458
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2459
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2460 2461
	else
		return !all_zones_ok;
2462 2463
}

L
Linus Torvalds 已提交
2464 2465
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2466
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2467
 *
2468
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2479 2480 2481 2482 2483
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2484
 */
2485
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2486
							int *classzone_idx)
L
Linus Torvalds 已提交
2487 2488
{
	int all_zones_ok;
2489
	unsigned long balanced;
L
Linus Torvalds 已提交
2490 2491
	int priority;
	int i;
2492
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2493
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2494
	struct reclaim_state *reclaim_state = current->reclaim_state;
2495 2496
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2497 2498
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2499
		.may_unmap = 1,
2500
		.may_swap = 1,
2501 2502 2503 2504 2505
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2506
		.order = order,
2507
		.target_mem_cgroup = NULL,
2508
	};
2509 2510 2511
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2512 2513
loop_again:
	total_scanned = 0;
2514
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2515
	sc.may_writepage = !laptop_mode;
2516
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2517 2518 2519

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2520
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2521 2522

		all_zones_ok = 1;
2523
		balanced = 0;
L
Linus Torvalds 已提交
2524

2525 2526 2527 2528 2529 2530
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2531

2532 2533
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2534

2535
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2536
				continue;
L
Linus Torvalds 已提交
2537

2538 2539 2540 2541
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2542
			age_active_anon(zone, &sc, priority);
2543

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2555
			if (!zone_watermark_ok_safe(zone, order,
2556
					high_wmark_pages(zone), 0, 0)) {
2557
				end_zone = i;
A
Andrew Morton 已提交
2558
				break;
2559 2560 2561
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2562 2563
			}
		}
A
Andrew Morton 已提交
2564 2565 2566
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2567 2568 2569
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2570
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2584
			int nr_slab, testorder;
2585
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2586

2587
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2588 2589
				continue;

2590
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2591 2592 2593
				continue;

			sc.nr_scanned = 0;
2594

2595
			nr_soft_scanned = 0;
2596 2597 2598
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2599 2600 2601 2602 2603
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2604

2605
			/*
2606 2607 2608 2609 2610 2611
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2612
			 */
2613 2614 2615 2616
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
			if (COMPACTION_BUILD && order &&
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2630
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2631
				    !zone_watermark_ok_safe(zone, testorder,
2632
					high_wmark_pages(zone) + balance_gap,
2633
					end_zone, 0)) {
2634
				shrink_zone(priority, zone, &sc);
2635

2636 2637 2638 2639 2640 2641 2642 2643 2644
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2645 2646 2647 2648 2649 2650
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2651
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2652
				sc.may_writepage = 1;
2653

2654 2655 2656
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2657
				continue;
2658
			}
2659

2660
			if (!zone_watermark_ok_safe(zone, testorder,
2661 2662 2663 2664 2665 2666 2667
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2668
				if (!zone_watermark_ok_safe(zone, order,
2669 2670
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2671 2672 2673 2674 2675 2676 2677 2678 2679
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2680
				if (i <= *classzone_idx)
2681
					balanced += zone->present_pages;
2682
			}
2683

L
Linus Torvalds 已提交
2684
		}
2685
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2691 2692 2693 2694 2695 2696
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701 2702 2703

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2704
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2705 2706 2707
			break;
	}
out:
2708 2709 2710

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2711 2712
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2713
	 */
2714
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2715
		cond_resched();
2716 2717 2718

		try_to_freeze();

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2736 2737 2738
		goto loop_again;
	}

2739 2740 2741 2742 2743 2744 2745 2746 2747
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2748 2749
		int zones_need_compaction = 1;

2750 2751 2752 2753 2754 2755 2756 2757 2758
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

2759
			/* Would compaction fail due to lack of free memory? */
2760 2761
			if (COMPACTION_BUILD &&
			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2762 2763
				goto loop_again;

2764 2765 2766 2767 2768 2769 2770
			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

2771 2772 2773 2774 2775
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;

2776 2777 2778
			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
2779 2780 2781

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2782 2783
	}

2784 2785 2786 2787 2788 2789
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2790
	*classzone_idx = end_zone;
2791
	return order;
L
Linus Torvalds 已提交
2792 2793
}

2794
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2805
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2806 2807 2808 2809 2810 2811 2812 2813 2814
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2815
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2838 2839
/*
 * The background pageout daemon, started as a kernel thread
2840
 * from the init process.
L
Linus Torvalds 已提交
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2853
	unsigned long order, new_order;
2854
	unsigned balanced_order;
2855
	int classzone_idx, new_classzone_idx;
2856
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2857 2858
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2859

L
Linus Torvalds 已提交
2860 2861 2862
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2863
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2864

2865 2866
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2867
	if (!cpumask_empty(cpumask))
2868
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2883
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2884
	set_freezable();
L
Linus Torvalds 已提交
2885

2886
	order = new_order = 0;
2887
	balanced_order = 0;
2888
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2889
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2890
	for ( ; ; ) {
2891
		int ret;
2892

2893 2894 2895 2896 2897
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2898 2899
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2900 2901 2902 2903 2904 2905
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2906
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2907 2908
			/*
			 * Don't sleep if someone wants a larger 'order'
2909
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2910 2911
			 */
			order = new_order;
2912
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2913
		} else {
2914 2915
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2916
			order = pgdat->kswapd_max_order;
2917
			classzone_idx = pgdat->classzone_idx;
2918 2919
			new_order = order;
			new_classzone_idx = classzone_idx;
2920
			pgdat->kswapd_max_order = 0;
2921
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2922 2923
		}

2924 2925 2926 2927 2928 2929 2930 2931
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2932 2933
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2934 2935 2936
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2937
		}
L
Linus Torvalds 已提交
2938 2939 2940 2941 2942 2943 2944
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2945
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2946 2947 2948
{
	pg_data_t *pgdat;

2949
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2950 2951
		return;

2952
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2953
		return;
2954
	pgdat = zone->zone_pgdat;
2955
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2956
		pgdat->kswapd_max_order = order;
2957 2958
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2959
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2960
		return;
2961 2962 2963 2964
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2965
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2966 2967
}

2968 2969 2970 2971 2972 2973 2974 2975
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2976
{
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3001 3002
}

3003
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3004
/*
3005
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3006 3007 3008 3009 3010
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3011
 */
3012
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3013
{
3014 3015
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3016 3017 3018
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3019
		.may_writepage = 1,
3020 3021 3022
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
3023
	};
3024 3025 3026 3027
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3028 3029
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3030

3031 3032 3033 3034
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3035

3036
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3037

3038 3039 3040
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3041

3042
	return nr_reclaimed;
L
Linus Torvalds 已提交
3043
}
3044
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3045 3046 3047 3048 3049

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3050
static int __devinit cpu_callback(struct notifier_block *nfb,
3051
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3052
{
3053
	int nid;
L
Linus Torvalds 已提交
3054

3055
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3056
		for_each_node_state(nid, N_HIGH_MEMORY) {
3057
			pg_data_t *pgdat = NODE_DATA(nid);
3058 3059 3060
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3061

3062
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3063
				/* One of our CPUs online: restore mask */
3064
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3065 3066 3067 3068 3069
		}
	}
	return NOTIFY_OK;
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3103 3104
static int __init kswapd_init(void)
{
3105
	int nid;
3106

L
Linus Torvalds 已提交
3107
	swap_setup();
3108
	for_each_node_state(nid, N_HIGH_MEMORY)
3109
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3110 3111 3112 3113 3114
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3125
#define RECLAIM_OFF 0
3126
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3127 3128 3129
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3130 3131 3132 3133 3134 3135 3136
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3137 3138 3139 3140 3141 3142
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3143 3144 3145 3146 3147 3148
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3191 3192 3193
/*
 * Try to free up some pages from this zone through reclaim.
 */
3194
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3195
{
3196
	/* Minimum pages needed in order to stay on node */
3197
	const unsigned long nr_pages = 1 << order;
3198 3199
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3200
	int priority;
3201 3202
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3203
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3204
		.may_swap = 1,
3205 3206
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3207
		.gfp_mask = gfp_mask,
3208
		.order = order,
3209
	};
3210 3211 3212
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3213
	unsigned long nr_slab_pages0, nr_slab_pages1;
3214 3215

	cond_resched();
3216 3217 3218 3219 3220 3221
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3222
	lockdep_set_current_reclaim_state(gfp_mask);
3223 3224
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3225

3226
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3227 3228 3229 3230 3231 3232
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3233
			shrink_zone(priority, zone, &sc);
3234
			priority--;
3235
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3236
	}
3237

3238 3239
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3240
		/*
3241
		 * shrink_slab() does not currently allow us to determine how
3242 3243 3244 3245
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3246
		 *
3247 3248
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3249
		 */
3250 3251 3252 3253
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3254
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3255 3256 3257 3258 3259 3260 3261 3262
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3263 3264 3265 3266 3267

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3268 3269 3270
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3271 3272
	}

3273
	p->reclaim_state = NULL;
3274
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3275
	lockdep_clear_current_reclaim_state();
3276
	return sc.nr_reclaimed >= nr_pages;
3277
}
3278 3279 3280 3281

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3282
	int ret;
3283 3284

	/*
3285 3286
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3287
	 *
3288 3289 3290 3291 3292
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3293
	 */
3294 3295
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3296
		return ZONE_RECLAIM_FULL;
3297

3298
	if (zone->all_unreclaimable)
3299
		return ZONE_RECLAIM_FULL;
3300

3301
	/*
3302
	 * Do not scan if the allocation should not be delayed.
3303
	 */
3304
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3305
		return ZONE_RECLAIM_NOSCAN;
3306 3307 3308 3309 3310 3311 3312

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3313
	node_id = zone_to_nid(zone);
3314
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3315
		return ZONE_RECLAIM_NOSCAN;
3316 3317

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3318 3319
		return ZONE_RECLAIM_NOSCAN;

3320 3321 3322
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3323 3324 3325
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3326
	return ret;
3327
}
3328
#endif
L
Lee Schermerhorn 已提交
3329 3330 3331 3332 3333 3334 3335

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3336 3337
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3338 3339
 *
 * Reasons page might not be evictable:
3340
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3341
 * (2) page is part of an mlocked VMA
3342
 *
L
Lee Schermerhorn 已提交
3343 3344 3345 3346
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3347 3348 3349
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3350 3351
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3352 3353 3354

	return 1;
}
3355

3356
#ifdef CONFIG_SHMEM
3357
/**
3358 3359 3360
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3361
 *
3362
 * Checks pages for evictability and moves them to the appropriate lru list.
3363 3364
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3365
 */
3366
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3367
{
3368
	struct lruvec *lruvec;
3369 3370 3371 3372
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3373

3374 3375 3376
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3377

3378 3379 3380 3381 3382 3383 3384 3385
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3386

3387 3388
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3389

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
		if (page_evictable(page, NULL)) {
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
			__dec_zone_state(zone, NR_UNEVICTABLE);
			lruvec = mem_cgroup_lru_move_lists(zone, page,
						LRU_UNEVICTABLE, lru);
			list_move(&page->lru, &lruvec->lists[lru]);
			__inc_zone_state(zone, NR_INACTIVE_ANON + lru);
			pgrescued++;
3401
		}
3402
	}
3403

3404 3405 3406 3407
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3408 3409
	}
}
3410
#endif /* CONFIG_SHMEM */
3411

3412
static void warn_scan_unevictable_pages(void)
3413
{
3414
	printk_once(KERN_WARNING
3415
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3416
		    "disabled for lack of a legitimate use case.  If you have "
3417 3418
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3419 3420 3421 3422 3423 3424 3425 3426 3427
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3428
			   void __user *buffer,
3429 3430
			   size_t *length, loff_t *ppos)
{
3431
	warn_scan_unevictable_pages();
3432
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3433 3434 3435 3436
	scan_unevictable_pages = 0;
	return 0;
}

3437
#ifdef CONFIG_NUMA
3438 3439 3440 3441 3442
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3443 3444
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3445 3446
					  char *buf)
{
3447
	warn_scan_unevictable_pages();
3448 3449 3450
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3451 3452
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3453 3454
					const char *buf, size_t count)
{
3455
	warn_scan_unevictable_pages();
3456 3457 3458 3459
	return 1;
}


3460
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3461 3462 3463 3464 3465
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3466
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3467 3468 3469 3470
}

void scan_unevictable_unregister_node(struct node *node)
{
3471
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3472
}
3473
#endif