vmscan.c 80.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

L
Linus Torvalds 已提交
51 52 53 54
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

55 56 57
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

58 59 60
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

61 62
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
63
	/* This context's GFP mask */
A
Al Viro 已提交
64
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
65 66 67

	int may_writepage;

68 69
	/* Can mapped pages be reclaimed? */
	int may_unmap;
70

71 72 73
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

74
	int swappiness;
75 76

	int all_unreclaimable;
A
Andy Whitcroft 已提交
77 78

	int order;
79 80 81 82

	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

83 84 85 86 87 88
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;

89 90 91 92
	/* Pluggable isolate pages callback */
	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
			unsigned long *scanned, int order, int mode,
			struct zone *z, struct mem_cgroup *mem_cont,
93
			int active, int file);
L
Linus Torvalds 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
130
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
131 132 133 134

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

135
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
136
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
137
#else
138
#define scanning_global_lru(sc)	(1)
139 140
#endif

141 142 143
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
144
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
145 146
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

147 148 149
	return &zone->reclaim_stat;
}

150 151
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
152
{
153
	if (!scanning_global_lru(sc))
154 155
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

156 157 158 159
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
160 161 162
/*
 * Add a shrinker callback to be called from the vm
 */
163
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
164
{
165 166 167 168
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
169
}
170
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
171 172 173 174

/*
 * Remove one
 */
175
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
176 177 178 179 180
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
181
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
182 183 184 185 186 187 188 189 190 191

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
192
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
193 194 195 196 197 198 199
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
200 201
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
202
 */
203 204
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
205 206
{
	struct shrinker *shrinker;
207
	unsigned long ret = 0;
L
Linus Torvalds 已提交
208 209 210 211 212

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
213
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
214 215 216 217

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
218
		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
L
Linus Torvalds 已提交
219 220

		delta = (4 * scanned) / shrinker->seeks;
221
		delta *= max_pass;
L
Linus Torvalds 已提交
222 223
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
224
		if (shrinker->nr < 0) {
225 226 227
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
228 229 230 231 232 233 234 235 236 237
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
238 239 240 241 242 243 244

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
245
			int nr_before;
L
Linus Torvalds 已提交
246

247 248
			nr_before = (*shrinker->shrink)(0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
L
Linus Torvalds 已提交
249 250
			if (shrink_ret == -1)
				break;
251 252
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
253
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
254 255 256 257 258 259 260 261
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
262
	return ret;
L
Linus Torvalds 已提交
263 264 265 266
}

static inline int is_page_cache_freeable(struct page *page)
{
267 268 269 270 271
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
272
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
273 274 275 276
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
277
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
302 303
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
304 305 306
	unlock_page(page);
}

307 308 309 310 311 312
/* Request for sync pageout. */
enum pageout_io {
	PAGEOUT_IO_ASYNC,
	PAGEOUT_IO_SYNC,
};

313 314 315 316 317 318 319 320 321 322 323 324
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
325
/*
A
Andrew Morton 已提交
326 327
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
328
 */
329 330
static pageout_t pageout(struct page *page, struct address_space *mapping,
						enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
331 332 333 334 335 336 337 338
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
339
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
355
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
356 357
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
358
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
374 375
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
376 377 378 379 380 381 382 383
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
384
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
385 386 387
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
388 389 390 391 392 393 394 395 396

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
397 398 399 400
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
401
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
402 403 404 405 406 407
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

408
/*
N
Nick Piggin 已提交
409 410
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
411
 */
N
Nick Piggin 已提交
412
static int __remove_mapping(struct address_space *mapping, struct page *page)
413
{
414 415
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
416

N
Nick Piggin 已提交
417
	spin_lock_irq(&mapping->tree_lock);
418
	/*
N
Nick Piggin 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
442
	 */
N
Nick Piggin 已提交
443
	if (!page_freeze_refs(page, 2))
444
		goto cannot_free;
N
Nick Piggin 已提交
445 446 447
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
448
		goto cannot_free;
N
Nick Piggin 已提交
449
	}
450 451 452 453

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
454
		spin_unlock_irq(&mapping->tree_lock);
455
		swapcache_free(swap, page);
N
Nick Piggin 已提交
456 457
	} else {
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
458
		spin_unlock_irq(&mapping->tree_lock);
459
		mem_cgroup_uncharge_cache_page(page);
460 461 462 463 464
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
465
	spin_unlock_irq(&mapping->tree_lock);
466 467 468
	return 0;
}

N
Nick Piggin 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
502
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
516
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
517 518 519 520 521 522 523 524
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
525 526 527 528 529 530 531 532 533 534
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

553 554 555 556 557
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
558 559 560
	put_page(page);		/* drop ref from isolate */
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
	unsigned long vm_flags;
	int referenced;

	referenced = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	if (!referenced)
		return PAGEREF_RECLAIM;

	/* Lumpy reclaim - ignore references */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

588
	if (page_mapped(page))
589 590 591 592 593 594
		return PAGEREF_ACTIVATE;

	/* Reclaim if clean, defer dirty pages to writeback */
	return PAGEREF_RECLAIM_CLEAN;
}

L
Linus Torvalds 已提交
595
/*
A
Andrew Morton 已提交
596
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
597
 */
A
Andrew Morton 已提交
598
static unsigned long shrink_page_list(struct list_head *page_list,
599 600
					struct scan_control *sc,
					enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
601 602 603 604
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
605
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
606 607 608 609 610

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
611
		enum page_references references;
L
Linus Torvalds 已提交
612 613 614 615 616 617 618 619 620
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
621
		if (!trylock_page(page))
L
Linus Torvalds 已提交
622 623
			goto keep;

N
Nick Piggin 已提交
624
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
625 626

		sc->nr_scanned++;
627

N
Nick Piggin 已提交
628 629
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
630

631
		if (!sc->may_unmap && page_mapped(page))
632 633
			goto keep_locked;

L
Linus Torvalds 已提交
634 635 636 637
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

638 639 640 641 642 643 644 645 646 647 648 649 650 651
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
				wait_on_page_writeback(page);
652
			else
653 654
				goto keep_locked;
		}
L
Linus Torvalds 已提交
655

656 657 658
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
659
			goto activate_locked;
660 661 662 663
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
664 665 666 667 668

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
669
		if (PageAnon(page) && !PageSwapCache(page)) {
670 671
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
672
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
673
				goto activate_locked;
674
			may_enter_fs = 1;
N
Nick Piggin 已提交
675
		}
L
Linus Torvalds 已提交
676 677 678 679 680 681 682 683

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
684
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
685 686 687 688
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
689 690
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
691 692 693 694 695 696
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
697
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
698
				goto keep_locked;
699
			if (!may_enter_fs)
L
Linus Torvalds 已提交
700
				goto keep_locked;
701
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
702 703 704
				goto keep_locked;

			/* Page is dirty, try to write it out here */
705
			switch (pageout(page, mapping, sync_writeback)) {
L
Linus Torvalds 已提交
706 707 708 709 710
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
711
				if (PageWriteback(page) || PageDirty(page))
L
Linus Torvalds 已提交
712 713 714 715 716
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
717
				if (!trylock_page(page))
L
Linus Torvalds 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
737
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
738 739 740 741 742 743 744 745 746 747
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
748
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
749 750
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
767 768
		}

N
Nick Piggin 已提交
769
		if (!mapping || !__remove_mapping(mapping, page))
770
			goto keep_locked;
L
Linus Torvalds 已提交
771

N
Nick Piggin 已提交
772 773 774 775 776 777 778 779
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
780
free_it:
781
		nr_reclaimed++;
N
Nick Piggin 已提交
782 783 784 785
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
L
Linus Torvalds 已提交
786 787
		continue;

N
Nick Piggin 已提交
788
cull_mlocked:
789 790
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
791 792 793 794
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
795
activate_locked:
796 797
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
798
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
799
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
800 801 802 803 804 805
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
806
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
807 808 809
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
N
Nick Piggin 已提交
810
		__pagevec_free(&freed_pvec);
811
	count_vm_events(PGACTIVATE, pgactivate);
812
	return nr_reclaimed;
L
Linus Torvalds 已提交
813 814
}

A
Andy Whitcroft 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
/* LRU Isolation modes. */
#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */

/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
830
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

846
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
847 848
		return ret;

L
Lee Schermerhorn 已提交
849 850 851 852 853 854 855 856
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
857
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
858

A
Andy Whitcroft 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
886 887
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
888
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
889 890 891
 *
 * returns how many pages were moved onto *@dst.
 */
892 893
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
894
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
895
{
896
	unsigned long nr_taken = 0;
897
	unsigned long scan;
L
Linus Torvalds 已提交
898

899
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
900 901 902 903 904 905
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
906 907 908
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
909
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
910

911
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
912 913
		case 0:
			list_move(&page->lru, dst);
914
			mem_cgroup_del_lru(page);
915
			nr_taken++;
A
Andy Whitcroft 已提交
916 917 918 919 920
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
921
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
922
			continue;
923

A
Andy Whitcroft 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
956

A
Andy Whitcroft 已提交
957 958 959
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
960 961 962 963 964 965 966 967 968 969

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
					!PageSwapCache(cursor_page))
				continue;

970
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
971
				list_move(&cursor_page->lru, dst);
972
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
973 974 975 976
				nr_taken++;
				scan++;
			}
		}
L
Linus Torvalds 已提交
977 978 979 980 981 982
	}

	*scanned = scan;
	return nr_taken;
}

983 984 985 986 987
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
988
					int active, int file)
989
{
990
	int lru = LRU_BASE;
991
	if (active)
992 993 994 995
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
996
								mode, file);
997 998
}

A
Andy Whitcroft 已提交
999 1000 1001 1002
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1003 1004
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1005 1006
{
	int nr_active = 0;
1007
	int lru;
A
Andy Whitcroft 已提交
1008 1009
	struct page *page;

1010
	list_for_each_entry(page, page_list, lru) {
1011
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1012
		if (PageActive(page)) {
1013
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1014 1015 1016
			ClearPageActive(page);
			nr_active++;
		}
1017 1018
		count[lru]++;
	}
A
Andy Whitcroft 已提交
1019 1020 1021 1022

	return nr_active;
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1034 1035 1036
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1057
			int lru = page_lru(page);
1058 1059
			ret = 0;
			ClearPageLRU(page);
1060 1061

			del_page_from_lru_list(zone, page, lru);
1062 1063 1064 1065 1066 1067
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

L
Linus Torvalds 已提交
1093
/*
A
Andrew Morton 已提交
1094 1095
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1096
 */
A
Andrew Morton 已提交
1097
static unsigned long shrink_inactive_list(unsigned long max_scan,
R
Rik van Riel 已提交
1098 1099
			struct zone *zone, struct scan_control *sc,
			int priority, int file)
L
Linus Torvalds 已提交
1100 1101 1102
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
1103
	unsigned long nr_scanned = 0;
1104
	unsigned long nr_reclaimed = 0;
1105
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1106 1107
	int lumpy_reclaim = 0;

1108
	while (unlikely(too_many_isolated(zone, file, sc))) {
1109
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1110 1111 1112 1113 1114 1115

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 *
	 * We use the same threshold as pageout congestion_wait below.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_reclaim = 1;
	else if (sc->order && priority < DEF_PRIORITY - 2)
		lumpy_reclaim = 1;
L
Linus Torvalds 已提交
1127 1128 1129 1130 1131

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1132
	do {
L
Linus Torvalds 已提交
1133
		struct page *page;
1134 1135 1136
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
A
Andy Whitcroft 已提交
1137
		unsigned long nr_active;
1138
		unsigned int count[NR_LRU_LISTS] = { 0, };
1139
		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
K
KOSAKI Motohiro 已提交
1140 1141
		unsigned long nr_anon;
		unsigned long nr_file;
L
Linus Torvalds 已提交
1142

K
KOSAKI Motohiro 已提交
1143
		nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
1144 1145
			     &page_list, &nr_scan, sc->order, mode,
				zone, sc->mem_cgroup, 0, file);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

		if (scanning_global_lru(sc)) {
			zone->pages_scanned += nr_scan;
			if (current_is_kswapd())
				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
						       nr_scan);
			else
				__count_zone_vm_events(PGSCAN_DIRECT, zone,
						       nr_scan);
		}

		if (nr_taken == 0)
			goto done;

1160
		nr_active = clear_active_flags(&page_list, count);
1161
		__count_vm_events(PGDEACTIVATE, nr_active);
A
Andy Whitcroft 已提交
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171
		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
						-count[LRU_ACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
						-count[LRU_INACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
						-count[LRU_ACTIVE_ANON]);
		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
						-count[LRU_INACTIVE_ANON]);

K
KOSAKI Motohiro 已提交
1172 1173 1174 1175
		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
K
KOSAKI Motohiro 已提交
1176

H
Huang Shijie 已提交
1177 1178
		reclaim_stat->recent_scanned[0] += nr_anon;
		reclaim_stat->recent_scanned[1] += nr_file;
K
KOSAKI Motohiro 已提交
1179

L
Linus Torvalds 已提交
1180 1181
		spin_unlock_irq(&zone->lru_lock);

1182
		nr_scanned += nr_scan;
1183 1184 1185 1186 1187 1188 1189 1190 1191
		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

		/*
		 * If we are direct reclaiming for contiguous pages and we do
		 * not reclaim everything in the list, try again and wait
		 * for IO to complete. This will stall high-order allocations
		 * but that should be acceptable to the caller
		 */
		if (nr_freed < nr_taken && !current_is_kswapd() &&
1192
		    lumpy_reclaim) {
1193
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1194 1195 1196 1197 1198

			/*
			 * The attempt at page out may have made some
			 * of the pages active, mark them inactive again.
			 */
1199
			nr_active = clear_active_flags(&page_list, count);
1200 1201 1202 1203 1204 1205
			count_vm_events(PGDEACTIVATE, nr_active);

			nr_freed += shrink_page_list(&page_list, sc,
							PAGEOUT_IO_SYNC);
		}

1206
		nr_reclaimed += nr_freed;
1207

N
Nick Piggin 已提交
1208
		local_irq_disable();
1209
		if (current_is_kswapd())
1210
			__count_vm_events(KSWAPD_STEAL, nr_freed);
S
Shantanu Goel 已提交
1211
		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
N
Nick Piggin 已提交
1212 1213

		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
1214 1215 1216 1217
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
L
Lee Schermerhorn 已提交
1218
			int lru;
L
Linus Torvalds 已提交
1219
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
1220
			VM_BUG_ON(PageLRU(page));
L
Linus Torvalds 已提交
1221
			list_del(&page->lru);
L
Lee Schermerhorn 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230
			if (unlikely(!page_evictable(page, NULL))) {
				spin_unlock_irq(&zone->lru_lock);
				putback_lru_page(page);
				spin_lock_irq(&zone->lru_lock);
				continue;
			}
			SetPageLRU(page);
			lru = page_lru(page);
			add_page_to_lru_list(zone, page, lru);
1231
			if (is_active_lru(lru)) {
1232
				int file = is_file_lru(lru);
1233
				reclaim_stat->recent_rotated[file]++;
1234
			}
L
Linus Torvalds 已提交
1235 1236 1237 1238 1239 1240
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
K
KOSAKI Motohiro 已提交
1241 1242 1243
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

1244
  	} while (nr_scanned < max_scan);
1245

L
Linus Torvalds 已提交
1246
done:
1247
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1248
	pagevec_release(&pvec);
1249
	return nr_reclaimed;
L
Linus Torvalds 已提交
1250 1251
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
/*
 * We are about to scan this zone at a certain priority level.  If that priority
 * level is smaller (ie: more urgent) than the previous priority, then note
 * that priority level within the zone.  This is done so that when the next
 * process comes in to scan this zone, it will immediately start out at this
 * priority level rather than having to build up its own scanning priority.
 * Here, this priority affects only the reclaim-mapped threshold.
 */
static inline void note_zone_scanning_priority(struct zone *zone, int priority)
{
	if (priority < zone->prev_priority)
		zone->prev_priority = priority;
}

L
Linus Torvalds 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1283

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1316

A
Andrew Morton 已提交
1317
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1318
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1319
{
1320
	unsigned long nr_taken;
1321
	unsigned long pgscanned;
1322
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1323
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1324
	LIST_HEAD(l_active);
1325
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1326
	struct page *page;
1327
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1328
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1329 1330 1331

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1332
	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1333
					ISOLATE_ACTIVE, zone,
1334
					sc->mem_cgroup, 1, file);
1335 1336 1337 1338
	/*
	 * zone->pages_scanned is used for detect zone's oom
	 * mem_cgroup remembers nr_scan by itself.
	 */
1339
	if (scanning_global_lru(sc)) {
1340
		zone->pages_scanned += pgscanned;
1341
	}
1342
	reclaim_stat->recent_scanned[file] += nr_taken;
1343

1344
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1345
	if (file)
1346
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1347
	else
1348
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1349
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1350 1351 1352 1353 1354 1355
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1356

L
Lee Schermerhorn 已提交
1357 1358 1359 1360 1361
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1362
		/* page_referenced clears PageReferenced */
1363
		if (page_mapped(page) &&
1364
		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1365
			nr_rotated++;
1366 1367 1368 1369 1370 1371 1372 1373 1374
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1375
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1376 1377 1378 1379
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1380

1381
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1382 1383 1384
		list_add(&page->lru, &l_inactive);
	}

1385
	/*
1386
	 * Move pages back to the lru list.
1387
	 */
1388
	spin_lock_irq(&zone->lru_lock);
1389
	/*
1390 1391 1392 1393
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1394
	 */
1395
	reclaim_stat->recent_rotated[file] += nr_rotated;
1396

1397 1398 1399 1400
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1401
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1402
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1403 1404
}

1405
static int inactive_anon_is_low_global(struct zone *zone)
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1430
	if (scanning_global_lru(sc))
1431 1432
		low = inactive_anon_is_low_global(zone);
	else
1433
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1434 1435 1436
	return low;
}

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1473 1474 1475 1476 1477 1478 1479 1480 1481
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1482
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1483 1484
	struct zone *zone, struct scan_control *sc, int priority)
{
1485 1486
	int file = is_file_lru(lru);

1487 1488 1489
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1490 1491 1492
		return 0;
	}

R
Rik van Riel 已提交
1493
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
}

/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
 * percent[0] specifies how much pressure to put on ram/swap backed
 * memory, while percent[1] determines pressure on the file LRUs.
 */
static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
					unsigned long *percent)
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1511
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1512

1513 1514 1515 1516 1517 1518 1519
	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		percent[0] = 0;
		percent[1] = 100;
		return;
	}

1520 1521 1522 1523
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1524

1525
	if (scanning_global_lru(sc)) {
1526 1527 1528
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1529
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1530 1531 1532 1533
			percent[0] = 100;
			percent[1] = 0;
			return;
		}
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	}

	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1547
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1548
		spin_lock_irq(&zone->lru_lock);
1549 1550
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1551 1552 1553
		spin_unlock_irq(&zone->lru_lock);
	}

1554
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1555
		spin_lock_irq(&zone->lru_lock);
1556 1557
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		spin_unlock_irq(&zone->lru_lock);
	}

	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

	/*
1569 1570 1571
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1572
	 */
1573 1574
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1575

1576 1577
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1578 1579 1580 1581

	/* Normalize to percentages */
	percent[0] = 100 * ap / (ap + fp + 1);
	percent[1] = 100 - percent[0];
1582 1583
}

1584 1585 1586 1587 1588
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
K
KOSAKI Motohiro 已提交
1589
				       unsigned long *nr_saved_scan)
1590 1591 1592 1593 1594 1595
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

K
KOSAKI Motohiro 已提交
1596
	if (nr >= SWAP_CLUSTER_MAX)
1597 1598 1599 1600 1601 1602
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}
1603

L
Linus Torvalds 已提交
1604 1605 1606
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1607
static void shrink_zone(int priority, struct zone *zone,
1608
				struct scan_control *sc)
L
Linus Torvalds 已提交
1609
{
1610
	unsigned long nr[NR_LRU_LISTS];
1611
	unsigned long nr_to_scan;
1612
	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1613
	enum lru_list l;
1614
	unsigned long nr_reclaimed = sc->nr_reclaimed;
1615
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1616
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
L
Linus Torvalds 已提交
1617

1618
	get_scan_ratio(zone, sc, percent);
1619

L
Lee Schermerhorn 已提交
1620
	for_each_evictable_lru(l) {
1621
		int file = is_file_lru(l);
1622
		unsigned long scan;
1623

1624 1625 1626 1627 1628
		if (percent[file] == 0) {
			nr[l] = 0;
			continue;
		}

1629
		scan = zone_nr_lru_pages(zone, sc, l);
1630
		if (priority) {
1631 1632 1633
			scan >>= priority;
			scan = (scan * percent[file]) / 100;
		}
1634
		nr[l] = nr_scan_try_batch(scan,
K
KOSAKI Motohiro 已提交
1635
					  &reclaim_stat->nr_saved_scan[l]);
1636
	}
L
Linus Torvalds 已提交
1637

1638 1639
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1640
		for_each_evictable_lru(l) {
1641
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1642 1643
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1644
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1645

1646 1647
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1648
			}
L
Linus Torvalds 已提交
1649
		}
1650 1651 1652 1653 1654 1655 1656 1657
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1658
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1659
			break;
L
Linus Torvalds 已提交
1660 1661
	}

1662 1663
	sc->nr_reclaimed = nr_reclaimed;

1664 1665 1666 1667
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1668
	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1669 1670
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1671
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676 1677 1678
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1679 1680
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1681 1682
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1683 1684 1685
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1686 1687 1688 1689
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1690
static void shrink_zones(int priority, struct zonelist *zonelist,
1691
					struct scan_control *sc)
L
Linus Torvalds 已提交
1692
{
1693
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1694
	struct zoneref *z;
1695
	struct zone *zone;
1696

1697
	sc->all_unreclaimable = 1;
1698 1699
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
					sc->nodemask) {
1700
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1701
			continue;
1702 1703 1704 1705
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1706
		if (scanning_global_lru(sc)) {
1707 1708 1709
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
			note_zone_scanning_priority(zone, priority);
L
Linus Torvalds 已提交
1710

1711
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
				continue;	/* Let kswapd poll it */
			sc->all_unreclaimable = 0;
		} else {
			/*
			 * Ignore cpuset limitation here. We just want to reduce
			 * # of used pages by us regardless of memory shortage.
			 */
			sc->all_unreclaimable = 0;
			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
							priority);
		}
1723

1724
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1725 1726
	}
}
1727

L
Linus Torvalds 已提交
1728 1729 1730 1731 1732 1733 1734 1735
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
1736 1737 1738 1739
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
1740 1741 1742
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1743
 */
1744
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1745
					struct scan_control *sc)
L
Linus Torvalds 已提交
1746 1747
{
	int priority;
1748
	unsigned long ret = 0;
1749
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1750 1751
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
1752
	struct zoneref *z;
1753
	struct zone *zone;
1754
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1755
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
1756

1757 1758
	delayacct_freepages_start();

1759
	if (scanning_global_lru(sc))
1760 1761 1762 1763
		count_vm_event(ALLOCSTALL);
	/*
	 * mem_cgroup will not do shrink_slab.
	 */
1764
	if (scanning_global_lru(sc)) {
1765
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
L
Linus Torvalds 已提交
1766

1767 1768
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
L
Linus Torvalds 已提交
1769

1770
			lru_pages += zone_reclaimable_pages(zone);
1771
		}
L
Linus Torvalds 已提交
1772 1773 1774
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1775
		sc->nr_scanned = 0;
1776 1777
		if (!priority)
			disable_swap_token();
1778
		shrink_zones(priority, zonelist, sc);
1779 1780 1781 1782
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1783
		if (scanning_global_lru(sc)) {
1784
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1785
			if (reclaim_state) {
1786
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1787 1788
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1789
		}
1790
		total_scanned += sc->nr_scanned;
1791
		if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1792
			ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1803 1804
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
1805
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1806
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
1807 1808 1809
		}

		/* Take a nap, wait for some writeback to complete */
1810 1811
		if (!sc->hibernation_mode && sc->nr_scanned &&
		    priority < DEF_PRIORITY - 2)
1812
			congestion_wait(BLK_RW_ASYNC, HZ/10);
L
Linus Torvalds 已提交
1813
	}
1814
	/* top priority shrink_zones still had more to do? don't OOM, then */
1815
	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1816
		ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1817
out:
1818 1819 1820 1821 1822 1823 1824 1825 1826
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1827

1828
	if (scanning_global_lru(sc)) {
1829
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1830 1831 1832 1833 1834 1835 1836 1837

			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;

			zone->prev_priority = priority;
		}
	} else
		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
L
Linus Torvalds 已提交
1838

1839 1840
	delayacct_freepages_end();

L
Linus Torvalds 已提交
1841 1842 1843
	return ret;
}

1844
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1845
				gfp_t gfp_mask, nodemask_t *nodemask)
1846 1847 1848 1849
{
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
1850
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1851
		.may_unmap = 1,
1852
		.may_swap = 1,
1853 1854 1855 1856
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
1857
		.nodemask = nodemask,
1858 1859
	};

1860
	return do_try_to_free_pages(zonelist, &sc);
1861 1862
}

1863
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1864

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
						struct zone *zone, int nid)
{
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
		.isolate_pages = mem_cgroup_isolate_pages,
	};
	nodemask_t nm  = nodemask_of_node(nid);

	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	sc.nodemask = &nm;
	sc.nr_reclaimed = 0;
	sc.nr_scanned = 0;
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
	return sc.nr_reclaimed;
}

1897
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
1898 1899 1900
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
1901
{
1902
	struct zonelist *zonelist;
1903 1904
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
1905
		.may_unmap = 1,
1906
		.may_swap = !noswap,
1907
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
1908
		.swappiness = swappiness,
1909 1910 1911
		.order = 0,
		.mem_cgroup = mem_cont,
		.isolate_pages = mem_cgroup_isolate_pages,
1912
		.nodemask = NULL, /* we don't care the placement */
1913 1914
	};

1915 1916 1917 1918
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
	return do_try_to_free_pages(zonelist, &sc);
1919 1920 1921
}
#endif

1922
/* is kswapd sleeping prematurely? */
1923
static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1924
{
1925
	int i;
1926 1927 1928 1929 1930 1931

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
		return 1;

	/* If after HZ/10, a zone is below the high mark, it's premature */
1932 1933 1934 1935 1936 1937
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

1938
		if (zone->all_unreclaimable)
1939 1940
			continue;

1941 1942 1943
		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
								0, 0))
			return 1;
1944
	}
1945 1946 1947 1948

	return 0;
}

L
Linus Torvalds 已提交
1949 1950
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
1951
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1964 1965 1966 1967 1968
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
1969
 */
1970
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
1971 1972 1973 1974
{
	int all_zones_ok;
	int priority;
	int i;
1975
	unsigned long total_scanned;
L
Linus Torvalds 已提交
1976
	struct reclaim_state *reclaim_state = current->reclaim_state;
1977 1978
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
1979
		.may_unmap = 1,
1980
		.may_swap = 1,
1981 1982 1983 1984 1985
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
1986
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
1987
		.order = order,
1988 1989
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
1990
	};
1991 1992
	/*
	 * temp_priority is used to remember the scanning priority at which
1993 1994
	 * this zone was successfully refilled to
	 * free_pages == high_wmark_pages(zone).
1995 1996
	 */
	int temp_priority[MAX_NR_ZONES];
L
Linus Torvalds 已提交
1997 1998 1999

loop_again:
	total_scanned = 0;
2000
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2001
	sc.may_writepage = !laptop_mode;
2002
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2003

2004 2005
	for (i = 0; i < pgdat->nr_zones; i++)
		temp_priority[i] = DEF_PRIORITY;
L
Linus Torvalds 已提交
2006 2007 2008 2009

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;
2010
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2011

2012 2013 2014 2015
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2016 2017
		all_zones_ok = 1;

2018 2019 2020 2021 2022 2023
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2024

2025 2026
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2027

2028
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2029
				continue;
L
Linus Torvalds 已提交
2030

2031 2032 2033 2034
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2035
			if (inactive_anon_is_low(zone, &sc))
2036 2037 2038
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2039 2040
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), 0, 0)) {
2041
				end_zone = i;
A
Andrew Morton 已提交
2042
				break;
L
Linus Torvalds 已提交
2043 2044
			}
		}
A
Andrew Morton 已提交
2045 2046 2047
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2048 2049 2050
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2051
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2065
			int nr_slab;
2066
			int nid, zid;
L
Linus Torvalds 已提交
2067

2068
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2069 2070
				continue;

2071
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2072 2073
				continue;

2074
			temp_priority[i] = priority;
L
Linus Torvalds 已提交
2075
			sc.nr_scanned = 0;
2076
			note_zone_scanning_priority(zone, priority);
2077 2078 2079 2080 2081 2082 2083 2084 2085

			nid = pgdat->node_id;
			zid = zone_idx(zone);
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
							nid, zid);
2086 2087 2088 2089
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2090 2091
			if (!zone_watermark_ok(zone, order,
					8*high_wmark_pages(zone), end_zone, 0))
2092
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2093
			reclaim_state->reclaimed_slab = 0;
2094 2095
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2096
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2097
			total_scanned += sc.nr_scanned;
2098
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2099
				continue;
2100 2101 2102
			if (nr_slab == 0 &&
			    zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2103 2104 2105 2106 2107 2108
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2109
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2110
				sc.may_writepage = 1;
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
				if (!zone_watermark_ok(zone, order,
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
			}
2124

L
Linus Torvalds 已提交
2125 2126 2127 2128 2129 2130 2131
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2132 2133 2134 2135 2136 2137
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2138 2139 2140 2141 2142 2143 2144

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2145
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2146 2147 2148
			break;
	}
out:
2149 2150 2151 2152 2153
	/*
	 * Note within each zone the priority level at which this zone was
	 * brought into a happy state.  So that the next thread which scans this
	 * zone will start out at that priority level.
	 */
L
Linus Torvalds 已提交
2154 2155 2156
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

2157
		zone->prev_priority = temp_priority[i];
L
Linus Torvalds 已提交
2158 2159 2160
	}
	if (!all_zones_ok) {
		cond_resched();
2161 2162 2163

		try_to_freeze();

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2181 2182 2183
		goto loop_again;
	}

2184
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2185 2186 2187 2188
}

/*
 * The background pageout daemon, started as a kernel thread
2189
 * from the init process.
L
Linus Torvalds 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2209
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2210

2211 2212
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2213
	if (!cpumask_empty(cpumask))
2214
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2229
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2230
	set_freezable();
L
Linus Torvalds 已提交
2231 2232 2233 2234

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2235
		int ret;
2236

L
Linus Torvalds 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2247 2248 2249 2250
			if (!freezing(current) && !kthread_should_stop()) {
				long remaining = 0;

				/* Try to sleep for a short interval */
2251
				if (!sleeping_prematurely(pgdat, order, remaining)) {
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
					remaining = schedule_timeout(HZ/10);
					finish_wait(&pgdat->kswapd_wait, &wait);
					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
				}

				/*
				 * After a short sleep, check if it was a
				 * premature sleep. If not, then go fully
				 * to sleep until explicitly woken up
				 */
2262
				if (!sleeping_prematurely(pgdat, order, remaining))
2263 2264 2265
					schedule();
				else {
					if (remaining)
2266
						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2267
					else
2268
						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2269 2270
				}
			}
2271

L
Linus Torvalds 已提交
2272 2273 2274 2275
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

2276 2277 2278 2279 2280 2281 2282 2283 2284
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
		if (!ret)
2285
			balance_pgdat(pgdat, order);
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2297
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2298 2299 2300
		return;

	pgdat = zone->zone_pgdat;
2301
	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
L
Linus Torvalds 已提交
2302 2303 2304
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2305
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2306
		return;
2307
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2308
		return;
2309
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2310 2311
}

2312 2313 2314 2315 2316 2317 2318 2319
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2320
{
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2345 2346
}

2347
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2348
/*
2349
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2350 2351 2352 2353 2354
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2355
 */
2356
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2357
{
2358 2359
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2360 2361 2362
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2363
		.may_writepage = 1,
2364 2365 2366 2367
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
2368
		.isolate_pages = isolate_pages_global,
L
Linus Torvalds 已提交
2369
	};
2370 2371 2372
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2373

2374 2375 2376 2377
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2378

2379
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2380

2381 2382 2383
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2384

2385
	return nr_reclaimed;
L
Linus Torvalds 已提交
2386
}
2387
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2388 2389 2390 2391 2392

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2393
static int __devinit cpu_callback(struct notifier_block *nfb,
2394
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2395
{
2396
	int nid;
L
Linus Torvalds 已提交
2397

2398
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2399
		for_each_node_state(nid, N_HIGH_MEMORY) {
2400
			pg_data_t *pgdat = NODE_DATA(nid);
2401 2402 2403
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2404

2405
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2406
				/* One of our CPUs online: restore mask */
2407
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2408 2409 2410 2411 2412
		}
	}
	return NOTIFY_OK;
}

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2446 2447
static int __init kswapd_init(void)
{
2448
	int nid;
2449

L
Linus Torvalds 已提交
2450
	swap_setup();
2451
	for_each_node_state(nid, N_HIGH_MEMORY)
2452
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2453 2454 2455 2456 2457
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2468
#define RECLAIM_OFF 0
2469
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2470 2471 2472
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2473 2474 2475 2476 2477 2478 2479
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2480 2481 2482 2483 2484 2485
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2486 2487 2488 2489 2490 2491
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2534 2535 2536
/*
 * Try to free up some pages from this zone through reclaim.
 */
2537
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2538
{
2539
	/* Minimum pages needed in order to stay on node */
2540
	const unsigned long nr_pages = 1 << order;
2541 2542
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2543
	int priority;
2544 2545
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2546
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2547
		.may_swap = 1,
2548 2549
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2550
		.gfp_mask = gfp_mask,
2551
		.swappiness = vm_swappiness,
2552
		.order = order,
2553
		.isolate_pages = isolate_pages_global,
2554
	};
2555
	unsigned long slab_reclaimable;
2556 2557 2558

	disable_swap_token();
	cond_resched();
2559 2560 2561 2562 2563 2564
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2565
	lockdep_set_current_reclaim_state(gfp_mask);
2566 2567
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2568

2569
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2570 2571 2572 2573 2574 2575
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2576
			note_zone_scanning_priority(zone, priority);
2577
			shrink_zone(priority, zone, &sc);
2578
			priority--;
2579
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2580
	}
2581

2582 2583
	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (slab_reclaimable > zone->min_slab_pages) {
2584
		/*
2585
		 * shrink_slab() does not currently allow us to determine how
2586 2587 2588 2589
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2590
		 *
2591 2592
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2593
		 */
2594
		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2595 2596
			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
				slab_reclaimable - nr_pages)
2597
			;
2598 2599 2600 2601 2602

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2603
		sc.nr_reclaimed += slab_reclaimable -
2604
			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2605 2606
	}

2607
	p->reclaim_state = NULL;
2608
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2609
	lockdep_clear_current_reclaim_state();
2610
	return sc.nr_reclaimed >= nr_pages;
2611
}
2612 2613 2614 2615

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2616
	int ret;
2617 2618

	/*
2619 2620
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2621
	 *
2622 2623 2624 2625 2626
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2627
	 */
2628 2629
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2630
		return ZONE_RECLAIM_FULL;
2631

2632
	if (zone->all_unreclaimable)
2633
		return ZONE_RECLAIM_FULL;
2634

2635
	/*
2636
	 * Do not scan if the allocation should not be delayed.
2637
	 */
2638
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2639
		return ZONE_RECLAIM_NOSCAN;
2640 2641 2642 2643 2644 2645 2646

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2647
	node_id = zone_to_nid(zone);
2648
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2649
		return ZONE_RECLAIM_NOSCAN;
2650 2651

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2652 2653
		return ZONE_RECLAIM_NOSCAN;

2654 2655 2656
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2657 2658 2659
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2660
	return ret;
2661
}
2662
#endif
L
Lee Schermerhorn 已提交
2663 2664 2665 2666 2667 2668 2669

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2670 2671
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2672 2673
 *
 * Reasons page might not be evictable:
2674
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2675
 * (2) page is part of an mlocked VMA
2676
 *
L
Lee Schermerhorn 已提交
2677 2678 2679 2680
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2681 2682 2683
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2684 2685
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2686 2687 2688

	return 1;
}
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2708
		enum lru_list l = page_lru_base_type(page);
2709

2710 2711
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2712
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2713 2714 2715 2716 2717 2718 2719 2720
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2721
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2793
static void scan_zone_unevictable_pages(struct zone *zone)
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
2835
static void scan_all_zones_unevictable_pages(void)
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
2851
			   void __user *buffer,
2852 2853
			   size_t *length, loff_t *ppos)
{
2854
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}