workqueue.c 135.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131
 * WQ: wq->mutex protected.
 *
132
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133 134
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
135 136
 */

137
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
138

139
struct worker_pool {
140
	spinlock_t		lock;		/* the pool lock */
141
	int			cpu;		/* I: the associated cpu */
142
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162 163
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
164
	struct completion	*detach_completion; /* all workers detached */
165

166
	struct ida		worker_ida;	/* worker IDs for task name */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

271 272 273
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

274 275 276 277 278 279 280 281 282
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

283 284
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

285 286 287
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

288
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
289
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
290

291 292
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
293 294 295 296 297

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

298
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
299

300
/* PL: hash of all unbound pools keyed by pool->attrs */
301 302
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

303
/* I: attributes used when instantiating standard unbound pools on demand */
304 305
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

306 307 308
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

309
struct workqueue_struct *system_wq __read_mostly;
310
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
311
struct workqueue_struct *system_highpri_wq __read_mostly;
312
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
313
struct workqueue_struct *system_long_wq __read_mostly;
314
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
315
struct workqueue_struct *system_unbound_wq __read_mostly;
316
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
317
struct workqueue_struct *system_freezable_wq __read_mostly;
318
EXPORT_SYMBOL_GPL(system_freezable_wq);
319 320 321 322
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
323

324 325 326 327
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

328 329 330
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

331
#define assert_rcu_or_pool_mutex()					\
332
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
333 334
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
335

336
#define assert_rcu_or_wq_mutex(wq)					\
337
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
338
			   lockdep_is_held(&wq->mutex),			\
339
			   "sched RCU or wq->mutex should be held")
340

341 342 343
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
344
	     (pool)++)
345

T
Tejun Heo 已提交
346 347 348
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
349
 * @pi: integer used for iteration
350
 *
351 352 353
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
354 355 356
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
357
 */
358 359
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
360
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
361
		else
T
Tejun Heo 已提交
362

363 364 365 366 367
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
368
 * This must be called with @pool->attach_mutex.
369 370 371 372
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
373 374
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
375
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
376 377
		else

378 379 380 381
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
382
 *
383
 * This must be called either with wq->mutex held or sched RCU read locked.
384 385
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
386 387 388
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
389 390
 */
#define for_each_pwq(pwq, wq)						\
391
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
392
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
393
		else
394

395 396 397 398
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

399 400 401 402 403
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
439
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
475
	.debug_hint	= work_debug_hint,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

506 507 508 509 510 511 512
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

513 514 515 516 517
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

518 519 520 521 522 523 524
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
525 526 527 528
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

529
	lockdep_assert_held(&wq_pool_mutex);
530

531 532
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
533
	if (ret >= 0) {
T
Tejun Heo 已提交
534
		pool->id = ret;
535 536
		return 0;
	}
537
	return ret;
538 539
}

540 541 542 543 544 545 546 547
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
548 549
 *
 * Return: The unbound pool_workqueue for @node.
550 551 552 553 554 555 556 557
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
573

574
/*
575 576
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
577
 * is cleared and the high bits contain OFFQ flags and pool ID.
578
 *
579 580
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
581 582
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
583
 *
584
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
585
 * corresponding to a work.  Pool is available once the work has been
586
 * queued anywhere after initialization until it is sync canceled.  pwq is
587
 * available only while the work item is queued.
588
 *
589 590 591 592
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
593
 */
594 595
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
596
{
597
	WARN_ON_ONCE(!work_pending(work));
598 599
	atomic_long_set(&work->data, data | flags | work_static(work));
}
600

601
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
602 603
			 unsigned long extra_flags)
{
604 605
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
606 607
}

608 609 610 611 612 613 614
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

615 616
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
617
{
618 619 620 621 622 623 624
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
625
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
626
}
627

628
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
629
{
630 631
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
632 633
}

634
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
635
{
636
	unsigned long data = atomic_long_read(&work->data);
637

638
	if (data & WORK_STRUCT_PWQ)
639 640 641
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
642 643
}

644 645 646 647
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
648 649 650
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
651 652 653 654 655
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
656 657
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
658 659
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
660
{
661
	unsigned long data = atomic_long_read(&work->data);
662
	int pool_id;
663

664
	assert_rcu_or_pool_mutex();
665

666 667
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
668
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
669

670 671
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
672 673
		return NULL;

674
	return idr_find(&worker_pool_idr, pool_id);
675 676 677 678 679 680
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
681
 * Return: The worker_pool ID @work was last associated with.
682 683 684 685
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
686 687
	unsigned long data = atomic_long_read(&work->data);

688 689
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
690
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
691

692
	return data >> WORK_OFFQ_POOL_SHIFT;
693 694
}

695 696
static void mark_work_canceling(struct work_struct *work)
{
697
	unsigned long pool_id = get_work_pool_id(work);
698

699 700
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
701 702 703 704 705 706
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

707
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
708 709
}

710
/*
711 712
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
713
 * they're being called with pool->lock held.
714 715
 */

716
static bool __need_more_worker(struct worker_pool *pool)
717
{
718
	return !atomic_read(&pool->nr_running);
719 720
}

721
/*
722 723
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
724 725
 *
 * Note that, because unbound workers never contribute to nr_running, this
726
 * function will always return %true for unbound pools as long as the
727
 * worklist isn't empty.
728
 */
729
static bool need_more_worker(struct worker_pool *pool)
730
{
731
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
732
}
733

734
/* Can I start working?  Called from busy but !running workers. */
735
static bool may_start_working(struct worker_pool *pool)
736
{
737
	return pool->nr_idle;
738 739 740
}

/* Do I need to keep working?  Called from currently running workers. */
741
static bool keep_working(struct worker_pool *pool)
742
{
743 744
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
745 746 747
}

/* Do we need a new worker?  Called from manager. */
748
static bool need_to_create_worker(struct worker_pool *pool)
749
{
750
	return need_more_worker(pool) && !may_start_working(pool);
751
}
752

753
/* Do we have too many workers and should some go away? */
754
static bool too_many_workers(struct worker_pool *pool)
755
{
756
	bool managing = mutex_is_locked(&pool->manager_arb);
757 758
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
759 760

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
761 762
}

763
/*
764 765 766
 * Wake up functions.
 */

767 768
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
769
{
770
	if (unlikely(list_empty(&pool->idle_list)))
771 772
		return NULL;

773
	return list_first_entry(&pool->idle_list, struct worker, entry);
774 775 776 777
}

/**
 * wake_up_worker - wake up an idle worker
778
 * @pool: worker pool to wake worker from
779
 *
780
 * Wake up the first idle worker of @pool.
781 782
 *
 * CONTEXT:
783
 * spin_lock_irq(pool->lock).
784
 */
785
static void wake_up_worker(struct worker_pool *pool)
786
{
787
	struct worker *worker = first_idle_worker(pool);
788 789 790 791 792

	if (likely(worker))
		wake_up_process(worker->task);
}

793
/**
794 795 796 797 798 799 800 801 802 803
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
804
void wq_worker_waking_up(struct task_struct *task, int cpu)
805 806 807
{
	struct worker *worker = kthread_data(task);

808
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
809
		WARN_ON_ONCE(worker->pool->cpu != cpu);
810
		atomic_inc(&worker->pool->nr_running);
811
	}
812 813 814 815 816 817 818 819 820 821 822 823 824 825
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
826
 * Return:
827 828
 * Worker task on @cpu to wake up, %NULL if none.
 */
829
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
830 831
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
832
	struct worker_pool *pool;
833

834 835 836 837 838
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
839
	if (worker->flags & WORKER_NOT_RUNNING)
840 841
		return NULL;

842 843
	pool = worker->pool;

844
	/* this can only happen on the local cpu */
845
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
846
		return NULL;
847 848 849 850 851 852

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
853 854 855
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
856
	 * manipulating idle_list, so dereferencing idle_list without pool
857
	 * lock is safe.
858
	 */
859 860
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
861
		to_wakeup = first_idle_worker(pool);
862 863 864 865 866
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
867
 * @worker: self
868 869
 * @flags: flags to set
 *
870
 * Set @flags in @worker->flags and adjust nr_running accordingly.
871
 *
872
 * CONTEXT:
873
 * spin_lock_irq(pool->lock)
874
 */
875
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
876
{
877
	struct worker_pool *pool = worker->pool;
878

879 880
	WARN_ON_ONCE(worker->task != current);

881
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
882 883
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
884
		atomic_dec(&pool->nr_running);
885 886
	}

887 888 889 890
	worker->flags |= flags;
}

/**
891
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
892
 * @worker: self
893 894
 * @flags: flags to clear
 *
895
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
896
 *
897
 * CONTEXT:
898
 * spin_lock_irq(pool->lock)
899 900 901
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
902
	struct worker_pool *pool = worker->pool;
903 904
	unsigned int oflags = worker->flags;

905 906
	WARN_ON_ONCE(worker->task != current);

907
	worker->flags &= ~flags;
908

909 910 911 912 913
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
914 915
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
916
			atomic_inc(&pool->nr_running);
917 918
}

919 920
/**
 * find_worker_executing_work - find worker which is executing a work
921
 * @pool: pool of interest
922 923
 * @work: work to find worker for
 *
924 925
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
926 927 928 929 930 931 932 933 934 935 936 937
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
938 939 940 941 942 943
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
944 945
 *
 * CONTEXT:
946
 * spin_lock_irq(pool->lock).
947
 *
948 949
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
950
 * otherwise.
951
 */
952
static struct worker *find_worker_executing_work(struct worker_pool *pool,
953
						 struct work_struct *work)
954
{
955 956
	struct worker *worker;

957
	hash_for_each_possible(pool->busy_hash, worker, hentry,
958 959 960
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
961 962 963
			return worker;

	return NULL;
964 965
}

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
981
 * spin_lock_irq(pool->lock).
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1065
static void pwq_activate_delayed_work(struct work_struct *work)
1066
{
1067
	struct pool_workqueue *pwq = get_work_pwq(work);
1068 1069

	trace_workqueue_activate_work(work);
1070
	move_linked_works(work, &pwq->pool->worklist, NULL);
1071
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1072
	pwq->nr_active++;
1073 1074
}

1075
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1076
{
1077
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1078 1079
						    struct work_struct, entry);

1080
	pwq_activate_delayed_work(work);
1081 1082
}

1083
/**
1084 1085
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1086 1087 1088
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1089
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1090 1091
 *
 * CONTEXT:
1092
 * spin_lock_irq(pool->lock).
1093
 */
1094
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1095
{
T
Tejun Heo 已提交
1096
	/* uncolored work items don't participate in flushing or nr_active */
1097
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1098
		goto out_put;
1099

1100
	pwq->nr_in_flight[color]--;
1101

1102 1103
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1104
		/* one down, submit a delayed one */
1105 1106
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1107 1108 1109
	}

	/* is flush in progress and are we at the flushing tip? */
1110
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1111
		goto out_put;
1112 1113

	/* are there still in-flight works? */
1114
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1115
		goto out_put;
1116

1117 1118
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1119 1120

	/*
1121
	 * If this was the last pwq, wake up the first flusher.  It
1122 1123
	 * will handle the rest.
	 */
1124 1125
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1126 1127
out_put:
	put_pwq(pwq);
1128 1129
}

1130
/**
1131
 * try_to_grab_pending - steal work item from worklist and disable irq
1132 1133
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1134
 * @flags: place to store irq state
1135 1136
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1137
 * stable state - idle, on timer or on worklist.
1138
 *
1139
 * Return:
1140 1141 1142
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1143 1144
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1145
 *
1146
 * Note:
1147
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1148 1149 1150
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1151 1152 1153 1154
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1155
 * This function is safe to call from any context including IRQ handler.
1156
 */
1157 1158
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1159
{
1160
	struct worker_pool *pool;
1161
	struct pool_workqueue *pwq;
1162

1163 1164
	local_irq_save(*flags);

1165 1166 1167 1168
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1169 1170 1171 1172 1173
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1174 1175 1176 1177 1178
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1179 1180 1181 1182 1183 1184 1185
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1186 1187
	pool = get_work_pool(work);
	if (!pool)
1188
		goto fail;
1189

1190
	spin_lock(&pool->lock);
1191
	/*
1192 1193 1194 1195 1196
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1197 1198
	 * item is currently queued on that pool.
	 */
1199 1200
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1201 1202 1203 1204 1205
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1206
		 * on the delayed_list, will confuse pwq->nr_active
1207 1208 1209 1210
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1211
			pwq_activate_delayed_work(work);
1212 1213

		list_del_init(&work->entry);
1214
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1215

1216
		/* work->data points to pwq iff queued, point to pool */
1217 1218 1219 1220
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1221
	}
1222
	spin_unlock(&pool->lock);
1223 1224 1225 1226 1227
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1228
	return -EAGAIN;
1229 1230
}

T
Tejun Heo 已提交
1231
/**
1232
 * insert_work - insert a work into a pool
1233
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1234 1235 1236 1237
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1238
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1239
 * work_struct flags.
T
Tejun Heo 已提交
1240 1241
 *
 * CONTEXT:
1242
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1243
 */
1244 1245
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1246
{
1247
	struct worker_pool *pool = pwq->pool;
1248

T
Tejun Heo 已提交
1249
	/* we own @work, set data and link */
1250
	set_work_pwq(work, pwq, extra_flags);
1251
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1252
	get_pwq(pwq);
1253 1254

	/*
1255 1256 1257
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1258 1259 1260
	 */
	smp_mb();

1261 1262
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1263 1264
}

1265 1266
/*
 * Test whether @work is being queued from another work executing on the
1267
 * same workqueue.
1268 1269 1270
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1271 1272 1273 1274 1275 1276 1277
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1278
	return worker && worker->current_pwq->wq == wq;
1279 1280
}

1281
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1282 1283
			 struct work_struct *work)
{
1284
	struct pool_workqueue *pwq;
1285
	struct worker_pool *last_pool;
1286
	struct list_head *worklist;
1287
	unsigned int work_flags;
1288
	unsigned int req_cpu = cpu;
1289 1290 1291 1292 1293 1294 1295 1296

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1297

1298
	debug_work_activate(work);
1299

1300
	/* if draining, only works from the same workqueue are allowed */
1301
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1302
	    WARN_ON_ONCE(!is_chained_work(wq)))
1303
		return;
1304
retry:
1305 1306 1307
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1308
	/* pwq which will be used unless @work is executing elsewhere */
1309
	if (!(wq->flags & WQ_UNBOUND))
1310
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1311 1312
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1313

1314 1315 1316 1317 1318 1319 1320 1321
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1322

1323
		spin_lock(&last_pool->lock);
1324

1325
		worker = find_worker_executing_work(last_pool, work);
1326

1327 1328
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1329
		} else {
1330 1331
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1332
			spin_lock(&pwq->pool->lock);
1333
		}
1334
	} else {
1335
		spin_lock(&pwq->pool->lock);
1336 1337
	}

1338 1339 1340 1341
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1342 1343
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1357 1358
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1359

1360
	if (WARN_ON(!list_empty(&work->entry))) {
1361
		spin_unlock(&pwq->pool->lock);
1362 1363
		return;
	}
1364

1365 1366
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1367

1368
	if (likely(pwq->nr_active < pwq->max_active)) {
1369
		trace_workqueue_activate_work(work);
1370 1371
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1372 1373
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1374
		worklist = &pwq->delayed_works;
1375
	}
1376

1377
	insert_work(pwq, work, worklist, work_flags);
1378

1379
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1380 1381
}

1382
/**
1383 1384
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1385 1386 1387
 * @wq: workqueue to use
 * @work: work to queue
 *
1388 1389
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1390 1391
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1392
 */
1393 1394
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1395
{
1396
	bool ret = false;
1397
	unsigned long flags;
1398

1399
	local_irq_save(flags);
1400

1401
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1402
		__queue_work(cpu, wq, work);
1403
		ret = true;
1404
	}
1405

1406
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1407 1408
	return ret;
}
1409
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1410

1411
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1412
{
1413
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1414

1415
	/* should have been called from irqsafe timer with irq already off */
1416
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1417
}
1418
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1419

1420 1421
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1422
{
1423 1424 1425 1426 1427
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1428 1429
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1442
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1443

1444
	dwork->wq = wq;
1445
	dwork->cpu = cpu;
1446 1447 1448 1449 1450 1451
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1452 1453
}

1454 1455 1456 1457
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1458
 * @dwork: work to queue
1459 1460
 * @delay: number of jiffies to wait before queueing
 *
1461
 * Return: %false if @work was already on a queue, %true otherwise.  If
1462 1463
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1464
 */
1465 1466
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1467
{
1468
	struct work_struct *work = &dwork->work;
1469
	bool ret = false;
1470
	unsigned long flags;
1471

1472 1473
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1474

1475
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1476
		__queue_delayed_work(cpu, wq, dwork, delay);
1477
		ret = true;
1478
	}
1479

1480
	local_irq_restore(flags);
1481 1482
	return ret;
}
1483
EXPORT_SYMBOL(queue_delayed_work_on);
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1497
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1498 1499
 * pending and its timer was modified.
 *
1500
 * This function is safe to call from any context including IRQ handler.
1501 1502 1503 1504 1505 1506 1507
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1508

1509 1510 1511
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1512

1513 1514 1515
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1516
	}
1517 1518

	/* -ENOENT from try_to_grab_pending() becomes %true */
1519 1520
	return ret;
}
1521 1522
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1523 1524 1525 1526 1527 1528 1529 1530
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1531
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1532 1533
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1534
{
1535
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1536

1537 1538 1539 1540
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1541

1542
	/* can't use worker_set_flags(), also called from create_worker() */
1543
	worker->flags |= WORKER_IDLE;
1544
	pool->nr_idle++;
1545
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1546 1547

	/* idle_list is LIFO */
1548
	list_add(&worker->entry, &pool->idle_list);
1549

1550 1551
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1552

1553
	/*
1554
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1555
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1556 1557
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1558
	 */
1559
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1560
		     pool->nr_workers == pool->nr_idle &&
1561
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1571
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1572 1573 1574
 */
static void worker_leave_idle(struct worker *worker)
{
1575
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1576

1577 1578
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1579
	worker_clr_flags(worker, WORKER_IDLE);
1580
	pool->nr_idle--;
T
Tejun Heo 已提交
1581 1582 1583
	list_del_init(&worker->entry);
}

1584
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1585 1586 1587
{
	struct worker *worker;

1588
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1589 1590
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1591
		INIT_LIST_HEAD(&worker->scheduled);
1592
		INIT_LIST_HEAD(&worker->node);
1593 1594
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1595
	}
T
Tejun Heo 已提交
1596 1597 1598
	return worker;
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1632 1633 1634 1635 1636
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1637 1638 1639
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1640 1641 1642 1643 1644 1645
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1646
	mutex_lock(&pool->attach_mutex);
1647 1648
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1649
		detach_completion = pool->detach_completion;
1650
	mutex_unlock(&pool->attach_mutex);
1651

1652 1653 1654
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1655 1656 1657 1658
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1659 1660
/**
 * create_worker - create a new workqueue worker
1661
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1662
 *
1663
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1664 1665 1666 1667
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1668
 * Return:
T
Tejun Heo 已提交
1669 1670
 * Pointer to the newly created worker.
 */
1671
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1672 1673
{
	struct worker *worker = NULL;
1674
	int id = -1;
1675
	char id_buf[16];
T
Tejun Heo 已提交
1676

1677 1678
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1679 1680
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1681

1682
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1683 1684 1685
	if (!worker)
		goto fail;

1686
	worker->pool = pool;
T
Tejun Heo 已提交
1687 1688
	worker->id = id;

1689
	if (pool->cpu >= 0)
1690 1691
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1692
	else
1693 1694
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1695
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1696
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1697 1698 1699
	if (IS_ERR(worker->task))
		goto fail;

1700 1701 1702 1703 1704
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1705
	/* successful, attach the worker to the pool */
1706
	worker_attach_to_pool(worker, pool);
1707

1708 1709 1710 1711 1712 1713 1714
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1715
	return worker;
1716

T
Tejun Heo 已提交
1717
fail:
1718
	if (id >= 0)
1719
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1720 1721 1722 1723 1724 1725 1726 1727
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1728 1729
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1730 1731
 *
 * CONTEXT:
1732
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1733 1734 1735
 */
static void destroy_worker(struct worker *worker)
{
1736
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1737

1738 1739
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1740
	/* sanity check frenzy */
1741
	if (WARN_ON(worker->current_work) ||
1742 1743
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1744
		return;
T
Tejun Heo 已提交
1745

1746 1747
	pool->nr_workers--;
	pool->nr_idle--;
1748

T
Tejun Heo 已提交
1749
	list_del_init(&worker->entry);
1750
	worker->flags |= WORKER_DIE;
1751
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1752 1753
}

1754
static void idle_worker_timeout(unsigned long __pool)
1755
{
1756
	struct worker_pool *pool = (void *)__pool;
1757

1758
	spin_lock_irq(&pool->lock);
1759

1760
	while (too_many_workers(pool)) {
1761 1762 1763 1764
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1765
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1766 1767
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1768
		if (time_before(jiffies, expires)) {
1769
			mod_timer(&pool->idle_timer, expires);
1770
			break;
1771
		}
1772 1773

		destroy_worker(worker);
1774 1775
	}

1776
	spin_unlock_irq(&pool->lock);
1777
}
1778

1779
static void send_mayday(struct work_struct *work)
1780
{
1781 1782
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1783

1784
	lockdep_assert_held(&wq_mayday_lock);
1785

1786
	if (!wq->rescuer)
1787
		return;
1788 1789

	/* mayday mayday mayday */
1790
	if (list_empty(&pwq->mayday_node)) {
1791 1792 1793 1794 1795 1796
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1797
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1798
		wake_up_process(wq->rescuer->task);
1799
	}
1800 1801
}

1802
static void pool_mayday_timeout(unsigned long __pool)
1803
{
1804
	struct worker_pool *pool = (void *)__pool;
1805 1806
	struct work_struct *work;

1807 1808
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1809

1810
	if (need_to_create_worker(pool)) {
1811 1812 1813 1814 1815 1816
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1817
		list_for_each_entry(work, &pool->worklist, entry)
1818
			send_mayday(work);
L
Linus Torvalds 已提交
1819
	}
1820

1821 1822
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1823

1824
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1825 1826
}

1827 1828
/**
 * maybe_create_worker - create a new worker if necessary
1829
 * @pool: pool to create a new worker for
1830
 *
1831
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1832 1833
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1834
 * sent to all rescuers with works scheduled on @pool to resolve
1835 1836
 * possible allocation deadlock.
 *
1837 1838
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1839 1840
 *
 * LOCKING:
1841
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1842 1843 1844
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1845
static void maybe_create_worker(struct worker_pool *pool)
1846 1847
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1848
{
1849
restart:
1850
	spin_unlock_irq(&pool->lock);
1851

1852
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1853
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1854 1855

	while (true) {
1856
		if (create_worker(pool) || !need_to_create_worker(pool))
1857
			break;
L
Linus Torvalds 已提交
1858

1859
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1860

1861
		if (!need_to_create_worker(pool))
1862 1863 1864
			break;
	}

1865
	del_timer_sync(&pool->mayday_timer);
1866
	spin_lock_irq(&pool->lock);
1867 1868 1869 1870 1871
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1872
	if (need_to_create_worker(pool))
1873 1874 1875
		goto restart;
}

1876
/**
1877 1878
 * manage_workers - manage worker pool
 * @worker: self
1879
 *
1880
 * Assume the manager role and manage the worker pool @worker belongs
1881
 * to.  At any given time, there can be only zero or one manager per
1882
 * pool.  The exclusion is handled automatically by this function.
1883 1884 1885 1886
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1887 1888
 *
 * CONTEXT:
1889
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1890 1891
 * multiple times.  Does GFP_KERNEL allocations.
 *
1892
 * Return:
1893 1894 1895 1896
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1897
 */
1898
static bool manage_workers(struct worker *worker)
1899
{
1900
	struct worker_pool *pool = worker->pool;
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1912
	if (!mutex_trylock(&pool->manager_arb))
1913
		return false;
1914

1915
	maybe_create_worker(pool);
1916

1917
	mutex_unlock(&pool->manager_arb);
1918
	return true;
1919 1920
}

1921 1922
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1923
 * @worker: self
1924 1925 1926 1927 1928 1929 1930 1931 1932
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1933
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1934
 */
T
Tejun Heo 已提交
1935
static void process_one_work(struct worker *worker, struct work_struct *work)
1936 1937
__releases(&pool->lock)
__acquires(&pool->lock)
1938
{
1939
	struct pool_workqueue *pwq = get_work_pwq(work);
1940
	struct worker_pool *pool = worker->pool;
1941
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1942
	int work_color;
1943
	struct worker *collision;
1944 1945 1946 1947 1948 1949 1950 1951
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1952 1953 1954
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1955
#endif
1956
	/* ensure we're on the correct CPU */
1957
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1958
		     raw_smp_processor_id() != pool->cpu);
1959

1960 1961 1962 1963 1964 1965
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
1966
	collision = find_worker_executing_work(pool, work);
1967 1968 1969 1970 1971
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1972
	/* claim and dequeue */
1973
	debug_work_deactivate(work);
1974
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
1975
	worker->current_work = work;
1976
	worker->current_func = work->func;
1977
	worker->current_pwq = pwq;
1978
	work_color = get_work_color(work);
1979

1980 1981
	list_del_init(&work->entry);

1982
	/*
1983 1984 1985 1986
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
1987 1988
	 */
	if (unlikely(cpu_intensive))
1989
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1990

1991
	/*
1992 1993 1994 1995
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
1996
	 * UNBOUND and CPU_INTENSIVE ones.
1997
	 */
1998
	if (need_more_worker(pool))
1999
		wake_up_worker(pool);
2000

2001
	/*
2002
	 * Record the last pool and clear PENDING which should be the last
2003
	 * update to @work.  Also, do this inside @pool->lock so that
2004 2005
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2006
	 */
2007
	set_work_pool_and_clear_pending(work, pool->id);
2008

2009
	spin_unlock_irq(&pool->lock);
2010

2011
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2012
	lock_map_acquire(&lockdep_map);
2013
	trace_workqueue_execute_start(work);
2014
	worker->current_func(work);
2015 2016 2017 2018 2019
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2020
	lock_map_release(&lockdep_map);
2021
	lock_map_release(&pwq->wq->lockdep_map);
2022 2023

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2024 2025
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2026 2027
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2028 2029 2030 2031
		debug_show_held_locks(current);
		dump_stack();
	}

2032 2033 2034 2035 2036
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2037 2038
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2039
	 */
2040
	cond_resched_rcu_qs();
2041

2042
	spin_lock_irq(&pool->lock);
2043

2044 2045 2046 2047
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2048
	/* we're done with it, release */
2049
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2050
	worker->current_work = NULL;
2051
	worker->current_func = NULL;
2052
	worker->current_pwq = NULL;
2053
	worker->desc_valid = false;
2054
	pwq_dec_nr_in_flight(pwq, work_color);
2055 2056
}

2057 2058 2059 2060 2061 2062 2063 2064 2065
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2066
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2067 2068 2069
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2070
{
2071 2072
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2073
						struct work_struct, entry);
T
Tejun Heo 已提交
2074
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2075 2076 2077
	}
}

T
Tejun Heo 已提交
2078 2079
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2080
 * @__worker: self
T
Tejun Heo 已提交
2081
 *
2082 2083 2084 2085 2086
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2087 2088
 *
 * Return: 0
T
Tejun Heo 已提交
2089
 */
T
Tejun Heo 已提交
2090
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2091
{
T
Tejun Heo 已提交
2092
	struct worker *worker = __worker;
2093
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2094

2095 2096
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2097
woke_up:
2098
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2099

2100 2101
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2102
		spin_unlock_irq(&pool->lock);
2103 2104
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2105 2106

		set_task_comm(worker->task, "kworker/dying");
2107
		ida_simple_remove(&pool->worker_ida, worker->id);
2108 2109
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2110
		return 0;
T
Tejun Heo 已提交
2111
	}
2112

T
Tejun Heo 已提交
2113
	worker_leave_idle(worker);
2114
recheck:
2115
	/* no more worker necessary? */
2116
	if (!need_more_worker(pool))
2117 2118 2119
		goto sleep;

	/* do we need to manage? */
2120
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2121 2122
		goto recheck;

T
Tejun Heo 已提交
2123 2124 2125 2126 2127
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2128
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2129

2130
	/*
2131 2132 2133 2134 2135
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2136
	 */
2137
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2138 2139

	do {
T
Tejun Heo 已提交
2140
		struct work_struct *work =
2141
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2142 2143 2144 2145 2146 2147
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2148
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2149 2150 2151
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2152
		}
2153
	} while (keep_working(pool));
2154

2155
	worker_set_flags(worker, WORKER_PREP);
2156
sleep:
T
Tejun Heo 已提交
2157
	/*
2158 2159 2160 2161 2162
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2163 2164 2165
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2166
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2167 2168
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2169 2170
}

2171 2172
/**
 * rescuer_thread - the rescuer thread function
2173
 * @__rescuer: self
2174 2175
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2176
 * workqueue which has WQ_MEM_RECLAIM set.
2177
 *
2178
 * Regular work processing on a pool may block trying to create a new
2179 2180 2181 2182 2183
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2184 2185
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2186 2187 2188
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2189 2190
 *
 * Return: 0
2191
 */
2192
static int rescuer_thread(void *__rescuer)
2193
{
2194 2195
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2196
	struct list_head *scheduled = &rescuer->scheduled;
2197
	bool should_stop;
2198 2199

	set_user_nice(current, RESCUER_NICE_LEVEL);
2200 2201 2202 2203 2204 2205

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2206 2207 2208
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2209 2210 2211 2212 2213 2214 2215 2216 2217
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2218

2219
	/* see whether any pwq is asking for help */
2220
	spin_lock_irq(&wq_mayday_lock);
2221 2222 2223 2224

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2225
		struct worker_pool *pool = pwq->pool;
2226 2227 2228
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2229 2230
		list_del_init(&pwq->mayday_node);

2231
		spin_unlock_irq(&wq_mayday_lock);
2232

2233 2234 2235
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2236
		rescuer->pool = pool;
2237 2238 2239 2240 2241

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2242
		WARN_ON_ONCE(!list_empty(scheduled));
2243
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2244
			if (get_work_pwq(work) == pwq)
2245 2246
				move_linked_works(work, scheduled, &n);

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2266

2267 2268
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2269
		 * go away while we're still attached to it.
2270 2271 2272
		 */
		put_pwq(pwq);

2273
		/*
2274
		 * Leave this pool.  If need_more_worker() is %true, notify a
2275 2276 2277
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2278
		if (need_more_worker(pool))
2279
			wake_up_worker(pool);
2280

2281
		rescuer->pool = NULL;
2282 2283 2284 2285 2286
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2287 2288
	}

2289
	spin_unlock_irq(&wq_mayday_lock);
2290

2291 2292 2293 2294 2295 2296
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2297 2298
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2299 2300
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2301 2302
}

O
Oleg Nesterov 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2314 2315
/**
 * insert_wq_barrier - insert a barrier work
2316
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2317
 * @barr: wq_barrier to insert
2318 2319
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2320
 *
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2333
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2334 2335
 *
 * CONTEXT:
2336
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2337
 */
2338
static void insert_wq_barrier(struct pool_workqueue *pwq,
2339 2340
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2341
{
2342 2343 2344
	struct list_head *head;
	unsigned int linked = 0;

2345
	/*
2346
	 * debugobject calls are safe here even with pool->lock locked
2347 2348 2349 2350
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2351
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2352
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2353
	init_completion(&barr->done);
2354

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2370
	debug_work_activate(&barr->work);
2371
	insert_work(pwq, &barr->work, head,
2372
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2373 2374
}

2375
/**
2376
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2377 2378 2379 2380
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2381
 * Prepare pwqs for workqueue flushing.
2382
 *
2383 2384 2385 2386 2387
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2388 2389 2390 2391 2392 2393 2394
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2395
 * If @work_color is non-negative, all pwqs should have the same
2396 2397 2398 2399
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2400
 * mutex_lock(wq->mutex).
2401
 *
2402
 * Return:
2403 2404 2405
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2406
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2407
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2408
{
2409
	bool wait = false;
2410
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2411

2412
	if (flush_color >= 0) {
2413
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2414
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2415
	}
2416

2417
	for_each_pwq(pwq, wq) {
2418
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2419

2420
		spin_lock_irq(&pool->lock);
2421

2422
		if (flush_color >= 0) {
2423
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2424

2425 2426 2427
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2428 2429 2430
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2431

2432
		if (work_color >= 0) {
2433
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2434
			pwq->work_color = work_color;
2435
		}
L
Linus Torvalds 已提交
2436

2437
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2438
	}
2439

2440
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2441
		complete(&wq->first_flusher->done);
2442

2443
	return wait;
L
Linus Torvalds 已提交
2444 2445
}

2446
/**
L
Linus Torvalds 已提交
2447
 * flush_workqueue - ensure that any scheduled work has run to completion.
2448
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2449
 *
2450 2451
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2452
 */
2453
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2454
{
2455 2456 2457 2458 2459 2460
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2461

2462 2463
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2464

2465
	mutex_lock(&wq->mutex);
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2478
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2479 2480 2481 2482 2483
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2484
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2485 2486 2487

			wq->first_flusher = &this_flusher;

2488
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2489 2490 2491 2492 2493 2494 2495 2496
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2497
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2498
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2499
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2510
	mutex_unlock(&wq->mutex);
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2523
	mutex_lock(&wq->mutex);
2524

2525 2526 2527 2528
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2529 2530
	wq->first_flusher = NULL;

2531 2532
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2545 2546
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2566
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2567 2568 2569
		}

		if (list_empty(&wq->flusher_queue)) {
2570
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2571 2572 2573 2574 2575
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2576
		 * the new first flusher and arm pwqs.
2577
		 */
2578 2579
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2580 2581 2582 2583

		list_del_init(&next->list);
		wq->first_flusher = next;

2584
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2595
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2596
}
2597
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2598

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2613
	struct pool_workqueue *pwq;
2614 2615 2616 2617

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2618
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2619
	 */
2620
	mutex_lock(&wq->mutex);
2621
	if (!wq->nr_drainers++)
2622
		wq->flags |= __WQ_DRAINING;
2623
	mutex_unlock(&wq->mutex);
2624 2625 2626
reflush:
	flush_workqueue(wq);

2627
	mutex_lock(&wq->mutex);
2628

2629
	for_each_pwq(pwq, wq) {
2630
		bool drained;
2631

2632
		spin_lock_irq(&pwq->pool->lock);
2633
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2634
		spin_unlock_irq(&pwq->pool->lock);
2635 2636

		if (drained)
2637 2638 2639 2640
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2641
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2642
				wq->name, flush_cnt);
2643

2644
		mutex_unlock(&wq->mutex);
2645 2646 2647 2648
		goto reflush;
	}

	if (!--wq->nr_drainers)
2649
		wq->flags &= ~__WQ_DRAINING;
2650
	mutex_unlock(&wq->mutex);
2651 2652 2653
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2654
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2655
{
2656
	struct worker *worker = NULL;
2657
	struct worker_pool *pool;
2658
	struct pool_workqueue *pwq;
2659 2660

	might_sleep();
2661 2662

	local_irq_disable();
2663
	pool = get_work_pool(work);
2664 2665
	if (!pool) {
		local_irq_enable();
2666
		return false;
2667
	}
2668

2669
	spin_lock(&pool->lock);
2670
	/* see the comment in try_to_grab_pending() with the same code */
2671 2672 2673
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2674
			goto already_gone;
2675
	} else {
2676
		worker = find_worker_executing_work(pool, work);
2677
		if (!worker)
T
Tejun Heo 已提交
2678
			goto already_gone;
2679
		pwq = worker->current_pwq;
2680
	}
2681

2682
	insert_wq_barrier(pwq, barr, work, worker);
2683
	spin_unlock_irq(&pool->lock);
2684

2685 2686 2687 2688 2689 2690
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2691
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2692
		lock_map_acquire(&pwq->wq->lockdep_map);
2693
	else
2694 2695
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2696

2697
	return true;
T
Tejun Heo 已提交
2698
already_gone:
2699
	spin_unlock_irq(&pool->lock);
2700
	return false;
2701
}
2702 2703 2704 2705 2706

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2707 2708
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2709
 *
2710
 * Return:
2711 2712 2713 2714 2715
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2716 2717
	struct wq_barrier barr;

2718 2719 2720
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2721 2722 2723 2724 2725 2726 2727
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2728
}
2729
EXPORT_SYMBOL_GPL(flush_work);
2730

2731
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2732
{
2733
	unsigned long flags;
2734 2735 2736
	int ret;

	do {
2737 2738 2739 2740 2741 2742
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2743
			flush_work(work);
2744 2745
	} while (unlikely(ret < 0));

2746 2747 2748 2749
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2750
	flush_work(work);
2751
	clear_work_data(work);
2752 2753 2754
	return ret;
}

2755
/**
2756 2757
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2758
 *
2759 2760 2761 2762
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2763
 *
2764 2765
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2766
 *
2767
 * The caller must ensure that the workqueue on which @work was last
2768
 * queued can't be destroyed before this function returns.
2769
 *
2770
 * Return:
2771
 * %true if @work was pending, %false otherwise.
2772
 */
2773
bool cancel_work_sync(struct work_struct *work)
2774
{
2775
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2776
}
2777
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2778

2779
/**
2780 2781
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2782
 *
2783 2784 2785
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2786
 *
2787
 * Return:
2788 2789
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2790
 */
2791 2792
bool flush_delayed_work(struct delayed_work *dwork)
{
2793
	local_irq_disable();
2794
	if (del_timer_sync(&dwork->timer))
2795
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2796
	local_irq_enable();
2797 2798 2799 2800
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2801
/**
2802 2803
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2804
 *
2805 2806 2807 2808 2809 2810 2811 2812 2813
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2814
 *
2815
 * This function is safe to call from any context including IRQ handler.
2816
 */
2817
bool cancel_delayed_work(struct delayed_work *dwork)
2818
{
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2829 2830
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2831
	local_irq_restore(flags);
2832
	return ret;
2833
}
2834
EXPORT_SYMBOL(cancel_delayed_work);
2835

2836 2837 2838 2839 2840 2841
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2842
 * Return:
2843 2844 2845
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2846
{
2847
	return __cancel_work_timer(&dwork->work, true);
2848
}
2849
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2850

2851
/**
2852
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2853 2854
 * @func: the function to call
 *
2855 2856
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2857
 * schedule_on_each_cpu() is very slow.
2858
 *
2859
 * Return:
2860
 * 0 on success, -errno on failure.
2861
 */
2862
int schedule_on_each_cpu(work_func_t func)
2863 2864
{
	int cpu;
2865
	struct work_struct __percpu *works;
2866

2867 2868
	works = alloc_percpu(struct work_struct);
	if (!works)
2869
		return -ENOMEM;
2870

2871 2872
	get_online_cpus();

2873
	for_each_online_cpu(cpu) {
2874 2875 2876
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2877
		schedule_work_on(cpu, work);
2878
	}
2879 2880 2881 2882

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2883
	put_online_cpus();
2884
	free_percpu(works);
2885 2886 2887
	return 0;
}

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2912 2913
void flush_scheduled_work(void)
{
2914
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2915
}
2916
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2917

2918 2919 2920 2921 2922 2923 2924 2925 2926
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2927
 * Return:	0 - function was executed
2928 2929
 *		1 - function was scheduled for execution
 */
2930
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2931 2932
{
	if (!in_interrupt()) {
2933
		fn(&ew->work);
2934 2935 2936
		return 0;
	}

2937
	INIT_WORK(&ew->work, fn);
2938 2939 2940 2941 2942 2943
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

2971 2972
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
2973 2974 2975 2976 2977
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
2978
static DEVICE_ATTR_RO(per_cpu);
2979

2980 2981
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
2982 2983 2984 2985 2986 2987
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

2988 2989 2990
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3001
static DEVICE_ATTR_RW(max_active);
3002

3003 3004 3005 3006
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3007
};
3008
ATTRIBUTE_GROUPS(wq_sysfs);
3009

3010 3011
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3012 3013
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3014 3015
	const char *delim = "";
	int node, written = 0;
3016 3017

	rcu_read_lock_sched();
3018 3019 3020 3021 3022 3023 3024
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3036 3037 3038
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3052 3053 3054
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3070
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3085 3086 3087
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3148
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3149
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3150 3151
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3152
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3153 3154 3155 3156 3157
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3158
	.dev_groups			= wq_sysfs_groups,
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3187
 * Return: 0 on success, -errno on failure.
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

3237
	dev_set_uevent_suppress(&wq_dev->dev, false);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3281 3282 3283
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3295
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3296 3297 3298 3299 3300 3301
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3302 3303 3304 3305 3306
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3307 3308 3309 3310 3311 3312
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3313 3314 3315 3316 3317 3318 3319 3320
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3321 3322
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3337 3338 3339 3340 3341
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3342 3343
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3344 3345
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3346 3347
 */
static int init_worker_pool(struct worker_pool *pool)
3348 3349
{
	spin_lock_init(&pool->lock);
3350 3351
	pool->id = -1;
	pool->cpu = -1;
3352
	pool->node = NUMA_NO_NODE;
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3366
	mutex_init(&pool->attach_mutex);
3367
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3368

3369
	ida_init(&pool->worker_ida);
3370 3371 3372 3373
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3374 3375 3376 3377
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3378 3379
}

3380 3381 3382 3383
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3384
	ida_destroy(&pool->worker_ida);
3385 3386 3387 3388 3389 3390 3391 3392 3393
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3394 3395 3396
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3397 3398
 *
 * Should be called with wq_pool_mutex held.
3399 3400 3401
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3402
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3403 3404
	struct worker *worker;

3405 3406 3407
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3408 3409 3410
		return;

	/* sanity checks */
3411
	if (WARN_ON(!(pool->cpu < 0)) ||
3412
	    WARN_ON(!list_empty(&pool->worklist)))
3413 3414 3415 3416 3417 3418 3419
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3420 3421 3422
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
3423
	 * attach_mutex.
3424
	 */
3425 3426
	mutex_lock(&pool->manager_arb);

3427
	spin_lock_irq(&pool->lock);
3428
	while ((worker = first_idle_worker(pool)))
3429 3430 3431
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3432

3433
	mutex_lock(&pool->attach_mutex);
3434
	if (!list_empty(&pool->workers))
3435
		pool->detach_completion = &detach_completion;
3436
	mutex_unlock(&pool->attach_mutex);
3437 3438 3439 3440

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3458
 * create a new one.
3459 3460
 *
 * Should be called with wq_pool_mutex held.
3461 3462 3463
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3464 3465 3466 3467 3468
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3469
	int node;
3470

3471
	lockdep_assert_held(&wq_pool_mutex);
3472 3473 3474 3475 3476

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
3477
			return pool;
3478 3479 3480 3481 3482 3483 3484 3485
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3486
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3487 3488
	copy_workqueue_attrs(pool->attrs, attrs);

3489 3490 3491 3492 3493 3494
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3506 3507 3508 3509
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3510
	if (!create_worker(pool))
3511 3512 3513 3514
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3515

3516 3517 3518 3519 3520 3521 3522
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3539
	bool is_last;
T
Tejun Heo 已提交
3540 3541 3542 3543

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3544
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3545
	list_del_rcu(&pwq->pwqs_node);
3546
	is_last = list_empty(&wq->pwqs);
3547
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3548

3549
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3550
	put_unbound_pool(pool);
3551 3552
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3553 3554 3555 3556 3557 3558
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3559 3560
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3561
		kfree(wq);
3562
	}
T
Tejun Heo 已提交
3563 3564
}

3565
/**
3566
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3567 3568
 * @pwq: target pool_workqueue
 *
3569 3570 3571
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3572
 */
3573
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3574
{
3575 3576 3577 3578
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3579
	lockdep_assert_held(&wq->mutex);
3580 3581 3582 3583 3584

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3585
	spin_lock_irq(&pwq->pool->lock);
3586

3587 3588 3589 3590 3591 3592
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
3593
		pwq->max_active = wq->saved_max_active;
3594

3595 3596 3597
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3598 3599 3600 3601 3602 3603

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3604 3605 3606 3607
	} else {
		pwq->max_active = 0;
	}

3608
	spin_unlock_irq(&pwq->pool->lock);
3609 3610
}

3611
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3612 3613
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3614 3615 3616
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3617 3618
	memset(pwq, 0, sizeof(*pwq));

3619 3620 3621
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3622
	pwq->refcnt = 1;
3623
	INIT_LIST_HEAD(&pwq->delayed_works);
3624
	INIT_LIST_HEAD(&pwq->pwqs_node);
3625
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3626
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3627
}
3628

3629
/* sync @pwq with the current state of its associated wq and link it */
3630
static void link_pwq(struct pool_workqueue *pwq)
3631 3632 3633 3634
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3635

3636 3637 3638 3639
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3640
	/* set the matching work_color */
3641
	pwq->work_color = wq->work_color;
3642 3643 3644 3645 3646

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3647
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3648
}
3649

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3663
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3664 3665 3666
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3667
	}
3668

3669 3670
	init_pwq(pwq, wq, pool);
	return pwq;
3671 3672
}

3673 3674 3675 3676 3677 3678 3679
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3680
		kmem_cache_free(pwq_cache, pwq);
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3693
 * calculation.  The result is stored in @cpumask.
3694 3695 3696 3697 3698 3699 3700 3701
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3702 3703 3704
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3705 3706 3707 3708
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3709
	if (!wq_numa_enabled || attrs->no_numa)
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3746 3747 3748 3749 3750
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3751 3752 3753 3754 3755 3756
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3757
 *
3758 3759 3760
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3761 3762 3763 3764
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3765 3766
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3767
	int node, ret;
3768

3769
	/* only unbound workqueues can change attributes */
3770 3771 3772
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3773 3774 3775 3776
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3777
	pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
3778
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3779 3780
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3781 3782
		goto enomem;

3783
	/* make a copy of @attrs and sanitize it */
3784 3785 3786
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3801
	mutex_lock(&wq_pool_mutex);
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3823
	mutex_unlock(&wq_pool_mutex);
3824

3825
	/* all pwqs have been created successfully, let's install'em */
3826
	mutex_lock(&wq->mutex);
3827

3828
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3829 3830

	/* save the previous pwq and install the new one */
3831
	for_each_node(node)
3832 3833 3834 3835 3836
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3837 3838

	mutex_unlock(&wq->mutex);
3839

3840 3841 3842 3843 3844 3845
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3846 3847 3848
	ret = 0;
	/* fall through */
out_free:
3849
	free_workqueue_attrs(tmp_attrs);
3850
	free_workqueue_attrs(new_attrs);
3851
	kfree(pwq_tbl);
3852
	return ret;
3853

3854 3855 3856 3857 3858 3859 3860
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3861
enomem:
3862 3863
	ret = -ENOMEM;
	goto out_free;
3864 3865
}

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3911 3912
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3913 3914 3915 3916 3917 3918 3919 3920

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
3921
	 * wq's, the default pwq should be used.
3922 3923 3924 3925 3926
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
3927
		goto use_dfl_pwq;
3928 3929 3930 3931 3932 3933 3934
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3935 3936
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3937 3938
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3961
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3962
{
3963
	bool highpri = wq->flags & WQ_HIGHPRI;
3964
	int cpu, ret;
3965 3966

	if (!(wq->flags & WQ_UNBOUND)) {
3967 3968
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3969 3970 3971
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3972 3973
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3974
			struct worker_pool *cpu_pools =
3975
				per_cpu(cpu_worker_pools, cpu);
3976

3977 3978 3979
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3980
			link_pwq(pwq);
3981
			mutex_unlock(&wq->mutex);
3982
		}
3983
		return 0;
3984 3985 3986 3987 3988 3989 3990
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3991
	} else {
3992
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3993
	}
T
Tejun Heo 已提交
3994 3995
}

3996 3997
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3998
{
3999 4000 4001
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4002 4003
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4004

4005
	return clamp_val(max_active, 1, lim);
4006 4007
}

4008
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4009 4010 4011
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4012
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4013
{
4014
	size_t tbl_size = 0;
4015
	va_list args;
L
Linus Torvalds 已提交
4016
	struct workqueue_struct *wq;
4017
	struct pool_workqueue *pwq;
4018

4019 4020 4021 4022
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4023
	/* allocate wq and format name */
4024
	if (flags & WQ_UNBOUND)
4025
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4026 4027

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4028
	if (!wq)
4029
		return NULL;
4030

4031 4032 4033 4034 4035 4036
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4037 4038
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4039
	va_end(args);
L
Linus Torvalds 已提交
4040

4041
	max_active = max_active ?: WQ_DFL_ACTIVE;
4042
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4043

4044
	/* init wq */
4045
	wq->flags = flags;
4046
	wq->saved_max_active = max_active;
4047
	mutex_init(&wq->mutex);
4048
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4049
	INIT_LIST_HEAD(&wq->pwqs);
4050 4051
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4052
	INIT_LIST_HEAD(&wq->maydays);
4053

4054
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4055
	INIT_LIST_HEAD(&wq->list);
4056

4057
	if (alloc_and_link_pwqs(wq) < 0)
4058
		goto err_free_wq;
T
Tejun Heo 已提交
4059

4060 4061 4062 4063 4064
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4065 4066
		struct worker *rescuer;

4067
		rescuer = alloc_worker(NUMA_NO_NODE);
4068
		if (!rescuer)
4069
			goto err_destroy;
4070

4071 4072
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4073
					       wq->name);
4074 4075 4076 4077
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4078

4079
		wq->rescuer = rescuer;
4080
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4081
		wake_up_process(rescuer->task);
4082 4083
	}

4084 4085 4086
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4087
	/*
4088 4089 4090
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4091
	 */
4092
	mutex_lock(&wq_pool_mutex);
4093

4094
	mutex_lock(&wq->mutex);
4095 4096
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4097
	mutex_unlock(&wq->mutex);
4098

T
Tejun Heo 已提交
4099
	list_add(&wq->list, &workqueues);
4100

4101
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4102

4103
	return wq;
4104 4105

err_free_wq:
4106
	free_workqueue_attrs(wq->unbound_attrs);
4107 4108 4109 4110
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4111
	return NULL;
4112
}
4113
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4114

4115 4116 4117 4118 4119 4120 4121 4122
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4123
	struct pool_workqueue *pwq;
4124
	int node;
4125

4126 4127
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4128

4129
	/* sanity checks */
4130
	mutex_lock(&wq->mutex);
4131
	for_each_pwq(pwq, wq) {
4132 4133
		int i;

4134 4135
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4136
				mutex_unlock(&wq->mutex);
4137
				return;
4138 4139 4140
			}
		}

4141
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4142
		    WARN_ON(pwq->nr_active) ||
4143
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4144
			mutex_unlock(&wq->mutex);
4145
			return;
4146
		}
4147
	}
4148
	mutex_unlock(&wq->mutex);
4149

4150 4151 4152 4153
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4154
	mutex_lock(&wq_pool_mutex);
4155
	list_del_init(&wq->list);
4156
	mutex_unlock(&wq_pool_mutex);
4157

4158 4159
	workqueue_sysfs_unregister(wq);

4160
	if (wq->rescuer) {
4161
		kthread_stop(wq->rescuer->task);
4162
		kfree(wq->rescuer);
4163
		wq->rescuer = NULL;
4164 4165
	}

T
Tejun Heo 已提交
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4176 4177
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4178
		 */
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4191
		put_pwq_unlocked(pwq);
4192
	}
4193 4194 4195
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4208
	struct pool_workqueue *pwq;
4209

4210 4211 4212 4213
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4214
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4215

4216
	mutex_lock(&wq->mutex);
4217 4218 4219

	wq->saved_max_active = max_active;

4220 4221
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4222

4223
	mutex_unlock(&wq->mutex);
4224
}
4225
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4226

4227 4228 4229 4230 4231
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4232 4233
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4234 4235 4236 4237 4238
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4239
	return worker && worker->rescue_wq;
4240 4241
}

4242
/**
4243 4244 4245
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4246
 *
4247 4248 4249
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4250
 *
4251 4252 4253 4254 4255 4256
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4257
 * Return:
4258
 * %true if congested, %false otherwise.
4259
 */
4260
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4261
{
4262
	struct pool_workqueue *pwq;
4263 4264
	bool ret;

4265
	rcu_read_lock_sched();
4266

4267 4268 4269
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4270 4271 4272
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4273
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4274

4275
	ret = !list_empty(&pwq->delayed_works);
4276
	rcu_read_unlock_sched();
4277 4278

	return ret;
L
Linus Torvalds 已提交
4279
}
4280
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4281

4282 4283 4284 4285 4286 4287 4288 4289
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4290
 * Return:
4291 4292 4293
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4294
{
4295
	struct worker_pool *pool;
4296 4297
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4298

4299 4300
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4301

4302 4303
	local_irq_save(flags);
	pool = get_work_pool(work);
4304
	if (pool) {
4305
		spin_lock(&pool->lock);
4306 4307
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4308
		spin_unlock(&pool->lock);
4309
	}
4310
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4311

4312
	return ret;
L
Linus Torvalds 已提交
4313
}
4314
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4315

4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4393 4394 4395
/*
 * CPU hotplug.
 *
4396
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4397
 * are a lot of assumptions on strong associations among work, pwq and
4398
 * pool which make migrating pending and scheduled works very
4399
 * difficult to implement without impacting hot paths.  Secondly,
4400
 * worker pools serve mix of short, long and very long running works making
4401 4402
 * blocked draining impractical.
 *
4403
 * This is solved by allowing the pools to be disassociated from the CPU
4404 4405
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4406
 */
L
Linus Torvalds 已提交
4407

4408
static void wq_unbind_fn(struct work_struct *work)
4409
{
4410
	int cpu = smp_processor_id();
4411
	struct worker_pool *pool;
4412
	struct worker *worker;
4413

4414
	for_each_cpu_worker_pool(pool, cpu) {
4415
		mutex_lock(&pool->attach_mutex);
4416
		spin_lock_irq(&pool->lock);
4417

4418
		/*
4419
		 * We've blocked all attach/detach operations. Make all workers
4420 4421 4422 4423 4424
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4425
		for_each_pool_worker(worker, pool)
4426
			worker->flags |= WORKER_UNBOUND;
4427

4428
		pool->flags |= POOL_DISASSOCIATED;
4429

4430
		spin_unlock_irq(&pool->lock);
4431
		mutex_unlock(&pool->attach_mutex);
4432

4433 4434 4435 4436 4437 4438 4439
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4440

4441 4442 4443 4444 4445 4446 4447 4448
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4449
		atomic_set(&pool->nr_running, 0);
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4460 4461
}

T
Tejun Heo 已提交
4462 4463 4464 4465
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4466
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4467 4468 4469
 */
static void rebind_workers(struct worker_pool *pool)
{
4470
	struct worker *worker;
T
Tejun Heo 已提交
4471

4472
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4473

4474 4475 4476 4477 4478 4479 4480
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4481
	for_each_pool_worker(worker, pool)
4482 4483
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4484

4485
	spin_lock_irq(&pool->lock);
4486
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4487

4488
	for_each_pool_worker(worker, pool) {
4489
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4490 4491

		/*
4492 4493 4494 4495 4496 4497
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4498
		 */
4499 4500
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4501

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4521
	}
4522 4523

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4524 4525
}

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4541
	lockdep_assert_held(&pool->attach_mutex);
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4553
	for_each_pool_worker(worker, pool)
4554 4555 4556 4557
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4558 4559 4560 4561
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4562
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4563 4564
					       unsigned long action,
					       void *hcpu)
4565
{
4566
	int cpu = (unsigned long)hcpu;
4567
	struct worker_pool *pool;
4568
	struct workqueue_struct *wq;
4569
	int pi;
4570

T
Tejun Heo 已提交
4571
	switch (action & ~CPU_TASKS_FROZEN) {
4572
	case CPU_UP_PREPARE:
4573
		for_each_cpu_worker_pool(pool, cpu) {
4574 4575
			if (pool->nr_workers)
				continue;
4576
			if (!create_worker(pool))
4577
				return NOTIFY_BAD;
4578
		}
T
Tejun Heo 已提交
4579
		break;
4580

4581 4582
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4583
		mutex_lock(&wq_pool_mutex);
4584 4585

		for_each_pool(pool, pi) {
4586
			mutex_lock(&pool->attach_mutex);
4587

4588
			if (pool->cpu == cpu)
4589
				rebind_workers(pool);
4590
			else if (pool->cpu < 0)
4591
				restore_unbound_workers_cpumask(pool, cpu);
4592

4593
			mutex_unlock(&pool->attach_mutex);
4594
		}
4595

4596 4597 4598 4599
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4600
		mutex_unlock(&wq_pool_mutex);
4601
		break;
4602
	}
4603 4604 4605 4606 4607 4608 4609
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4610
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4611 4612 4613
						 unsigned long action,
						 void *hcpu)
{
4614
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4615
	struct work_struct unbind_work;
4616
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4617

4618 4619
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4620
		/* unbinding per-cpu workers should happen on the local CPU */
4621
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4622
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4623 4624 4625 4626 4627 4628 4629 4630

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4631
		flush_work(&unbind_work);
4632
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4633
		break;
4634 4635 4636 4637
	}
	return NOTIFY_OK;
}

4638
#ifdef CONFIG_SMP
4639

4640
struct work_for_cpu {
4641
	struct work_struct work;
4642 4643 4644 4645 4646
	long (*fn)(void *);
	void *arg;
	long ret;
};

4647
static void work_for_cpu_fn(struct work_struct *work)
4648
{
4649 4650
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4651 4652 4653 4654 4655 4656 4657 4658 4659
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4660
 * It is up to the caller to ensure that the cpu doesn't go offline.
4661
 * The caller must not hold any locks which would prevent @fn from completing.
4662 4663
 *
 * Return: The value @fn returns.
4664
 */
4665
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4666
{
4667
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4668

4669 4670
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4671
	flush_work(&wfc.work);
4672
	destroy_work_on_stack(&wfc.work);
4673 4674 4675 4676 4677
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4678 4679 4680 4681 4682
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4683
 * Start freezing workqueues.  After this function returns, all freezable
4684
 * workqueues will queue new works to their delayed_works list instead of
4685
 * pool->worklist.
4686 4687
 *
 * CONTEXT:
4688
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4689 4690 4691
 */
void freeze_workqueues_begin(void)
{
4692 4693
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4694

4695
	mutex_lock(&wq_pool_mutex);
4696

4697
	WARN_ON_ONCE(workqueue_freezing);
4698 4699
	workqueue_freezing = true;

4700
	list_for_each_entry(wq, &workqueues, list) {
4701
		mutex_lock(&wq->mutex);
4702 4703
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4704
		mutex_unlock(&wq->mutex);
4705
	}
4706

4707
	mutex_unlock(&wq_pool_mutex);
4708 4709 4710
}

/**
4711
 * freeze_workqueues_busy - are freezable workqueues still busy?
4712 4713 4714 4715 4716
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4717
 * Grabs and releases wq_pool_mutex.
4718
 *
4719
 * Return:
4720 4721
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4722 4723 4724 4725
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4726 4727
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4728

4729
	mutex_lock(&wq_pool_mutex);
4730

4731
	WARN_ON_ONCE(!workqueue_freezing);
4732

4733 4734 4735
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4736 4737 4738 4739
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4740
		rcu_read_lock_sched();
4741
		for_each_pwq(pwq, wq) {
4742
			WARN_ON_ONCE(pwq->nr_active < 0);
4743
			if (pwq->nr_active) {
4744
				busy = true;
4745
				rcu_read_unlock_sched();
4746 4747 4748
				goto out_unlock;
			}
		}
4749
		rcu_read_unlock_sched();
4750 4751
	}
out_unlock:
4752
	mutex_unlock(&wq_pool_mutex);
4753 4754 4755 4756 4757 4758 4759
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4760
 * frozen works are transferred to their respective pool worklists.
4761 4762
 *
 * CONTEXT:
4763
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4764 4765 4766
 */
void thaw_workqueues(void)
{
4767 4768
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4769

4770
	mutex_lock(&wq_pool_mutex);
4771 4772 4773 4774

	if (!workqueue_freezing)
		goto out_unlock;

4775
	workqueue_freezing = false;
4776

4777 4778
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4779
		mutex_lock(&wq->mutex);
4780 4781
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4782
		mutex_unlock(&wq->mutex);
4783 4784 4785
	}

out_unlock:
4786
	mutex_unlock(&wq_pool_mutex);
4787 4788 4789
}
#endif /* CONFIG_FREEZER */

4790 4791 4792 4793 4794 4795 4796 4797
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

4798 4799 4800 4801 4802
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4803 4804 4805
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4806 4807 4808 4809 4810
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
4811
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
4812 4813 4814
	BUG_ON(!tbl);

	for_each_node(node)
4815
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4816
				node_online(node) ? node : NUMA_NO_NODE));
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4832
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4833
{
T
Tejun Heo 已提交
4834 4835
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4836

4837 4838 4839 4840
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4841
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4842
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4843

4844 4845
	wq_numa_init();

4846
	/* initialize CPU pools */
4847
	for_each_possible_cpu(cpu) {
4848
		struct worker_pool *pool;
4849

T
Tejun Heo 已提交
4850
		i = 0;
4851
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4852
			BUG_ON(init_worker_pool(pool));
4853
			pool->cpu = cpu;
4854
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4855
			pool->attrs->nice = std_nice[i++];
4856
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4857

T
Tejun Heo 已提交
4858
			/* alloc pool ID */
4859
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4860
			BUG_ON(worker_pool_assign_id(pool));
4861
			mutex_unlock(&wq_pool_mutex);
4862
		}
4863 4864
	}

4865
	/* create the initial worker */
4866
	for_each_online_cpu(cpu) {
4867
		struct worker_pool *pool;
4868

4869
		for_each_cpu_worker_pool(pool, cpu) {
4870
			pool->flags &= ~POOL_DISASSOCIATED;
4871
			BUG_ON(!create_worker(pool));
4872
		}
4873 4874
	}

4875
	/* create default unbound and ordered wq attrs */
4876 4877 4878 4879 4880 4881
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
4892 4893
	}

4894
	system_wq = alloc_workqueue("events", 0, 0);
4895
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4896
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4897 4898
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4899 4900
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4901 4902 4903 4904 4905
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
4906
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4907 4908 4909
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
4910
	return 0;
L
Linus Torvalds 已提交
4911
}
4912
early_initcall(init_workqueues);