workqueue.c 104.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125
struct worker_pool {
126
	spinlock_t		lock;		/* the pool lock */
127
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
128
	int			id;		/* I: pool ID */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141 142 143 144
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

145
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146
	struct ida		worker_ida;	/* L: for worker IDs */
147 148 149 150 151 152 153

	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
154 155
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
156
/*
157 158 159 160
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
161
 */
162
struct pool_workqueue {
163
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
164
	struct workqueue_struct *wq;		/* I: the owning workqueue */
165 166 167 168
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
169
	int			nr_active;	/* L: nr of active works */
170
	int			max_active;	/* L: max active works */
171
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
172
};
L
Linus Torvalds 已提交
173

174 175 176 177 178 179 180 181 182
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

183 184 185 186 187 188 189 190 191 192
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
193
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
194 195 196 197 198 199 200 201 202
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
203 204 205 206 207 208

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
209
	unsigned int		flags;		/* W: WQ_* flags */
210
	union {
211 212
		struct pool_workqueue __percpu		*pcpu;
		struct pool_workqueue			*single;
213
		unsigned long				v;
214
	} pool_wq;				/* I: pwq's */
T
Tejun Heo 已提交
215
	struct list_head	list;		/* W: list of all workqueues */
216 217 218 219

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
220
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
221 222 223 224
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

225
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
226 227
	struct worker		*rescuer;	/* I: rescue worker */

228
	int			nr_drainers;	/* W: drain in progress */
229
	int			saved_max_active; /* W: saved pwq max_active */
230
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
231
	struct lockdep_map	lockdep_map;
232
#endif
233
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
234 235
};

236 237
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
238
struct workqueue_struct *system_highpri_wq __read_mostly;
239
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
240
struct workqueue_struct *system_long_wq __read_mostly;
241
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
242
struct workqueue_struct *system_unbound_wq __read_mostly;
243
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
244
struct workqueue_struct *system_freezable_wq __read_mostly;
245
EXPORT_SYMBOL_GPL(system_freezable_wq);
246

247 248 249
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

250
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
251 252
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
253

254 255
#define for_each_busy_worker(worker, i, pos, pool)			\
	hash_for_each(pool->busy_hash, i, pos, worker, hentry)
256

257 258
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
259 260 261 262 263 264 265 266 267 268
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
269
	return WORK_CPU_END;
270 271
}

272
static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
273
				 struct workqueue_struct *wq)
274
{
275
	return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
276 277
}

278 279 280
/*
 * CPU iterators
 *
281
 * An extra cpu number is defined using an invalid cpu number
282
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
283 284
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
285
 *
286 287
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
288
 * for_each_pwq_cpu()		: possible CPUs for bound workqueues,
289 290
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
291 292
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
293
	     (cpu) < WORK_CPU_END;					\
294
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
295

296 297
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
298
	     (cpu) < WORK_CPU_END;					\
299
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
300

301 302
#define for_each_pwq_cpu(cpu, wq)					\
	for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq));	\
303
	     (cpu) < WORK_CPU_END;					\
304
	     (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
305

306 307 308 309
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

310 311 312 313 314
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
350
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
386
	.debug_hint	= work_debug_hint,
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

422 423
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
424
static LIST_HEAD(workqueues);
425
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
426

427
/*
428 429
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
430
 */
431 432
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_std_worker_pools);
T
Tejun Heo 已提交
433
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434

T
Tejun Heo 已提交
435 436 437 438
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
439
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
440

T
Tejun Heo 已提交
441
static struct worker_pool *std_worker_pools(int cpu)
442
{
443
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
444
		return per_cpu(cpu_std_worker_pools, cpu);
445
	else
T
Tejun Heo 已提交
446
		return unbound_std_worker_pools;
447 448
}

T
Tejun Heo 已提交
449 450
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
451
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
452 453
}

T
Tejun Heo 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

467 468 469 470 471 472 473 474 475
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

476 477
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
478
	struct worker_pool *pools = std_worker_pools(cpu);
479

T
Tejun Heo 已提交
480
	return &pools[highpri];
481 482
}

483 484
static struct pool_workqueue *get_pwq(unsigned int cpu,
				      struct workqueue_struct *wq)
485
{
486
	if (!(wq->flags & WQ_UNBOUND)) {
487
		if (likely(cpu < nr_cpu_ids))
488
			return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
489
	} else if (likely(cpu == WORK_CPU_UNBOUND))
490
		return wq->pool_wq.single;
491
	return NULL;
492 493
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
509

510
/*
511 512
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
513
 * is cleared and the high bits contain OFFQ flags and pool ID.
514
 *
515 516
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
517 518
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
519
 *
520
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
521
 * corresponding to a work.  Pool is available once the work has been
522
 * queued anywhere after initialization until it is sync canceled.  pwq is
523
 * available only while the work item is queued.
524
 *
525 526 527 528
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
529
 */
530 531
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
532
{
533
	BUG_ON(!work_pending(work));
534 535
	atomic_long_set(&work->data, data | flags | work_static(work));
}
536

537
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
538 539
			 unsigned long extra_flags)
{
540 541
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
542 543
}

544 545 546 547 548 549 550
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

551 552
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
553
{
554 555 556 557 558 559 560
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
561
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
562
}
563

564
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
565
{
566 567
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
568 569
}

570
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
571
{
572
	unsigned long data = atomic_long_read(&work->data);
573

574
	if (data & WORK_STRUCT_PWQ)
575 576 577
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
578 579
}

580 581 582 583 584 585 586
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
587
{
588
	unsigned long data = atomic_long_read(&work->data);
589 590
	struct worker_pool *pool;
	int pool_id;
591

592 593
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
594
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
595

596 597
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
598 599
		return NULL;

600 601 602 603 604 605 606 607 608 609 610 611 612 613
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
614 615
	unsigned long data = atomic_long_read(&work->data);

616 617
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
618
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
619

620
	return data >> WORK_OFFQ_POOL_SHIFT;
621 622
}

623 624
static void mark_work_canceling(struct work_struct *work)
{
625
	unsigned long pool_id = get_work_pool_id(work);
626

627 628
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
629 630 631 632 633 634
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

635
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
636 637
}

638
/*
639 640
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
641
 * they're being called with pool->lock held.
642 643
 */

644
static bool __need_more_worker(struct worker_pool *pool)
645
{
646
	return !atomic_read(&pool->nr_running);
647 648
}

649
/*
650 651
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
652 653
 *
 * Note that, because unbound workers never contribute to nr_running, this
654
 * function will always return %true for unbound pools as long as the
655
 * worklist isn't empty.
656
 */
657
static bool need_more_worker(struct worker_pool *pool)
658
{
659
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
660
}
661

662
/* Can I start working?  Called from busy but !running workers. */
663
static bool may_start_working(struct worker_pool *pool)
664
{
665
	return pool->nr_idle;
666 667 668
}

/* Do I need to keep working?  Called from currently running workers. */
669
static bool keep_working(struct worker_pool *pool)
670
{
671 672
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
673 674 675
}

/* Do we need a new worker?  Called from manager. */
676
static bool need_to_create_worker(struct worker_pool *pool)
677
{
678
	return need_more_worker(pool) && !may_start_working(pool);
679
}
680

681
/* Do I need to be the manager? */
682
static bool need_to_manage_workers(struct worker_pool *pool)
683
{
684
	return need_to_create_worker(pool) ||
685
		(pool->flags & POOL_MANAGE_WORKERS);
686 687 688
}

/* Do we have too many workers and should some go away? */
689
static bool too_many_workers(struct worker_pool *pool)
690
{
691
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
692 693
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
694

695 696 697 698 699 700 701
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

702
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
703 704
}

705
/*
706 707 708
 * Wake up functions.
 */

709
/* Return the first worker.  Safe with preemption disabled */
710
static struct worker *first_worker(struct worker_pool *pool)
711
{
712
	if (unlikely(list_empty(&pool->idle_list)))
713 714
		return NULL;

715
	return list_first_entry(&pool->idle_list, struct worker, entry);
716 717 718 719
}

/**
 * wake_up_worker - wake up an idle worker
720
 * @pool: worker pool to wake worker from
721
 *
722
 * Wake up the first idle worker of @pool.
723 724
 *
 * CONTEXT:
725
 * spin_lock_irq(pool->lock).
726
 */
727
static void wake_up_worker(struct worker_pool *pool)
728
{
729
	struct worker *worker = first_worker(pool);
730 731 732 733 734

	if (likely(worker))
		wake_up_process(worker->task);
}

735
/**
736 737 738 739 740 741 742 743 744 745 746 747 748 749
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

750
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
751
		WARN_ON_ONCE(worker->pool->cpu != cpu);
752
		atomic_inc(&worker->pool->nr_running);
753
	}
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
775
	struct worker_pool *pool;
776

777 778 779 780 781
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
782
	if (worker->flags & WORKER_NOT_RUNNING)
783 784
		return NULL;

785 786
	pool = worker->pool;

787 788 789 790 791 792 793 794
	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
795 796 797
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
798
	 * manipulating idle_list, so dereferencing idle_list without pool
799
	 * lock is safe.
800
	 */
801 802
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
803
		to_wakeup = first_worker(pool);
804 805 806 807 808
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
809
 * @worker: self
810 811 812
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
813 814 815
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
816
 *
817
 * CONTEXT:
818
 * spin_lock_irq(pool->lock)
819 820 821 822
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
823
	struct worker_pool *pool = worker->pool;
824

825 826
	WARN_ON_ONCE(worker->task != current);

827 828 829 830 831 832 833 834
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
835
			if (atomic_dec_and_test(&pool->nr_running) &&
836
			    !list_empty(&pool->worklist))
837
				wake_up_worker(pool);
838
		} else
839
			atomic_dec(&pool->nr_running);
840 841
	}

842 843 844 845
	worker->flags |= flags;
}

/**
846
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
847
 * @worker: self
848 849
 * @flags: flags to clear
 *
850
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
851
 *
852
 * CONTEXT:
853
 * spin_lock_irq(pool->lock)
854 855 856
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
857
	struct worker_pool *pool = worker->pool;
858 859
	unsigned int oflags = worker->flags;

860 861
	WARN_ON_ONCE(worker->task != current);

862
	worker->flags &= ~flags;
863

864 865 866 867 868
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
869 870
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
871
			atomic_inc(&pool->nr_running);
872 873
}

874 875
/**
 * find_worker_executing_work - find worker which is executing a work
876
 * @pool: pool of interest
877 878
 * @work: work to find worker for
 *
879 880
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
900 901
 *
 * CONTEXT:
902
 * spin_lock_irq(pool->lock).
903 904 905 906
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
907
 */
908
static struct worker *find_worker_executing_work(struct worker_pool *pool,
909
						 struct work_struct *work)
910
{
911 912 913
	struct worker *worker;
	struct hlist_node *tmp;

914
	hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
915 916 917
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
918 919 920
			return worker;

	return NULL;
921 922
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
938
 * spin_lock_irq(pool->lock).
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

964
static void pwq_activate_delayed_work(struct work_struct *work)
965
{
966
	struct pool_workqueue *pwq = get_work_pwq(work);
967 968

	trace_workqueue_activate_work(work);
969
	move_linked_works(work, &pwq->pool->worklist, NULL);
970
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
971
	pwq->nr_active++;
972 973
}

974
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
975
{
976
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
977 978
						    struct work_struct, entry);

979
	pwq_activate_delayed_work(work);
980 981
}

982
/**
983 984
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
985 986 987
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
988
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
989 990
 *
 * CONTEXT:
991
 * spin_lock_irq(pool->lock).
992
 */
993
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
994 995 996 997 998
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

999
	pwq->nr_in_flight[color]--;
1000

1001 1002
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1003
		/* one down, submit a delayed one */
1004 1005
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1006 1007 1008
	}

	/* is flush in progress and are we at the flushing tip? */
1009
	if (likely(pwq->flush_color != color))
1010 1011 1012
		return;

	/* are there still in-flight works? */
1013
	if (pwq->nr_in_flight[color])
1014 1015
		return;

1016 1017
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1018 1019

	/*
1020
	 * If this was the last pwq, wake up the first flusher.  It
1021 1022
	 * will handle the rest.
	 */
1023 1024
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
1025 1026
}

1027
/**
1028
 * try_to_grab_pending - steal work item from worklist and disable irq
1029 1030
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1031
 * @flags: place to store irq state
1032 1033 1034 1035 1036 1037 1038
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1039 1040
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1041
 *
1042
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1043 1044 1045
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1046 1047 1048 1049
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1050
 * This function is safe to call from any context including IRQ handler.
1051
 */
1052 1053
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1054
{
1055
	struct worker_pool *pool;
1056
	struct pool_workqueue *pwq;
1057

1058 1059
	local_irq_save(*flags);

1060 1061 1062 1063
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1064 1065 1066 1067 1068
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1069 1070 1071 1072 1073
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1074 1075 1076 1077 1078 1079 1080
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1081 1082
	pool = get_work_pool(work);
	if (!pool)
1083
		goto fail;
1084

1085
	spin_lock(&pool->lock);
1086
	/*
1087 1088 1089 1090 1091
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1092 1093
	 * item is currently queued on that pool.
	 */
1094 1095
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1096 1097 1098 1099 1100
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1101
		 * on the delayed_list, will confuse pwq->nr_active
1102 1103 1104 1105
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1106
			pwq_activate_delayed_work(work);
1107 1108

		list_del_init(&work->entry);
1109
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1110

1111
		/* work->data points to pwq iff queued, point to pool */
1112 1113 1114 1115
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1116
	}
1117
	spin_unlock(&pool->lock);
1118 1119 1120 1121 1122
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1123
	return -EAGAIN;
1124 1125
}

T
Tejun Heo 已提交
1126
/**
1127
 * insert_work - insert a work into a pool
1128
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1129 1130 1131 1132
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1133
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1134
 * work_struct flags.
T
Tejun Heo 已提交
1135 1136
 *
 * CONTEXT:
1137
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1138
 */
1139 1140
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1141
{
1142
	struct worker_pool *pool = pwq->pool;
1143

T
Tejun Heo 已提交
1144
	/* we own @work, set data and link */
1145
	set_work_pwq(work, pwq, extra_flags);
1146
	list_add_tail(&work->entry, head);
1147 1148 1149 1150 1151 1152 1153 1154

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1155 1156
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1157 1158
}

1159 1160
/*
 * Test whether @work is being queued from another work executing on the
1161
 * same workqueue.
1162 1163 1164
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1165 1166 1167 1168 1169 1170 1171
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1172
	return worker && worker->current_pwq->wq == wq;
1173 1174
}

T
Tejun Heo 已提交
1175
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1176 1177
			 struct work_struct *work)
{
1178
	struct pool_workqueue *pwq;
1179
	struct list_head *worklist;
1180
	unsigned int work_flags;
1181
	unsigned int req_cpu = cpu;
1182 1183 1184 1185 1186 1187 1188 1189

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1190

1191
	debug_work_activate(work);
1192

1193
	/* if dying, only works from the same workqueue are allowed */
1194
	if (unlikely(wq->flags & WQ_DRAINING) &&
1195
	    WARN_ON_ONCE(!is_chained_work(wq)))
1196 1197
		return;

1198
	/* determine the pwq to use */
1199
	if (!(wq->flags & WQ_UNBOUND)) {
1200
		struct worker_pool *last_pool;
1201

1202
		if (cpu == WORK_CPU_UNBOUND)
1203 1204
			cpu = raw_smp_processor_id();

1205
		/*
1206 1207 1208 1209
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1210
		 */
1211
		pwq = get_pwq(cpu, wq);
1212
		last_pool = get_work_pool(work);
1213

1214
		if (last_pool && last_pool != pwq->pool) {
1215 1216
			struct worker *worker;

1217
			spin_lock(&last_pool->lock);
1218

1219
			worker = find_worker_executing_work(last_pool, work);
1220

1221 1222
			if (worker && worker->current_pwq->wq == wq) {
				pwq = get_pwq(last_pool->cpu, wq);
1223
			} else {
1224
				/* meh... not running there, queue here */
1225
				spin_unlock(&last_pool->lock);
1226
				spin_lock(&pwq->pool->lock);
1227
			}
1228
		} else {
1229
			spin_lock(&pwq->pool->lock);
1230
		}
1231
	} else {
1232 1233
		pwq = get_pwq(WORK_CPU_UNBOUND, wq);
		spin_lock(&pwq->pool->lock);
1234 1235
	}

1236 1237
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1238

1239
	if (WARN_ON(!list_empty(&work->entry))) {
1240
		spin_unlock(&pwq->pool->lock);
1241 1242
		return;
	}
1243

1244 1245
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1246

1247
	if (likely(pwq->nr_active < pwq->max_active)) {
1248
		trace_workqueue_activate_work(work);
1249 1250
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1251 1252
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1253
		worklist = &pwq->delayed_works;
1254
	}
1255

1256
	insert_work(pwq, work, worklist, work_flags);
1257

1258
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1259 1260
}

1261
/**
1262 1263
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1264 1265 1266
 * @wq: workqueue to use
 * @work: work to queue
 *
1267
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1268
 *
1269 1270
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1271
 */
1272 1273
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1274
{
1275
	bool ret = false;
1276
	unsigned long flags;
1277

1278
	local_irq_save(flags);
1279

1280
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1281
		__queue_work(cpu, wq, work);
1282
		ret = true;
1283
	}
1284

1285
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1286 1287
	return ret;
}
1288
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1289

1290
/**
1291
 * queue_work - queue work on a workqueue
1292 1293 1294
 * @wq: workqueue to use
 * @work: work to queue
 *
1295
 * Returns %false if @work was already on a queue, %true otherwise.
1296
 *
1297 1298
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1299
 */
1300
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1301
{
1302
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1303
}
1304
EXPORT_SYMBOL_GPL(queue_work);
1305

1306
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1307
{
1308
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1309

1310
	/* should have been called from irqsafe timer with irq already off */
1311
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1312
}
1313
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1314

1315 1316
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1317
{
1318 1319 1320 1321 1322
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1323 1324
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1325

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1337
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1338

1339
	dwork->wq = wq;
1340
	dwork->cpu = cpu;
1341 1342 1343 1344 1345 1346
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1347 1348
}

1349 1350 1351 1352
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1353
 * @dwork: work to queue
1354 1355
 * @delay: number of jiffies to wait before queueing
 *
1356 1357 1358
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1359
 */
1360 1361
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1362
{
1363
	struct work_struct *work = &dwork->work;
1364
	bool ret = false;
1365
	unsigned long flags;
1366

1367 1368
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1369

1370
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1371
		__queue_delayed_work(cpu, wq, dwork, delay);
1372
		ret = true;
1373
	}
1374

1375
	local_irq_restore(flags);
1376 1377
	return ret;
}
1378
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1379

1380 1381 1382 1383 1384 1385
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1386
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1387
 */
1388
bool queue_delayed_work(struct workqueue_struct *wq,
1389 1390
			struct delayed_work *dwork, unsigned long delay)
{
1391
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1392 1393
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1410
 * This function is safe to call from any context including IRQ handler.
1411 1412 1413 1414 1415 1416 1417
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1418

1419 1420 1421
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1422

1423 1424 1425
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1426
	}
1427 1428

	/* -ENOENT from try_to_grab_pending() becomes %true */
1429 1430
	return ret;
}
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1447

T
Tejun Heo 已提交
1448 1449 1450 1451 1452 1453 1454 1455
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1456
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1457 1458
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1459
{
1460
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1461 1462 1463 1464 1465

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1466 1467
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1468
	pool->nr_idle++;
1469
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1470 1471

	/* idle_list is LIFO */
1472
	list_add(&worker->entry, &pool->idle_list);
1473

1474 1475
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1476

1477
	/*
1478
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1479
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1480 1481
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1482
	 */
1483
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1484
		     pool->nr_workers == pool->nr_idle &&
1485
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1495
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1496 1497 1498
 */
static void worker_leave_idle(struct worker *worker)
{
1499
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1500 1501

	BUG_ON(!(worker->flags & WORKER_IDLE));
1502
	worker_clr_flags(worker, WORKER_IDLE);
1503
	pool->nr_idle--;
T
Tejun Heo 已提交
1504 1505 1506
	list_del_init(&worker->entry);
}

1507
/**
1508
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1520
 * verbatim as it's best effort and blocking and pool may be
1521 1522
 * [dis]associated in the meantime.
 *
1523
 * This function tries set_cpus_allowed() and locks pool and verifies the
1524
 * binding against %POOL_DISASSOCIATED which is set during
1525 1526 1527
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1528 1529
 *
 * CONTEXT:
1530
 * Might sleep.  Called without any lock but returns with pool->lock
1531 1532 1533
 * held.
 *
 * RETURNS:
1534
 * %true if the associated pool is online (@worker is successfully
1535 1536 1537
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1538
__acquires(&pool->lock)
1539
{
1540
	struct worker_pool *pool = worker->pool;
1541 1542 1543
	struct task_struct *task = worker->task;

	while (true) {
1544
		/*
1545 1546 1547
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1548
		 * against POOL_DISASSOCIATED.
1549
		 */
1550
		if (!(pool->flags & POOL_DISASSOCIATED))
1551
			set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1552

1553
		spin_lock_irq(&pool->lock);
1554
		if (pool->flags & POOL_DISASSOCIATED)
1555
			return false;
1556
		if (task_cpu(task) == pool->cpu &&
1557
		    cpumask_equal(&current->cpus_allowed,
1558
				  get_cpu_mask(pool->cpu)))
1559
			return true;
1560
		spin_unlock_irq(&pool->lock);
1561

1562 1563 1564 1565 1566 1567
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1568
		cpu_relax();
1569
		cond_resched();
1570 1571 1572
	}
}

1573
/*
1574
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1575
 * list_empty(@worker->entry) before leaving idle and call this function.
1576 1577 1578
 */
static void idle_worker_rebind(struct worker *worker)
{
1579 1580 1581
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1582

1583 1584
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1585
	spin_unlock_irq(&worker->pool->lock);
1586 1587
}

1588
/*
1589
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1590 1591 1592
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1593
 */
1594
static void busy_worker_rebind_fn(struct work_struct *work)
1595 1596 1597
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1598 1599
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1600

1601
	spin_unlock_irq(&worker->pool->lock);
1602 1603
}

1604
/**
1605 1606
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1607
 *
1608
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1609 1610
 * is different for idle and busy ones.
 *
1611 1612 1613 1614
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1615
 *
1616 1617 1618 1619
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1620
 *
1621 1622 1623 1624
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1625
 */
1626
static void rebind_workers(struct worker_pool *pool)
1627
{
1628
	struct worker *worker, *n;
1629 1630 1631
	struct hlist_node *pos;
	int i;

1632 1633
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1634

1635
	/* dequeue and kick idle ones */
1636 1637 1638 1639 1640 1641
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1642

1643 1644 1645 1646 1647 1648
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1649

1650 1651 1652 1653
	/* rebind busy workers */
	for_each_busy_worker(worker, i, pos, pool) {
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1654

1655 1656 1657
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1658

1659
		debug_work_activate(rebind_work);
1660

1661 1662
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1663
		 * and @pwq->pool consistent for sanity.
1664 1665 1666 1667 1668 1669
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

1670
		insert_work(get_pwq(pool->cpu, wq), rebind_work,
1671 1672
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1673
	}
1674 1675
}

T
Tejun Heo 已提交
1676 1677 1678 1679 1680
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1681 1682
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1683
		INIT_LIST_HEAD(&worker->scheduled);
1684
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1685 1686
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1687
	}
T
Tejun Heo 已提交
1688 1689 1690 1691 1692
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1693
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1694
 *
1695
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1705
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1706
{
1707
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1708
	struct worker *worker = NULL;
1709
	int id = -1;
T
Tejun Heo 已提交
1710

1711
	spin_lock_irq(&pool->lock);
1712
	while (ida_get_new(&pool->worker_ida, &id)) {
1713
		spin_unlock_irq(&pool->lock);
1714
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1715
			goto fail;
1716
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1717
	}
1718
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1719 1720 1721 1722 1723

	worker = alloc_worker();
	if (!worker)
		goto fail;

1724
	worker->pool = pool;
T
Tejun Heo 已提交
1725 1726
	worker->id = id;

1727
	if (pool->cpu != WORK_CPU_UNBOUND)
1728
		worker->task = kthread_create_on_node(worker_thread,
1729 1730
					worker, cpu_to_node(pool->cpu),
					"kworker/%u:%d%s", pool->cpu, id, pri);
1731 1732
	else
		worker->task = kthread_create(worker_thread, worker,
1733
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1734 1735 1736
	if (IS_ERR(worker->task))
		goto fail;

1737
	if (std_worker_pool_pri(pool))
1738 1739
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1740
	/*
1741
	 * Determine CPU binding of the new worker depending on
1742
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1743 1744 1745 1746 1747
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1748
	 */
1749
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1750
		kthread_bind(worker->task, pool->cpu);
1751
	} else {
1752
		worker->task->flags |= PF_THREAD_BOUND;
1753
		worker->flags |= WORKER_UNBOUND;
1754
	}
T
Tejun Heo 已提交
1755 1756 1757 1758

	return worker;
fail:
	if (id >= 0) {
1759
		spin_lock_irq(&pool->lock);
1760
		ida_remove(&pool->worker_ida, id);
1761
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1771
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1772 1773
 *
 * CONTEXT:
1774
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1775 1776 1777
 */
static void start_worker(struct worker *worker)
{
1778
	worker->flags |= WORKER_STARTED;
1779
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1780
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1781 1782 1783 1784 1785 1786 1787
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1788
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1789 1790
 *
 * CONTEXT:
1791
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1792 1793 1794
 */
static void destroy_worker(struct worker *worker)
{
1795
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1796 1797 1798 1799
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1800
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1801

T
Tejun Heo 已提交
1802
	if (worker->flags & WORKER_STARTED)
1803
		pool->nr_workers--;
T
Tejun Heo 已提交
1804
	if (worker->flags & WORKER_IDLE)
1805
		pool->nr_idle--;
T
Tejun Heo 已提交
1806 1807

	list_del_init(&worker->entry);
1808
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1809

1810
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1811

T
Tejun Heo 已提交
1812 1813 1814
	kthread_stop(worker->task);
	kfree(worker);

1815
	spin_lock_irq(&pool->lock);
1816
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1817 1818
}

1819
static void idle_worker_timeout(unsigned long __pool)
1820
{
1821
	struct worker_pool *pool = (void *)__pool;
1822

1823
	spin_lock_irq(&pool->lock);
1824

1825
	if (too_many_workers(pool)) {
1826 1827 1828 1829
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1830
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1831 1832 1833
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1834
			mod_timer(&pool->idle_timer, expires);
1835 1836
		else {
			/* it's been idle for too long, wake up manager */
1837
			pool->flags |= POOL_MANAGE_WORKERS;
1838
			wake_up_worker(pool);
1839
		}
1840 1841
	}

1842
	spin_unlock_irq(&pool->lock);
1843
}
1844

1845 1846
static bool send_mayday(struct work_struct *work)
{
1847 1848
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1849
	unsigned int cpu;
1850 1851 1852 1853 1854

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1855
	cpu = pwq->pool->cpu;
1856 1857 1858
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1859
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1860 1861 1862 1863
		wake_up_process(wq->rescuer->task);
	return true;
}

1864
static void pool_mayday_timeout(unsigned long __pool)
1865
{
1866
	struct worker_pool *pool = (void *)__pool;
1867 1868
	struct work_struct *work;

1869
	spin_lock_irq(&pool->lock);
1870

1871
	if (need_to_create_worker(pool)) {
1872 1873 1874 1875 1876 1877
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1878
		list_for_each_entry(work, &pool->worklist, entry)
1879
			send_mayday(work);
L
Linus Torvalds 已提交
1880
	}
1881

1882
	spin_unlock_irq(&pool->lock);
1883

1884
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1885 1886
}

1887 1888
/**
 * maybe_create_worker - create a new worker if necessary
1889
 * @pool: pool to create a new worker for
1890
 *
1891
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1892 1893
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1894
 * sent to all rescuers with works scheduled on @pool to resolve
1895 1896 1897 1898 1899 1900
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1901
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1902 1903 1904 1905
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1906
 * false if no action was taken and pool->lock stayed locked, true
1907 1908
 * otherwise.
 */
1909
static bool maybe_create_worker(struct worker_pool *pool)
1910 1911
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1912
{
1913
	if (!need_to_create_worker(pool))
1914 1915
		return false;
restart:
1916
	spin_unlock_irq(&pool->lock);
1917

1918
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1919
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1920 1921 1922 1923

	while (true) {
		struct worker *worker;

1924
		worker = create_worker(pool);
1925
		if (worker) {
1926
			del_timer_sync(&pool->mayday_timer);
1927
			spin_lock_irq(&pool->lock);
1928
			start_worker(worker);
1929
			BUG_ON(need_to_create_worker(pool));
1930 1931 1932
			return true;
		}

1933
		if (!need_to_create_worker(pool))
1934
			break;
L
Linus Torvalds 已提交
1935

1936 1937
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1938

1939
		if (!need_to_create_worker(pool))
1940 1941 1942
			break;
	}

1943
	del_timer_sync(&pool->mayday_timer);
1944
	spin_lock_irq(&pool->lock);
1945
	if (need_to_create_worker(pool))
1946 1947 1948 1949 1950 1951
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1952
 * @pool: pool to destroy workers for
1953
 *
1954
 * Destroy @pool workers which have been idle for longer than
1955 1956 1957
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1958
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1959 1960 1961
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1962
 * false if no action was taken and pool->lock stayed locked, true
1963 1964
 * otherwise.
 */
1965
static bool maybe_destroy_workers(struct worker_pool *pool)
1966 1967
{
	bool ret = false;
L
Linus Torvalds 已提交
1968

1969
	while (too_many_workers(pool)) {
1970 1971
		struct worker *worker;
		unsigned long expires;
1972

1973
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1974
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1975

1976
		if (time_before(jiffies, expires)) {
1977
			mod_timer(&pool->idle_timer, expires);
1978
			break;
1979
		}
L
Linus Torvalds 已提交
1980

1981 1982
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1983
	}
1984

1985
	return ret;
1986 1987
}

1988
/**
1989 1990
 * manage_workers - manage worker pool
 * @worker: self
1991
 *
1992
 * Assume the manager role and manage the worker pool @worker belongs
1993
 * to.  At any given time, there can be only zero or one manager per
1994
 * pool.  The exclusion is handled automatically by this function.
1995 1996 1997 1998
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1999 2000
 *
 * CONTEXT:
2001
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2002 2003 2004
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2005 2006
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2007
 */
2008
static bool manage_workers(struct worker *worker)
2009
{
2010
	struct worker_pool *pool = worker->pool;
2011
	bool ret = false;
2012

2013
	if (pool->flags & POOL_MANAGING_WORKERS)
2014
		return ret;
2015

2016
	pool->flags |= POOL_MANAGING_WORKERS;
2017

2018 2019 2020 2021 2022 2023
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2024
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2025 2026
	 * manager against CPU hotplug.
	 *
2027
	 * assoc_mutex would always be free unless CPU hotplug is in
2028
	 * progress.  trylock first without dropping @pool->lock.
2029
	 */
2030
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2031
		spin_unlock_irq(&pool->lock);
2032
		mutex_lock(&pool->assoc_mutex);
2033 2034
		/*
		 * CPU hotplug could have happened while we were waiting
2035
		 * for assoc_mutex.  Hotplug itself can't handle us
2036
		 * because manager isn't either on idle or busy list, and
2037
		 * @pool's state and ours could have deviated.
2038
		 *
2039
		 * As hotplug is now excluded via assoc_mutex, we can
2040
		 * simply try to bind.  It will succeed or fail depending
2041
		 * on @pool's current state.  Try it and adjust
2042 2043 2044 2045 2046 2047
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2048

2049 2050
		ret = true;
	}
2051

2052
	pool->flags &= ~POOL_MANAGE_WORKERS;
2053 2054

	/*
2055 2056
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2057
	 */
2058 2059
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2060

2061
	pool->flags &= ~POOL_MANAGING_WORKERS;
2062
	mutex_unlock(&pool->assoc_mutex);
2063
	return ret;
2064 2065
}

2066 2067
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2068
 * @worker: self
2069 2070 2071 2072 2073 2074 2075 2076 2077
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2078
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2079
 */
T
Tejun Heo 已提交
2080
static void process_one_work(struct worker *worker, struct work_struct *work)
2081 2082
__releases(&pool->lock)
__acquires(&pool->lock)
2083
{
2084
	struct pool_workqueue *pwq = get_work_pwq(work);
2085
	struct worker_pool *pool = worker->pool;
2086
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2087
	int work_color;
2088
	struct worker *collision;
2089 2090 2091 2092 2093 2094 2095 2096
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2097 2098 2099
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2100
#endif
2101 2102 2103
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2104
	 * unbound or a disassociated pool.
2105
	 */
2106
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2107
		     !(pool->flags & POOL_DISASSOCIATED) &&
2108
		     raw_smp_processor_id() != pool->cpu);
2109

2110 2111 2112 2113 2114 2115
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2116
	collision = find_worker_executing_work(pool, work);
2117 2118 2119 2120 2121
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2122
	/* claim and dequeue */
2123
	debug_work_deactivate(work);
2124
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2125
	worker->current_work = work;
2126
	worker->current_func = work->func;
2127
	worker->current_pwq = pwq;
2128
	work_color = get_work_color(work);
2129

2130 2131
	list_del_init(&work->entry);

2132 2133 2134 2135 2136 2137 2138
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2139
	/*
2140
	 * Unbound pool isn't concurrency managed and work items should be
2141 2142
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2143 2144
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2145

2146
	/*
2147
	 * Record the last pool and clear PENDING which should be the last
2148
	 * update to @work.  Also, do this inside @pool->lock so that
2149 2150
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2151
	 */
2152
	set_work_pool_and_clear_pending(work, pool->id);
2153

2154
	spin_unlock_irq(&pool->lock);
2155

2156
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2157
	lock_map_acquire(&lockdep_map);
2158
	trace_workqueue_execute_start(work);
2159
	worker->current_func(work);
2160 2161 2162 2163 2164
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2165
	lock_map_release(&lockdep_map);
2166
	lock_map_release(&pwq->wq->lockdep_map);
2167 2168

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2169 2170
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2171 2172
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2173 2174 2175 2176
		debug_show_held_locks(current);
		dump_stack();
	}

2177
	spin_lock_irq(&pool->lock);
2178

2179 2180 2181 2182
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2183
	/* we're done with it, release */
2184
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2185
	worker->current_work = NULL;
2186
	worker->current_func = NULL;
2187 2188
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2189 2190
}

2191 2192 2193 2194 2195 2196 2197 2198 2199
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2200
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2201 2202 2203
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2204
{
2205 2206
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2207
						struct work_struct, entry);
T
Tejun Heo 已提交
2208
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2209 2210 2211
	}
}

T
Tejun Heo 已提交
2212 2213
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2214
 * @__worker: self
T
Tejun Heo 已提交
2215
 *
2216 2217
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2218 2219 2220
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2221
 */
T
Tejun Heo 已提交
2222
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2223
{
T
Tejun Heo 已提交
2224
	struct worker *worker = __worker;
2225
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2226

2227 2228
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2229
woke_up:
2230
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2231

2232 2233
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2234
		spin_unlock_irq(&pool->lock);
2235

2236
		/* if DIE is set, destruction is requested */
2237 2238 2239 2240 2241
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2242
		/* otherwise, rebind */
2243 2244
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2245
	}
2246

T
Tejun Heo 已提交
2247
	worker_leave_idle(worker);
2248
recheck:
2249
	/* no more worker necessary? */
2250
	if (!need_more_worker(pool))
2251 2252 2253
		goto sleep;

	/* do we need to manage? */
2254
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2255 2256
		goto recheck;

T
Tejun Heo 已提交
2257 2258 2259 2260 2261 2262 2263
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2264 2265 2266 2267 2268 2269 2270 2271
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2272
		struct work_struct *work =
2273
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2274 2275 2276 2277 2278 2279
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2280
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2281 2282 2283
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2284
		}
2285
	} while (keep_working(pool));
2286 2287

	worker_set_flags(worker, WORKER_PREP, false);
2288
sleep:
2289
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2290
		goto recheck;
2291

T
Tejun Heo 已提交
2292
	/*
2293 2294 2295 2296 2297
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2298 2299 2300
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2301
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2302 2303
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2304 2305
}

2306 2307
/**
 * rescuer_thread - the rescuer thread function
2308
 * @__rescuer: self
2309 2310 2311 2312
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2313
 * Regular work processing on a pool may block trying to create a new
2314 2315 2316 2317 2318
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2319 2320
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2321 2322 2323 2324
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2325
static int rescuer_thread(void *__rescuer)
2326
{
2327 2328
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2329
	struct list_head *scheduled = &rescuer->scheduled;
2330
	bool is_unbound = wq->flags & WQ_UNBOUND;
2331 2332 2333
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2334 2335 2336 2337 2338 2339

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2340 2341 2342
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2343 2344
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2345
		rescuer->task->flags &= ~PF_WQ_WORKER;
2346
		return 0;
2347
	}
2348

2349 2350 2351 2352
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2353
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2354
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2355 2356
		struct pool_workqueue *pwq = get_pwq(tcpu, wq);
		struct worker_pool *pool = pwq->pool;
2357 2358 2359
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2360
		mayday_clear_cpu(cpu, wq->mayday_mask);
2361 2362

		/* migrate to the target cpu if possible */
2363
		rescuer->pool = pool;
2364 2365 2366 2367 2368 2369 2370
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2371
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2372
			if (get_work_pwq(work) == pwq)
2373 2374 2375
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2376 2377

		/*
2378
		 * Leave this pool.  If keep_working() is %true, notify a
2379 2380 2381
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2382 2383
		if (keep_working(pool))
			wake_up_worker(pool);
2384

2385
		spin_unlock_irq(&pool->lock);
2386 2387
	}

2388 2389
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2390 2391
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2392 2393
}

O
Oleg Nesterov 已提交
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2405 2406
/**
 * insert_wq_barrier - insert a barrier work
2407
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2408
 * @barr: wq_barrier to insert
2409 2410
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2411
 *
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2424
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2425 2426
 *
 * CONTEXT:
2427
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2428
 */
2429
static void insert_wq_barrier(struct pool_workqueue *pwq,
2430 2431
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2432
{
2433 2434 2435
	struct list_head *head;
	unsigned int linked = 0;

2436
	/*
2437
	 * debugobject calls are safe here even with pool->lock locked
2438 2439 2440 2441
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2442
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2443
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2444
	init_completion(&barr->done);
2445

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2461
	debug_work_activate(&barr->work);
2462
	insert_work(pwq, &barr->work, head,
2463
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2464 2465
}

2466
/**
2467
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2468 2469 2470 2471
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2472
 * Prepare pwqs for workqueue flushing.
2473
 *
2474 2475 2476 2477 2478
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2479 2480 2481 2482 2483 2484 2485
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2486
 * If @work_color is non-negative, all pwqs should have the same
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2497
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2498
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2499
{
2500 2501
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2502

2503
	if (flush_color >= 0) {
2504 2505
		BUG_ON(atomic_read(&wq->nr_pwqs_to_flush));
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2506
	}
2507

2508 2509 2510
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2511

2512
		spin_lock_irq(&pool->lock);
2513

2514
		if (flush_color >= 0) {
2515
			BUG_ON(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2516

2517 2518 2519
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2520 2521 2522
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2523

2524
		if (work_color >= 0) {
2525 2526
			BUG_ON(work_color != work_next_color(pwq->work_color));
			pwq->work_color = work_color;
2527
		}
L
Linus Torvalds 已提交
2528

2529
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2530
	}
2531

2532
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2533
		complete(&wq->first_flusher->done);
2534

2535
	return wait;
L
Linus Torvalds 已提交
2536 2537
}

2538
/**
L
Linus Torvalds 已提交
2539
 * flush_workqueue - ensure that any scheduled work has run to completion.
2540
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2541 2542 2543 2544
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2545 2546
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2547
 */
2548
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2549
{
2550 2551 2552 2553 2554 2555
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2556

2557 2558
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

2583
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2594
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2620 2621 2622 2623
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2661
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2662 2663 2664 2665 2666 2667 2668 2669 2670
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2671
		 * the new first flusher and arm pwqs.
2672 2673 2674 2675 2676 2677 2678
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

2679
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2691
}
2692
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2693

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

2722 2723
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
2724
		bool drained;
2725

2726 2727 2728
		spin_lock_irq(&pwq->pool->lock);
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
		spin_unlock_irq(&pwq->pool->lock);
2729 2730

		if (drained)
2731 2732 2733 2734
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2735 2736
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2747
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2748
{
2749
	struct worker *worker = NULL;
2750
	struct worker_pool *pool;
2751
	struct pool_workqueue *pwq;
2752 2753

	might_sleep();
2754 2755
	pool = get_work_pool(work);
	if (!pool)
2756
		return false;
2757

2758
	spin_lock_irq(&pool->lock);
2759
	/* see the comment in try_to_grab_pending() with the same code */
2760 2761 2762
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2763
			goto already_gone;
2764
	} else {
2765
		worker = find_worker_executing_work(pool, work);
2766
		if (!worker)
T
Tejun Heo 已提交
2767
			goto already_gone;
2768
		pwq = worker->current_pwq;
2769
	}
2770

2771
	insert_wq_barrier(pwq, barr, work, worker);
2772
	spin_unlock_irq(&pool->lock);
2773

2774 2775 2776 2777 2778 2779
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2780 2781
	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&pwq->wq->lockdep_map);
2782
	else
2783 2784
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2785

2786
	return true;
T
Tejun Heo 已提交
2787
already_gone:
2788
	spin_unlock_irq(&pool->lock);
2789
	return false;
2790
}
2791 2792 2793 2794 2795

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2796 2797
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2798 2799 2800 2801 2802 2803 2804 2805 2806
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2807 2808 2809
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2810
	if (start_flush_work(work, &barr)) {
2811 2812 2813
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2814
	} else {
2815
		return false;
2816 2817
	}
}
2818
EXPORT_SYMBOL_GPL(flush_work);
2819

2820
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2821
{
2822
	unsigned long flags;
2823 2824 2825
	int ret;

	do {
2826 2827 2828 2829 2830 2831
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2832
			flush_work(work);
2833 2834
	} while (unlikely(ret < 0));

2835 2836 2837 2838
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2839
	flush_work(work);
2840
	clear_work_data(work);
2841 2842 2843
	return ret;
}

2844
/**
2845 2846
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2847
 *
2848 2849 2850 2851
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2852
 *
2853 2854
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2855
 *
2856
 * The caller must ensure that the workqueue on which @work was last
2857
 * queued can't be destroyed before this function returns.
2858 2859 2860
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2861
 */
2862
bool cancel_work_sync(struct work_struct *work)
2863
{
2864
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2865
}
2866
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2867

2868
/**
2869 2870
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2871
 *
2872 2873 2874
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2875
 *
2876 2877 2878
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2879
 */
2880 2881
bool flush_delayed_work(struct delayed_work *dwork)
{
2882
	local_irq_disable();
2883
	if (del_timer_sync(&dwork->timer))
2884
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2885
	local_irq_enable();
2886 2887 2888 2889
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2890
/**
2891 2892
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2893
 *
2894 2895 2896 2897 2898
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2899
 *
2900
 * This function is safe to call from any context including IRQ handler.
2901
 */
2902
bool cancel_delayed_work(struct delayed_work *dwork)
2903
{
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2914 2915
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2916
	local_irq_restore(flags);
2917
	return ret;
2918
}
2919
EXPORT_SYMBOL(cancel_delayed_work);
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2931
{
2932
	return __cancel_work_timer(&dwork->work, true);
2933
}
2934
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2935

2936
/**
2937 2938 2939 2940 2941 2942
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2943
bool schedule_work_on(int cpu, struct work_struct *work)
2944
{
2945
	return queue_work_on(cpu, system_wq, work);
2946 2947 2948
}
EXPORT_SYMBOL(schedule_work_on);

2949 2950 2951 2952
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2953 2954
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2955 2956 2957 2958
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2959
 */
2960
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2961
{
2962
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2963
}
2964
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2965

2966 2967 2968
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2969
 * @dwork: job to be done
2970 2971 2972 2973 2974
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
2975 2976
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
2977
{
2978
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2979
}
2980
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2981

2982 2983
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2984 2985
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2986 2987 2988 2989
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2990
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2991
{
2992
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2993
}
2994
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2995

2996
/**
2997
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2998 2999
 * @func: the function to call
 *
3000 3001
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3002
 * schedule_on_each_cpu() is very slow.
3003 3004 3005
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3006
 */
3007
int schedule_on_each_cpu(work_func_t func)
3008 3009
{
	int cpu;
3010
	struct work_struct __percpu *works;
3011

3012 3013
	works = alloc_percpu(struct work_struct);
	if (!works)
3014
		return -ENOMEM;
3015

3016 3017
	get_online_cpus();

3018
	for_each_online_cpu(cpu) {
3019 3020 3021
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3022
		schedule_work_on(cpu, work);
3023
	}
3024 3025 3026 3027

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3028
	put_online_cpus();
3029
	free_percpu(works);
3030 3031 3032
	return 0;
}

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3057 3058
void flush_scheduled_work(void)
{
3059
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3060
}
3061
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3062

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3075
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3076 3077
{
	if (!in_interrupt()) {
3078
		fn(&ew->work);
3079 3080 3081
		return 0;
	}

3082
	INIT_WORK(&ew->work, fn);
3083 3084 3085 3086 3087 3088
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3089 3090
int keventd_up(void)
{
3091
	return system_wq != NULL;
L
Linus Torvalds 已提交
3092 3093
}

3094
static int alloc_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3095
{
3096
	/*
3097
	 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
T
Tejun Heo 已提交
3098 3099
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3100
	 */
3101
	const size_t size = sizeof(struct pool_workqueue);
T
Tejun Heo 已提交
3102 3103
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3104

3105
	if (!(wq->flags & WQ_UNBOUND))
3106
		wq->pool_wq.pcpu = __alloc_percpu(size, align);
3107
	else {
3108 3109 3110
		void *ptr;

		/*
3111
		 * Allocate enough room to align pwq and put an extra
3112 3113 3114 3115 3116
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
3117 3118
			wq->pool_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->pool_wq.single + 1) = ptr;
3119
		}
3120
	}
3121

3122
	/* just in case, make sure it's actually aligned */
3123 3124
	BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align));
	return wq->pool_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3125 3126
}

3127
static void free_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3128
{
3129
	if (!(wq->flags & WQ_UNBOUND))
3130 3131 3132 3133
		free_percpu(wq->pool_wq.pcpu);
	else if (wq->pool_wq.single) {
		/* the pointer to free is stored right after the pwq */
		kfree(*(void **)(wq->pool_wq.single + 1));
3134
	}
T
Tejun Heo 已提交
3135 3136
}

3137 3138
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3139
{
3140 3141 3142
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3143 3144
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3145

3146
	return clamp_val(max_active, 1, lim);
3147 3148
}

3149
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3150 3151 3152
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3153
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3154
{
3155
	va_list args, args1;
L
Linus Torvalds 已提交
3156
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3157
	unsigned int cpu;
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3172

3173 3174 3175 3176 3177 3178 3179
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3180
	max_active = max_active ?: WQ_DFL_ACTIVE;
3181
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3182

3183
	/* init wq */
3184
	wq->flags = flags;
3185
	wq->saved_max_active = max_active;
3186
	mutex_init(&wq->flush_mutex);
3187
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3188 3189
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3190

3191
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3192
	INIT_LIST_HEAD(&wq->list);
3193

3194
	if (alloc_pwqs(wq) < 0)
3195 3196
		goto err;

3197 3198
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
T
Tejun Heo 已提交
3199

3200 3201 3202 3203 3204 3205
		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
		pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
		pwq->wq = wq;
		pwq->flush_color = -1;
		pwq->max_active = max_active;
		INIT_LIST_HEAD(&pwq->delayed_works);
3206
	}
T
Tejun Heo 已提交
3207

3208 3209 3210
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3211
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3212 3213 3214 3215 3216 3217
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3218 3219
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3220
					       wq->name);
3221 3222 3223 3224 3225
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3226 3227
	}

3228 3229 3230 3231 3232
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3233
	spin_lock(&workqueue_lock);
3234

3235
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3236 3237
		for_each_pwq_cpu(cpu, wq)
			get_pwq(cpu, wq)->max_active = 0;
3238

T
Tejun Heo 已提交
3239
	list_add(&wq->list, &workqueues);
3240

T
Tejun Heo 已提交
3241 3242
	spin_unlock(&workqueue_lock);

3243
	return wq;
T
Tejun Heo 已提交
3244 3245
err:
	if (wq) {
3246
		free_pwqs(wq);
3247
		free_mayday_mask(wq->mayday_mask);
3248
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3249 3250 3251
		kfree(wq);
	}
	return NULL;
3252
}
3253
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3254

3255 3256 3257 3258 3259 3260 3261 3262
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3263
	unsigned int cpu;
3264

3265 3266
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3267

3268 3269 3270 3271
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3272
	spin_lock(&workqueue_lock);
3273
	list_del(&wq->list);
3274
	spin_unlock(&workqueue_lock);
3275

3276
	/* sanity check */
3277 3278
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
3279 3280 3281
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
3282 3283 3284
			BUG_ON(pwq->nr_in_flight[i]);
		BUG_ON(pwq->nr_active);
		BUG_ON(!list_empty(&pwq->delayed_works));
3285
	}
3286

3287 3288
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3289
		free_mayday_mask(wq->mayday_mask);
3290
		kfree(wq->rescuer);
3291 3292
	}

3293
	free_pwqs(wq);
3294 3295 3296 3297
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3298
/**
3299 3300
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3301 3302
 * @max_active: new max_active value.
 *
3303
 * Set @pwq->max_active to @max_active and activate delayed works if
3304 3305 3306
 * increased.
 *
 * CONTEXT:
3307
 * spin_lock_irq(pool->lock).
3308
 */
3309
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3310
{
3311
	pwq->max_active = max_active;
3312

3313 3314 3315
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3316 3317
}

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3332
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3333 3334 3335 3336 3337

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3338 3339 3340
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
		struct worker_pool *pool = pwq->pool;
3341

3342
		spin_lock_irq(&pool->lock);
3343

3344
		if (!(wq->flags & WQ_FREEZABLE) ||
3345
		    !(pool->flags & POOL_FREEZING))
3346
			pwq_set_max_active(pwq, max_active);
3347

3348
		spin_unlock_irq(&pool->lock);
3349
	}
3350

3351
	spin_unlock(&workqueue_lock);
3352
}
3353
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3354

3355
/**
3356 3357 3358
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3359
 *
3360 3361 3362
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3363
 *
3364 3365
 * RETURNS:
 * %true if congested, %false otherwise.
3366
 */
3367
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3368
{
3369
	struct pool_workqueue *pwq = get_pwq(cpu, wq);
3370

3371
	return !list_empty(&pwq->delayed_works);
L
Linus Torvalds 已提交
3372
}
3373
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3374

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3387
{
3388
	struct worker_pool *pool = get_work_pool(work);
3389 3390
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3391

3392 3393
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3394

3395 3396 3397 3398 3399 3400
	if (pool) {
		spin_lock_irqsave(&pool->lock, flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		spin_unlock_irqrestore(&pool->lock, flags);
	}
L
Linus Torvalds 已提交
3401

3402
	return ret;
L
Linus Torvalds 已提交
3403
}
3404
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3405

3406 3407 3408
/*
 * CPU hotplug.
 *
3409
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3410
 * are a lot of assumptions on strong associations among work, pwq and
3411
 * pool which make migrating pending and scheduled works very
3412
 * difficult to implement without impacting hot paths.  Secondly,
3413
 * worker pools serve mix of short, long and very long running works making
3414 3415
 * blocked draining impractical.
 *
3416
 * This is solved by allowing the pools to be disassociated from the CPU
3417 3418
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3419
 */
L
Linus Torvalds 已提交
3420

3421
static void wq_unbind_fn(struct work_struct *work)
3422
{
3423
	int cpu = smp_processor_id();
3424
	struct worker_pool *pool;
3425 3426 3427
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3428

3429 3430
	for_each_std_worker_pool(pool, cpu) {
		BUG_ON(cpu != smp_processor_id());
3431

3432 3433
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3434

3435 3436 3437 3438 3439 3440 3441
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3442
		list_for_each_entry(worker, &pool->idle_list, entry)
3443
			worker->flags |= WORKER_UNBOUND;
3444

3445 3446
		for_each_busy_worker(worker, i, pos, pool)
			worker->flags |= WORKER_UNBOUND;
3447

3448
		pool->flags |= POOL_DISASSOCIATED;
3449

3450 3451 3452
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3453

3454
	/*
3455
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3456 3457
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3458 3459
	 */
	schedule();
3460

3461
	/*
3462 3463
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3464 3465 3466
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3467 3468 3469 3470
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3471
	 */
3472
	for_each_std_worker_pool(pool, cpu)
3473
		atomic_set(&pool->nr_running, 0);
3474 3475
}

T
Tejun Heo 已提交
3476 3477 3478 3479
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3480
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3481 3482
					       unsigned long action,
					       void *hcpu)
3483 3484
{
	unsigned int cpu = (unsigned long)hcpu;
3485
	struct worker_pool *pool;
3486

T
Tejun Heo 已提交
3487
	switch (action & ~CPU_TASKS_FROZEN) {
3488
	case CPU_UP_PREPARE:
3489
		for_each_std_worker_pool(pool, cpu) {
3490 3491 3492 3493 3494 3495 3496 3497 3498
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3499
			spin_lock_irq(&pool->lock);
3500
			start_worker(worker);
3501
			spin_unlock_irq(&pool->lock);
3502
		}
T
Tejun Heo 已提交
3503
		break;
3504

3505 3506
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3507
		for_each_std_worker_pool(pool, cpu) {
3508 3509 3510
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3511
			pool->flags &= ~POOL_DISASSOCIATED;
3512 3513 3514 3515 3516
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3517
		break;
3518
	}
3519 3520 3521 3522 3523 3524 3525
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3526
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3527 3528 3529
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3530 3531 3532
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3533 3534
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3535
		/* unbinding should happen on the local CPU */
3536
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3537
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3538 3539
		flush_work(&unbind_work);
		break;
3540 3541 3542 3543
	}
	return NOTIFY_OK;
}

3544
#ifdef CONFIG_SMP
3545

3546
struct work_for_cpu {
3547
	struct work_struct work;
3548 3549 3550 3551 3552
	long (*fn)(void *);
	void *arg;
	long ret;
};

3553
static void work_for_cpu_fn(struct work_struct *work)
3554
{
3555 3556
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3557 3558 3559 3560 3561 3562 3563 3564 3565
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3566 3567
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3568
 * The caller must not hold any locks which would prevent @fn from completing.
3569 3570 3571
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3572
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3573

3574 3575 3576
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3577 3578 3579 3580 3581
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3582 3583 3584 3585 3586
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3587 3588
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3589
 * pool->worklist.
3590 3591
 *
 * CONTEXT:
3592
 * Grabs and releases workqueue_lock and pool->lock's.
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3603
	for_each_wq_cpu(cpu) {
3604
		struct worker_pool *pool;
3605
		struct workqueue_struct *wq;
3606

3607
		for_each_std_worker_pool(pool, cpu) {
3608
			spin_lock_irq(&pool->lock);
3609

3610 3611
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
3612

3613
			list_for_each_entry(wq, &workqueues, list) {
3614
				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3615

3616
				if (pwq && pwq->pool == pool &&
3617
				    (wq->flags & WQ_FREEZABLE))
3618
					pwq->max_active = 0;
3619
			}
3620

3621 3622
			spin_unlock_irq(&pool->lock);
		}
3623 3624 3625 3626 3627 3628
	}

	spin_unlock(&workqueue_lock);
}

/**
3629
 * freeze_workqueues_busy - are freezable workqueues still busy?
3630 3631 3632 3633 3634 3635 3636 3637
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3638 3639
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3650
	for_each_wq_cpu(cpu) {
3651
		struct workqueue_struct *wq;
3652 3653 3654 3655 3656
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
3657
			struct pool_workqueue *pwq = get_pwq(cpu, wq);
3658

3659
			if (!pwq || !(wq->flags & WQ_FREEZABLE))
3660 3661
				continue;

3662 3663
			BUG_ON(pwq->nr_active < 0);
			if (pwq->nr_active) {
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3678
 * frozen works are transferred to their respective pool worklists.
3679 3680
 *
 * CONTEXT:
3681
 * Grabs and releases workqueue_lock and pool->lock's.
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3692
	for_each_wq_cpu(cpu) {
3693
		struct worker_pool *pool;
3694
		struct workqueue_struct *wq;
3695

3696
		for_each_std_worker_pool(pool, cpu) {
3697
			spin_lock_irq(&pool->lock);
3698

3699 3700
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
3701

3702
			list_for_each_entry(wq, &workqueues, list) {
3703
				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3704

3705
				if (!pwq || pwq->pool != pool ||
3706 3707
				    !(wq->flags & WQ_FREEZABLE))
					continue;
3708

3709
				/* restore max_active and repopulate worklist */
3710
				pwq_set_max_active(pwq, wq->saved_max_active);
3711
			}
3712

3713
			wake_up_worker(pool);
3714 3715

			spin_unlock_irq(&pool->lock);
3716
		}
3717 3718 3719 3720 3721 3722 3723 3724
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3725
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3726
{
T
Tejun Heo 已提交
3727 3728
	unsigned int cpu;

3729 3730
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3731
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3732

3733
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3734
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3735

3736 3737
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3738
		struct worker_pool *pool;
3739

3740
		for_each_std_worker_pool(pool, cpu) {
3741
			spin_lock_init(&pool->lock);
3742
			pool->cpu = cpu;
3743
			pool->flags |= POOL_DISASSOCIATED;
3744 3745
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3746
			hash_init(pool->busy_hash);
3747

3748 3749 3750
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3751

3752
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3753 3754
				    (unsigned long)pool);

3755
			mutex_init(&pool->assoc_mutex);
3756
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3757 3758 3759

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3760
		}
3761 3762
	}

3763
	/* create the initial worker */
3764
	for_each_online_wq_cpu(cpu) {
3765
		struct worker_pool *pool;
3766

3767
		for_each_std_worker_pool(pool, cpu) {
3768 3769
			struct worker *worker;

3770 3771 3772
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3773
			worker = create_worker(pool);
3774
			BUG_ON(!worker);
3775
			spin_lock_irq(&pool->lock);
3776
			start_worker(worker);
3777
			spin_unlock_irq(&pool->lock);
3778
		}
3779 3780
	}

3781
	system_wq = alloc_workqueue("events", 0, 0);
3782
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3783
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3784 3785
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3786 3787
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3788
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3789
	       !system_unbound_wq || !system_freezable_wq);
3790
	return 0;
L
Linus Torvalds 已提交
3791
}
3792
early_initcall(init_workqueues);