workqueue.c 122.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47

48
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
49

T
Tejun Heo 已提交
50
enum {
51 52
	/*
	 * worker_pool flags
53
	 *
54
	 * A bound pool is either associated or disassociated with its CPU.
55 56 57 58 59 60
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
61
	 * be executing on any CPU.  The pool behaves as an unbound one.
62
	 *
63 64
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
65
	 * create_worker() is in progress.
66
	 */
67
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
79

80 81
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
82

83
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
84

85
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
86
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
87

88 89 90
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

91 92 93
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
94 95 96 97 98 99 100 101
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
102
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
103
};
L
Linus Torvalds 已提交
104 105

/*
T
Tejun Heo 已提交
106 107
 * Structure fields follow one of the following exclusion rules.
 *
108 109
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
110
 *
111 112 113
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
114
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
115
 *
116 117 118 119
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
120
 *
121 122 123
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
124
 * PL: wq_pool_mutex protected.
125
 *
126
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
127
 *
128 129
 * PW: pwq_lock protected.
 *
130 131 132 133
 * WQ: wq->mutex protected.
 *
 * WR: wq->mutex and pwq_lock protected for writes.  Sched-RCU protected
 *     for reads.
134 135
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
136 137
 */

138
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
139

140
struct worker_pool {
141
	spinlock_t		lock;		/* the pool lock */
142
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162
	struct mutex		manager_mutex;	/* manager exclusion */
163
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
164

T
Tejun Heo 已提交
165
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
166 167
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
168

169 170 171 172 173 174
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
175 176 177 178 179 180

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
181 182
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
183
/*
184 185 186 187
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
188
 */
189
struct pool_workqueue {
190
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
191
	struct workqueue_struct *wq;		/* I: the owning workqueue */
192 193
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
194
	int			refcnt;		/* L: reference count */
195 196
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
197
	int			nr_active;	/* L: nr of active works */
198
	int			max_active;	/* L: max active works */
199
	struct list_head	delayed_works;	/* L: delayed works */
200
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
201
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
202 203 204 205 206

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
207
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
208 209 210
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
211
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
212

213 214 215 216
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
217 218
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
219 220 221
	struct completion	done;		/* flush completion */
};

222 223
struct wq_device;

L
Linus Torvalds 已提交
224
/*
225 226
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
227 228
 */
struct workqueue_struct {
229
	unsigned int		flags;		/* WQ: WQ_* flags */
230
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
231
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
232
	struct list_head	list;		/* PL: list of all workqueues */
233

234 235 236
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
237
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
238 239 240
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
241

242
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
243 244
	struct worker		*rescuer;	/* I: rescue worker */

245
	int			nr_drainers;	/* WQ: drain in progress */
246
	int			saved_max_active; /* PW: saved pwq max_active */
247 248 249 250

#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
251
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
252
	struct lockdep_map	lockdep_map;
253
#endif
254
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
255 256
};

257 258
static struct kmem_cache *pwq_cache;

259
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
260
static DEFINE_SPINLOCK(pwq_lock);	/* protects pool_workqueues */
261
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
262

263 264
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
265 266 267 268 269

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

270
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
271

272
/* PL: hash of all unbound pools keyed by pool->attrs */
273 274
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

275
/* I: attributes used when instantiating standard unbound pools on demand */
276 277
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

278 279
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
280
struct workqueue_struct *system_highpri_wq __read_mostly;
281
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
282
struct workqueue_struct *system_long_wq __read_mostly;
283
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
284
struct workqueue_struct *system_unbound_wq __read_mostly;
285
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
286
struct workqueue_struct *system_freezable_wq __read_mostly;
287
EXPORT_SYMBOL_GPL(system_freezable_wq);
288

289 290 291 292
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

293 294 295
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

296
#define assert_rcu_or_pool_mutex()					\
297
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
298 299
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
300

301
#define assert_rcu_or_wq_mutex(wq)					\
302
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
303
			   lockdep_is_held(&wq->mutex) ||		\
304
			   lockdep_is_held(&pwq_lock),			\
305
			   "sched RCU or wq->mutex should be held")
306

307 308
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
309 310
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
311 312 313 314 315 316
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

317 318 319
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
320
	     (pool)++)
321

T
Tejun Heo 已提交
322 323 324
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
325
 * @pi: integer used for iteration
326
 *
327 328 329
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
330 331 332
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
333
 */
334 335
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
336
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
337
		else
T
Tejun Heo 已提交
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

355 356 357 358
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
359
 *
360
 * This must be called either with wq->mutex held or sched RCU read locked.
361 362
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
363 364 365
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
366 367
 */
#define for_each_pwq(pwq, wq)						\
368
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
369
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
370
		else
371

372 373 374 375
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

376 377 378 379 380
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
416
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
452
	.debug_hint	= work_debug_hint,
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
488 489 490 491 492
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

493
	lockdep_assert_held(&wq_pool_mutex);
494

495 496 497 498 499
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
500

501
	return ret;
502 503
}

504 505 506 507
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
508
 * This must be called either with wq->mutex held or sched RCU read locked.
509 510
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
511
 */
512
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
513
{
514
	assert_rcu_or_wq_mutex(wq);
515 516
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
517 518
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
534

535
/*
536 537
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
538
 * is cleared and the high bits contain OFFQ flags and pool ID.
539
 *
540 541
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
542 543
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
544
 *
545
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
546
 * corresponding to a work.  Pool is available once the work has been
547
 * queued anywhere after initialization until it is sync canceled.  pwq is
548
 * available only while the work item is queued.
549
 *
550 551 552 553
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
554
 */
555 556
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
557
{
558
	WARN_ON_ONCE(!work_pending(work));
559 560
	atomic_long_set(&work->data, data | flags | work_static(work));
}
561

562
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
563 564
			 unsigned long extra_flags)
{
565 566
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
567 568
}

569 570 571 572 573 574 575
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

576 577
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
578
{
579 580 581 582 583 584 585
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
586
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
587
}
588

589
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
590
{
591 592
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
593 594
}

595
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
596
{
597
	unsigned long data = atomic_long_read(&work->data);
598

599
	if (data & WORK_STRUCT_PWQ)
600 601 602
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
603 604
}

605 606 607 608 609
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
610
 *
611 612 613
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
614 615 616 617 618
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
619 620
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
621
{
622
	unsigned long data = atomic_long_read(&work->data);
623
	int pool_id;
624

625
	assert_rcu_or_pool_mutex();
626

627 628
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
629
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
630

631 632
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
633 634
		return NULL;

635
	return idr_find(&worker_pool_idr, pool_id);
636 637 638 639 640 641 642 643 644 645 646
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
647 648
	unsigned long data = atomic_long_read(&work->data);

649 650
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
651
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
652

653
	return data >> WORK_OFFQ_POOL_SHIFT;
654 655
}

656 657
static void mark_work_canceling(struct work_struct *work)
{
658
	unsigned long pool_id = get_work_pool_id(work);
659

660 661
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
662 663 664 665 666 667
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

668
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
669 670
}

671
/*
672 673
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
674
 * they're being called with pool->lock held.
675 676
 */

677
static bool __need_more_worker(struct worker_pool *pool)
678
{
679
	return !atomic_read(&pool->nr_running);
680 681
}

682
/*
683 684
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
685 686
 *
 * Note that, because unbound workers never contribute to nr_running, this
687
 * function will always return %true for unbound pools as long as the
688
 * worklist isn't empty.
689
 */
690
static bool need_more_worker(struct worker_pool *pool)
691
{
692
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
693
}
694

695
/* Can I start working?  Called from busy but !running workers. */
696
static bool may_start_working(struct worker_pool *pool)
697
{
698
	return pool->nr_idle;
699 700 701
}

/* Do I need to keep working?  Called from currently running workers. */
702
static bool keep_working(struct worker_pool *pool)
703
{
704 705
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
706 707 708
}

/* Do we need a new worker?  Called from manager. */
709
static bool need_to_create_worker(struct worker_pool *pool)
710
{
711
	return need_more_worker(pool) && !may_start_working(pool);
712
}
713

714
/* Do I need to be the manager? */
715
static bool need_to_manage_workers(struct worker_pool *pool)
716
{
717
	return need_to_create_worker(pool) ||
718
		(pool->flags & POOL_MANAGE_WORKERS);
719 720 721
}

/* Do we have too many workers and should some go away? */
722
static bool too_many_workers(struct worker_pool *pool)
723
{
724
	bool managing = mutex_is_locked(&pool->manager_arb);
725 726
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
727

728 729 730 731 732 733 734
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

735
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
736 737
}

738
/*
739 740 741
 * Wake up functions.
 */

742
/* Return the first worker.  Safe with preemption disabled */
743
static struct worker *first_worker(struct worker_pool *pool)
744
{
745
	if (unlikely(list_empty(&pool->idle_list)))
746 747
		return NULL;

748
	return list_first_entry(&pool->idle_list, struct worker, entry);
749 750 751 752
}

/**
 * wake_up_worker - wake up an idle worker
753
 * @pool: worker pool to wake worker from
754
 *
755
 * Wake up the first idle worker of @pool.
756 757
 *
 * CONTEXT:
758
 * spin_lock_irq(pool->lock).
759
 */
760
static void wake_up_worker(struct worker_pool *pool)
761
{
762
	struct worker *worker = first_worker(pool);
763 764 765 766 767

	if (likely(worker))
		wake_up_process(worker->task);
}

768
/**
769 770 771 772 773 774 775 776 777 778
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
779
void wq_worker_waking_up(struct task_struct *task, int cpu)
780 781 782
{
	struct worker *worker = kthread_data(task);

783
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
784
		WARN_ON_ONCE(worker->pool->cpu != cpu);
785
		atomic_inc(&worker->pool->nr_running);
786
	}
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
804
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
805 806
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
807
	struct worker_pool *pool;
808

809 810 811 812 813
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
814
	if (worker->flags & WORKER_NOT_RUNNING)
815 816
		return NULL;

817 818
	pool = worker->pool;

819
	/* this can only happen on the local cpu */
820 821
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
822 823 824 825 826 827

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
828 829 830
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
831
	 * manipulating idle_list, so dereferencing idle_list without pool
832
	 * lock is safe.
833
	 */
834 835
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
836
		to_wakeup = first_worker(pool);
837 838 839 840 841
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
842
 * @worker: self
843 844 845
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
846 847 848
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
849
 *
850
 * CONTEXT:
851
 * spin_lock_irq(pool->lock)
852 853 854 855
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
856
	struct worker_pool *pool = worker->pool;
857

858 859
	WARN_ON_ONCE(worker->task != current);

860 861 862 863 864 865 866 867
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
868
			if (atomic_dec_and_test(&pool->nr_running) &&
869
			    !list_empty(&pool->worklist))
870
				wake_up_worker(pool);
871
		} else
872
			atomic_dec(&pool->nr_running);
873 874
	}

875 876 877 878
	worker->flags |= flags;
}

/**
879
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
880
 * @worker: self
881 882
 * @flags: flags to clear
 *
883
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
884
 *
885
 * CONTEXT:
886
 * spin_lock_irq(pool->lock)
887 888 889
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
890
	struct worker_pool *pool = worker->pool;
891 892
	unsigned int oflags = worker->flags;

893 894
	WARN_ON_ONCE(worker->task != current);

895
	worker->flags &= ~flags;
896

897 898 899 900 901
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
902 903
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
904
			atomic_inc(&pool->nr_running);
905 906
}

907 908
/**
 * find_worker_executing_work - find worker which is executing a work
909
 * @pool: pool of interest
910 911
 * @work: work to find worker for
 *
912 913
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
914 915 916 917 918 919 920 921 922 923 924 925
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
926 927 928 929 930 931
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
932 933
 *
 * CONTEXT:
934
 * spin_lock_irq(pool->lock).
935 936 937 938
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
939
 */
940
static struct worker *find_worker_executing_work(struct worker_pool *pool,
941
						 struct work_struct *work)
942
{
943 944
	struct worker *worker;

945
	hash_for_each_possible(pool->busy_hash, worker, hentry,
946 947 948
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
949 950 951
			return worker;

	return NULL;
952 953
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
969
 * spin_lock_irq(pool->lock).
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1034
static void pwq_activate_delayed_work(struct work_struct *work)
1035
{
1036
	struct pool_workqueue *pwq = get_work_pwq(work);
1037 1038

	trace_workqueue_activate_work(work);
1039
	move_linked_works(work, &pwq->pool->worklist, NULL);
1040
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1041
	pwq->nr_active++;
1042 1043
}

1044
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1045
{
1046
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1047 1048
						    struct work_struct, entry);

1049
	pwq_activate_delayed_work(work);
1050 1051
}

1052
/**
1053 1054
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1055 1056 1057
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1058
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1059 1060
 *
 * CONTEXT:
1061
 * spin_lock_irq(pool->lock).
1062
 */
1063
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1064
{
T
Tejun Heo 已提交
1065
	/* uncolored work items don't participate in flushing or nr_active */
1066
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1067
		goto out_put;
1068

1069
	pwq->nr_in_flight[color]--;
1070

1071 1072
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1073
		/* one down, submit a delayed one */
1074 1075
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1076 1077 1078
	}

	/* is flush in progress and are we at the flushing tip? */
1079
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1080
		goto out_put;
1081 1082

	/* are there still in-flight works? */
1083
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1084
		goto out_put;
1085

1086 1087
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1088 1089

	/*
1090
	 * If this was the last pwq, wake up the first flusher.  It
1091 1092
	 * will handle the rest.
	 */
1093 1094
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1095 1096
out_put:
	put_pwq(pwq);
1097 1098
}

1099
/**
1100
 * try_to_grab_pending - steal work item from worklist and disable irq
1101 1102
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1103
 * @flags: place to store irq state
1104 1105 1106 1107 1108 1109 1110
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1111 1112
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1113
 *
1114
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1115 1116 1117
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1118 1119 1120 1121
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1122
 * This function is safe to call from any context including IRQ handler.
1123
 */
1124 1125
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1126
{
1127
	struct worker_pool *pool;
1128
	struct pool_workqueue *pwq;
1129

1130 1131
	local_irq_save(*flags);

1132 1133 1134 1135
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1136 1137 1138 1139 1140
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1141 1142 1143 1144 1145
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1146 1147 1148 1149 1150 1151 1152
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1153 1154
	pool = get_work_pool(work);
	if (!pool)
1155
		goto fail;
1156

1157
	spin_lock(&pool->lock);
1158
	/*
1159 1160 1161 1162 1163
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1164 1165
	 * item is currently queued on that pool.
	 */
1166 1167
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1168 1169 1170 1171 1172
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1173
		 * on the delayed_list, will confuse pwq->nr_active
1174 1175 1176 1177
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1178
			pwq_activate_delayed_work(work);
1179 1180

		list_del_init(&work->entry);
1181
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1182

1183
		/* work->data points to pwq iff queued, point to pool */
1184 1185 1186 1187
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1188
	}
1189
	spin_unlock(&pool->lock);
1190 1191 1192 1193 1194
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1195
	return -EAGAIN;
1196 1197
}

T
Tejun Heo 已提交
1198
/**
1199
 * insert_work - insert a work into a pool
1200
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1201 1202 1203 1204
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1205
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1206
 * work_struct flags.
T
Tejun Heo 已提交
1207 1208
 *
 * CONTEXT:
1209
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1210
 */
1211 1212
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1213
{
1214
	struct worker_pool *pool = pwq->pool;
1215

T
Tejun Heo 已提交
1216
	/* we own @work, set data and link */
1217
	set_work_pwq(work, pwq, extra_flags);
1218
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1219
	get_pwq(pwq);
1220 1221

	/*
1222 1223 1224
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1225 1226 1227
	 */
	smp_mb();

1228 1229
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1230 1231
}

1232 1233
/*
 * Test whether @work is being queued from another work executing on the
1234
 * same workqueue.
1235 1236 1237
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1238 1239 1240 1241 1242 1243 1244
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1245
	return worker && worker->current_pwq->wq == wq;
1246 1247
}

1248
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1249 1250
			 struct work_struct *work)
{
1251
	struct pool_workqueue *pwq;
1252
	struct worker_pool *last_pool;
1253
	struct list_head *worklist;
1254
	unsigned int work_flags;
1255
	unsigned int req_cpu = cpu;
1256 1257 1258 1259 1260 1261 1262 1263

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1264

1265
	debug_work_activate(work);
1266

1267
	/* if dying, only works from the same workqueue are allowed */
1268
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1269
	    WARN_ON_ONCE(!is_chained_work(wq)))
1270
		return;
1271
retry:
1272
	/* pwq which will be used unless @work is executing elsewhere */
1273
	if (!(wq->flags & WQ_UNBOUND)) {
1274
		if (cpu == WORK_CPU_UNBOUND)
1275
			cpu = raw_smp_processor_id();
1276
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1277 1278 1279
	} else {
		pwq = first_pwq(wq);
	}
1280

1281 1282 1283 1284 1285 1286 1287 1288
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1289

1290
		spin_lock(&last_pool->lock);
1291

1292
		worker = find_worker_executing_work(last_pool, work);
1293

1294 1295
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1296
		} else {
1297 1298
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1299
			spin_lock(&pwq->pool->lock);
1300
		}
1301
	} else {
1302
		spin_lock(&pwq->pool->lock);
1303 1304
	}

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
	 * without another pwq replacing it as the first pwq or while a
	 * work item is executing on it, so the retying is guaranteed to
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1324 1325
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1326

1327
	if (WARN_ON(!list_empty(&work->entry))) {
1328
		spin_unlock(&pwq->pool->lock);
1329 1330
		return;
	}
1331

1332 1333
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1334

1335
	if (likely(pwq->nr_active < pwq->max_active)) {
1336
		trace_workqueue_activate_work(work);
1337 1338
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1339 1340
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1341
		worklist = &pwq->delayed_works;
1342
	}
1343

1344
	insert_work(pwq, work, worklist, work_flags);
1345

1346
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1347 1348
}

1349
/**
1350 1351
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1352 1353 1354
 * @wq: workqueue to use
 * @work: work to queue
 *
1355
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1356
 *
1357 1358
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1359
 */
1360 1361
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1362
{
1363
	bool ret = false;
1364
	unsigned long flags;
1365

1366
	local_irq_save(flags);
1367

1368
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1369
		__queue_work(cpu, wq, work);
1370
		ret = true;
1371
	}
1372

1373
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1374 1375
	return ret;
}
1376
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1377

1378
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1379
{
1380
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1381

1382
	/* should have been called from irqsafe timer with irq already off */
1383
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1384
}
1385
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1386

1387 1388
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1389
{
1390 1391 1392 1393 1394
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1395 1396
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1409
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1410

1411
	dwork->wq = wq;
1412
	dwork->cpu = cpu;
1413 1414 1415 1416 1417 1418
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1419 1420
}

1421 1422 1423 1424
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1425
 * @dwork: work to queue
1426 1427
 * @delay: number of jiffies to wait before queueing
 *
1428 1429 1430
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1431
 */
1432 1433
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1434
{
1435
	struct work_struct *work = &dwork->work;
1436
	bool ret = false;
1437
	unsigned long flags;
1438

1439 1440
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1441

1442
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1443
		__queue_delayed_work(cpu, wq, dwork, delay);
1444
		ret = true;
1445
	}
1446

1447
	local_irq_restore(flags);
1448 1449
	return ret;
}
1450
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1467
 * This function is safe to call from any context including IRQ handler.
1468 1469 1470 1471 1472 1473 1474
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1475

1476 1477 1478
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1479

1480 1481 1482
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1483
	}
1484 1485

	/* -ENOENT from try_to_grab_pending() becomes %true */
1486 1487
	return ret;
}
1488 1489
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1490 1491 1492 1493 1494 1495 1496 1497
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1498
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1499 1500
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1501
{
1502
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1503

1504 1505 1506 1507
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1508

1509 1510
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1511
	pool->nr_idle++;
1512
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1513 1514

	/* idle_list is LIFO */
1515
	list_add(&worker->entry, &pool->idle_list);
1516

1517 1518
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1519

1520
	/*
1521
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1522
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1523 1524
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1525
	 */
1526
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1527
		     pool->nr_workers == pool->nr_idle &&
1528
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1538
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1539 1540 1541
 */
static void worker_leave_idle(struct worker *worker)
{
1542
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1543

1544 1545
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1546
	worker_clr_flags(worker, WORKER_IDLE);
1547
	pool->nr_idle--;
T
Tejun Heo 已提交
1548 1549 1550
	list_del_init(&worker->entry);
}

1551
/**
1552 1553 1554 1555
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1556 1557 1558 1559 1560 1561
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1562
 * This function is to be used by unbound workers and rescuers to bind
1563 1564 1565
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1566
 * verbatim as it's best effort and blocking and pool may be
1567 1568
 * [dis]associated in the meantime.
 *
1569
 * This function tries set_cpus_allowed() and locks pool and verifies the
1570
 * binding against %POOL_DISASSOCIATED which is set during
1571 1572 1573
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1574 1575
 *
 * CONTEXT:
1576
 * Might sleep.  Called without any lock but returns with pool->lock
1577 1578 1579
 * held.
 *
 * RETURNS:
1580
 * %true if the associated pool is online (@worker is successfully
1581 1582
 * bound), %false if offline.
 */
1583
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1584
__acquires(&pool->lock)
1585 1586
{
	while (true) {
1587
		/*
1588 1589 1590
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1591
		 * against POOL_DISASSOCIATED.
1592
		 */
1593
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1594
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1595

1596
		spin_lock_irq(&pool->lock);
1597
		if (pool->flags & POOL_DISASSOCIATED)
1598
			return false;
1599
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1600
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1601
			return true;
1602
		spin_unlock_irq(&pool->lock);
1603

1604 1605 1606 1607 1608 1609
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1610
		cpu_relax();
1611
		cond_resched();
1612 1613 1614
	}
}

T
Tejun Heo 已提交
1615 1616 1617 1618 1619
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1620 1621
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1622
		INIT_LIST_HEAD(&worker->scheduled);
1623 1624
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1625
	}
T
Tejun Heo 已提交
1626 1627 1628 1629 1630
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1631
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1632
 *
1633
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1643
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1644
{
T
Tejun Heo 已提交
1645
	const char *pri = pool->attrs->nice < 0  ? "H" : "";
T
Tejun Heo 已提交
1646
	struct worker *worker = NULL;
1647
	int id = -1;
T
Tejun Heo 已提交
1648

1649 1650
	lockdep_assert_held(&pool->manager_mutex);

1651 1652 1653 1654 1655
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1656
	spin_lock_irq(&pool->lock);
1657 1658 1659

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1660
	spin_unlock_irq(&pool->lock);
1661 1662 1663
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1664 1665 1666 1667 1668

	worker = alloc_worker();
	if (!worker)
		goto fail;

1669
	worker->pool = pool;
T
Tejun Heo 已提交
1670 1671
	worker->id = id;

1672
	if (pool->cpu >= 0)
1673
		worker->task = kthread_create_on_node(worker_thread,
1674
					worker, cpu_to_node(pool->cpu),
1675
					"kworker/%d:%d%s", pool->cpu, id, pri);
1676 1677
	else
		worker->task = kthread_create(worker_thread, worker,
1678 1679
					      "kworker/u%d:%d%s",
					      pool->id, id, pri);
T
Tejun Heo 已提交
1680 1681 1682
	if (IS_ERR(worker->task))
		goto fail;

1683 1684 1685 1686
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1687 1688
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1689

1690 1691
	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;
T
Tejun Heo 已提交
1692 1693 1694 1695 1696 1697 1698

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1699
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1700

1701 1702 1703 1704 1705
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1706
	return worker;
1707

T
Tejun Heo 已提交
1708 1709
fail:
	if (id >= 0) {
1710
		spin_lock_irq(&pool->lock);
1711
		idr_remove(&pool->worker_idr, id);
1712
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1722
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1723 1724
 *
 * CONTEXT:
1725
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1726 1727 1728
 */
static void start_worker(struct worker *worker)
{
1729
	worker->flags |= WORKER_STARTED;
1730
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1731
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1732 1733 1734
	wake_up_process(worker->task);
}

1735 1736 1737 1738
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1739
 * Grab the managership of @pool and create and start a new worker for it.
1740 1741 1742 1743 1744
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1745 1746
	mutex_lock(&pool->manager_mutex);

1747 1748 1749 1750 1751 1752 1753
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1754 1755
	mutex_unlock(&pool->manager_mutex);

1756 1757 1758
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1759 1760 1761 1762
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1763
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1764 1765
 *
 * CONTEXT:
1766
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1767 1768 1769
 */
static void destroy_worker(struct worker *worker)
{
1770
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1771

1772 1773 1774
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1775
	/* sanity check frenzy */
1776 1777 1778
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1779

T
Tejun Heo 已提交
1780
	if (worker->flags & WORKER_STARTED)
1781
		pool->nr_workers--;
T
Tejun Heo 已提交
1782
	if (worker->flags & WORKER_IDLE)
1783
		pool->nr_idle--;
T
Tejun Heo 已提交
1784 1785

	list_del_init(&worker->entry);
1786
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1787

1788 1789
	idr_remove(&pool->worker_idr, worker->id);

1790
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1791

T
Tejun Heo 已提交
1792 1793 1794
	kthread_stop(worker->task);
	kfree(worker);

1795
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1796 1797
}

1798
static void idle_worker_timeout(unsigned long __pool)
1799
{
1800
	struct worker_pool *pool = (void *)__pool;
1801

1802
	spin_lock_irq(&pool->lock);
1803

1804
	if (too_many_workers(pool)) {
1805 1806 1807 1808
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1809
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1810 1811 1812
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1813
			mod_timer(&pool->idle_timer, expires);
1814 1815
		else {
			/* it's been idle for too long, wake up manager */
1816
			pool->flags |= POOL_MANAGE_WORKERS;
1817
			wake_up_worker(pool);
1818
		}
1819 1820
	}

1821
	spin_unlock_irq(&pool->lock);
1822
}
1823

1824
static void send_mayday(struct work_struct *work)
1825
{
1826 1827
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1828

1829
	lockdep_assert_held(&wq_mayday_lock);
1830

1831
	if (!wq->rescuer)
1832
		return;
1833 1834

	/* mayday mayday mayday */
1835 1836
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1837
		wake_up_process(wq->rescuer->task);
1838
	}
1839 1840
}

1841
static void pool_mayday_timeout(unsigned long __pool)
1842
{
1843
	struct worker_pool *pool = (void *)__pool;
1844 1845
	struct work_struct *work;

1846
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1847
	spin_lock(&pool->lock);
1848

1849
	if (need_to_create_worker(pool)) {
1850 1851 1852 1853 1854 1855
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1856
		list_for_each_entry(work, &pool->worklist, entry)
1857
			send_mayday(work);
L
Linus Torvalds 已提交
1858
	}
1859

1860
	spin_unlock(&pool->lock);
1861
	spin_unlock_irq(&wq_mayday_lock);
1862

1863
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1864 1865
}

1866 1867
/**
 * maybe_create_worker - create a new worker if necessary
1868
 * @pool: pool to create a new worker for
1869
 *
1870
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1871 1872
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1873
 * sent to all rescuers with works scheduled on @pool to resolve
1874 1875
 * possible allocation deadlock.
 *
1876 1877
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1878 1879
 *
 * LOCKING:
1880
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1881 1882 1883 1884
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1885
 * %false if no action was taken and pool->lock stayed locked, %true
1886 1887
 * otherwise.
 */
1888
static bool maybe_create_worker(struct worker_pool *pool)
1889 1890
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1891
{
1892
	if (!need_to_create_worker(pool))
1893 1894
		return false;
restart:
1895
	spin_unlock_irq(&pool->lock);
1896

1897
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1898
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1899 1900 1901 1902

	while (true) {
		struct worker *worker;

1903
		worker = create_worker(pool);
1904
		if (worker) {
1905
			del_timer_sync(&pool->mayday_timer);
1906
			spin_lock_irq(&pool->lock);
1907
			start_worker(worker);
1908 1909
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1910 1911 1912
			return true;
		}

1913
		if (!need_to_create_worker(pool))
1914
			break;
L
Linus Torvalds 已提交
1915

1916 1917
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1918

1919
		if (!need_to_create_worker(pool))
1920 1921 1922
			break;
	}

1923
	del_timer_sync(&pool->mayday_timer);
1924
	spin_lock_irq(&pool->lock);
1925
	if (need_to_create_worker(pool))
1926 1927 1928 1929 1930 1931
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1932
 * @pool: pool to destroy workers for
1933
 *
1934
 * Destroy @pool workers which have been idle for longer than
1935 1936 1937
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1938
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1939 1940 1941
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1942
 * %false if no action was taken and pool->lock stayed locked, %true
1943 1944
 * otherwise.
 */
1945
static bool maybe_destroy_workers(struct worker_pool *pool)
1946 1947
{
	bool ret = false;
L
Linus Torvalds 已提交
1948

1949
	while (too_many_workers(pool)) {
1950 1951
		struct worker *worker;
		unsigned long expires;
1952

1953
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1954
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1955

1956
		if (time_before(jiffies, expires)) {
1957
			mod_timer(&pool->idle_timer, expires);
1958
			break;
1959
		}
L
Linus Torvalds 已提交
1960

1961 1962
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1963
	}
1964

1965
	return ret;
1966 1967
}

1968
/**
1969 1970
 * manage_workers - manage worker pool
 * @worker: self
1971
 *
1972
 * Assume the manager role and manage the worker pool @worker belongs
1973
 * to.  At any given time, there can be only zero or one manager per
1974
 * pool.  The exclusion is handled automatically by this function.
1975 1976 1977 1978
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1979 1980
 *
 * CONTEXT:
1981
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1982 1983 1984
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
1985 1986
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
1987
 */
1988
static bool manage_workers(struct worker *worker)
1989
{
1990
	struct worker_pool *pool = worker->pool;
1991
	bool ret = false;
1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2014
	if (!mutex_trylock(&pool->manager_arb))
2015
		return ret;
2016

2017
	/*
2018 2019
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2020
	 */
2021
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2022
		spin_unlock_irq(&pool->lock);
2023
		mutex_lock(&pool->manager_mutex);
2024 2025
		ret = true;
	}
2026

2027
	pool->flags &= ~POOL_MANAGE_WORKERS;
2028 2029

	/*
2030 2031
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2032
	 */
2033 2034
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2035

2036
	mutex_unlock(&pool->manager_mutex);
2037
	mutex_unlock(&pool->manager_arb);
2038
	return ret;
2039 2040
}

2041 2042
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2043
 * @worker: self
2044 2045 2046 2047 2048 2049 2050 2051 2052
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2053
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2054
 */
T
Tejun Heo 已提交
2055
static void process_one_work(struct worker *worker, struct work_struct *work)
2056 2057
__releases(&pool->lock)
__acquires(&pool->lock)
2058
{
2059
	struct pool_workqueue *pwq = get_work_pwq(work);
2060
	struct worker_pool *pool = worker->pool;
2061
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2062
	int work_color;
2063
	struct worker *collision;
2064 2065 2066 2067 2068 2069 2070 2071
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2072 2073 2074
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2075
#endif
2076 2077 2078
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2079
	 * unbound or a disassociated pool.
2080
	 */
2081
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2082
		     !(pool->flags & POOL_DISASSOCIATED) &&
2083
		     raw_smp_processor_id() != pool->cpu);
2084

2085 2086 2087 2088 2089 2090
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2091
	collision = find_worker_executing_work(pool, work);
2092 2093 2094 2095 2096
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2097
	/* claim and dequeue */
2098
	debug_work_deactivate(work);
2099
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2100
	worker->current_work = work;
2101
	worker->current_func = work->func;
2102
	worker->current_pwq = pwq;
2103
	work_color = get_work_color(work);
2104

2105 2106
	list_del_init(&work->entry);

2107 2108 2109 2110 2111 2112 2113
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2114
	/*
2115
	 * Unbound pool isn't concurrency managed and work items should be
2116 2117
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2118 2119
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2120

2121
	/*
2122
	 * Record the last pool and clear PENDING which should be the last
2123
	 * update to @work.  Also, do this inside @pool->lock so that
2124 2125
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2126
	 */
2127
	set_work_pool_and_clear_pending(work, pool->id);
2128

2129
	spin_unlock_irq(&pool->lock);
2130

2131
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2132
	lock_map_acquire(&lockdep_map);
2133
	trace_workqueue_execute_start(work);
2134
	worker->current_func(work);
2135 2136 2137 2138 2139
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2140
	lock_map_release(&lockdep_map);
2141
	lock_map_release(&pwq->wq->lockdep_map);
2142 2143

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2144 2145
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2146 2147
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2148 2149 2150 2151
		debug_show_held_locks(current);
		dump_stack();
	}

2152
	spin_lock_irq(&pool->lock);
2153

2154 2155 2156 2157
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2158
	/* we're done with it, release */
2159
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2160
	worker->current_work = NULL;
2161
	worker->current_func = NULL;
2162 2163
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2164 2165
}

2166 2167 2168 2169 2170 2171 2172 2173 2174
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2175
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2176 2177 2178
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2179
{
2180 2181
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2182
						struct work_struct, entry);
T
Tejun Heo 已提交
2183
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2184 2185 2186
	}
}

T
Tejun Heo 已提交
2187 2188
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2189
 * @__worker: self
T
Tejun Heo 已提交
2190
 *
2191 2192 2193 2194 2195
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
T
Tejun Heo 已提交
2196
 */
T
Tejun Heo 已提交
2197
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2198
{
T
Tejun Heo 已提交
2199
	struct worker *worker = __worker;
2200
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2201

2202 2203
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2204
woke_up:
2205
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2206

2207 2208
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2209
		spin_unlock_irq(&pool->lock);
2210 2211 2212
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2213
	}
2214

T
Tejun Heo 已提交
2215
	worker_leave_idle(worker);
2216
recheck:
2217
	/* no more worker necessary? */
2218
	if (!need_more_worker(pool))
2219 2220 2221
		goto sleep;

	/* do we need to manage? */
2222
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2223 2224
		goto recheck;

T
Tejun Heo 已提交
2225 2226 2227 2228 2229
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2230
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2231

2232
	/*
2233 2234 2235 2236 2237
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2238
	 */
2239
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2240 2241

	do {
T
Tejun Heo 已提交
2242
		struct work_struct *work =
2243
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2244 2245 2246 2247 2248 2249
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2250
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2251 2252 2253
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2254
		}
2255
	} while (keep_working(pool));
2256 2257

	worker_set_flags(worker, WORKER_PREP, false);
2258
sleep:
2259
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2260
		goto recheck;
2261

T
Tejun Heo 已提交
2262
	/*
2263 2264 2265 2266 2267
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2268 2269 2270
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2271
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2272 2273
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2274 2275
}

2276 2277
/**
 * rescuer_thread - the rescuer thread function
2278
 * @__rescuer: self
2279 2280
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2281
 * workqueue which has WQ_MEM_RECLAIM set.
2282
 *
2283
 * Regular work processing on a pool may block trying to create a new
2284 2285 2286 2287 2288
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2289 2290
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2291 2292 2293 2294
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2295
static int rescuer_thread(void *__rescuer)
2296
{
2297 2298
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2299 2300 2301
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2302 2303 2304 2305 2306 2307

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2308 2309 2310
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2311 2312
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2313
		rescuer->task->flags &= ~PF_WQ_WORKER;
2314
		return 0;
2315
	}
2316

2317
	/* see whether any pwq is asking for help */
2318
	spin_lock_irq(&wq_mayday_lock);
2319 2320 2321 2322

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2323
		struct worker_pool *pool = pwq->pool;
2324 2325 2326
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2327 2328
		list_del_init(&pwq->mayday_node);

2329
		spin_unlock_irq(&wq_mayday_lock);
2330 2331

		/* migrate to the target cpu if possible */
2332
		worker_maybe_bind_and_lock(pool);
2333
		rescuer->pool = pool;
2334 2335 2336 2337 2338

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2339
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2340
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2341
			if (get_work_pwq(work) == pwq)
2342 2343 2344
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2345 2346

		/*
2347
		 * Leave this pool.  If keep_working() is %true, notify a
2348 2349 2350
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2351 2352
		if (keep_working(pool))
			wake_up_worker(pool);
2353

2354
		rescuer->pool = NULL;
2355
		spin_unlock(&pool->lock);
2356
		spin_lock(&wq_mayday_lock);
2357 2358
	}

2359
	spin_unlock_irq(&wq_mayday_lock);
2360

2361 2362
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2363 2364
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2365 2366
}

O
Oleg Nesterov 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2378 2379
/**
 * insert_wq_barrier - insert a barrier work
2380
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2381
 * @barr: wq_barrier to insert
2382 2383
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2384
 *
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2397
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2398 2399
 *
 * CONTEXT:
2400
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2401
 */
2402
static void insert_wq_barrier(struct pool_workqueue *pwq,
2403 2404
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2405
{
2406 2407 2408
	struct list_head *head;
	unsigned int linked = 0;

2409
	/*
2410
	 * debugobject calls are safe here even with pool->lock locked
2411 2412 2413 2414
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2415
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2416
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2417
	init_completion(&barr->done);
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2434
	debug_work_activate(&barr->work);
2435
	insert_work(pwq, &barr->work, head,
2436
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2437 2438
}

2439
/**
2440
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2441 2442 2443 2444
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2445
 * Prepare pwqs for workqueue flushing.
2446
 *
2447 2448 2449 2450 2451
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2452 2453 2454 2455 2456 2457 2458
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2459
 * If @work_color is non-negative, all pwqs should have the same
2460 2461 2462 2463
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2464
 * mutex_lock(wq->mutex).
2465 2466 2467 2468 2469
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2470
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2471
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2472
{
2473
	bool wait = false;
2474
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2475

2476
	if (flush_color >= 0) {
2477
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2478
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2479
	}
2480

2481
	for_each_pwq(pwq, wq) {
2482
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2483

2484
		spin_lock_irq(&pool->lock);
2485

2486
		if (flush_color >= 0) {
2487
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2488

2489 2490 2491
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2492 2493 2494
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2495

2496
		if (work_color >= 0) {
2497
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2498
			pwq->work_color = work_color;
2499
		}
L
Linus Torvalds 已提交
2500

2501
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2502
	}
2503

2504
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2505
		complete(&wq->first_flusher->done);
2506

2507
	return wait;
L
Linus Torvalds 已提交
2508 2509
}

2510
/**
L
Linus Torvalds 已提交
2511
 * flush_workqueue - ensure that any scheduled work has run to completion.
2512
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2513
 *
2514 2515
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2516
 */
2517
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2518
{
2519 2520 2521 2522 2523 2524
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2525

2526 2527
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2528

2529
	mutex_lock(&wq->mutex);
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2542
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2543 2544 2545 2546 2547
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2548
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2549 2550 2551

			wq->first_flusher = &this_flusher;

2552
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2553 2554 2555 2556 2557 2558 2559 2560
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2561
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2562
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2563
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2574
	mutex_unlock(&wq->mutex);
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2587
	mutex_lock(&wq->mutex);
2588

2589 2590 2591 2592
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2593 2594
	wq->first_flusher = NULL;

2595 2596
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2609 2610
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2630
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2631 2632 2633
		}

		if (list_empty(&wq->flusher_queue)) {
2634
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2635 2636 2637 2638 2639
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2640
		 * the new first flusher and arm pwqs.
2641
		 */
2642 2643
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2644 2645 2646 2647

		list_del_init(&next->list);
		wq->first_flusher = next;

2648
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2659
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2660
}
2661
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2662

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2677
	struct pool_workqueue *pwq;
2678 2679 2680 2681

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2682
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2683
	 */
2684
	mutex_lock(&wq->mutex);
2685
	if (!wq->nr_drainers++)
2686
		wq->flags |= __WQ_DRAINING;
2687
	mutex_unlock(&wq->mutex);
2688 2689 2690
reflush:
	flush_workqueue(wq);

2691
	mutex_lock(&wq->mutex);
2692

2693
	for_each_pwq(pwq, wq) {
2694
		bool drained;
2695

2696
		spin_lock_irq(&pwq->pool->lock);
2697
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2698
		spin_unlock_irq(&pwq->pool->lock);
2699 2700

		if (drained)
2701 2702 2703 2704
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2705
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2706
				wq->name, flush_cnt);
2707

2708
		mutex_unlock(&wq->mutex);
2709 2710 2711 2712
		goto reflush;
	}

	if (!--wq->nr_drainers)
2713
		wq->flags &= ~__WQ_DRAINING;
2714
	mutex_unlock(&wq->mutex);
2715 2716 2717
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2718
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2719
{
2720
	struct worker *worker = NULL;
2721
	struct worker_pool *pool;
2722
	struct pool_workqueue *pwq;
2723 2724

	might_sleep();
2725 2726

	local_irq_disable();
2727
	pool = get_work_pool(work);
2728 2729
	if (!pool) {
		local_irq_enable();
2730
		return false;
2731
	}
2732

2733
	spin_lock(&pool->lock);
2734
	/* see the comment in try_to_grab_pending() with the same code */
2735 2736 2737
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2738
			goto already_gone;
2739
	} else {
2740
		worker = find_worker_executing_work(pool, work);
2741
		if (!worker)
T
Tejun Heo 已提交
2742
			goto already_gone;
2743
		pwq = worker->current_pwq;
2744
	}
2745

2746
	insert_wq_barrier(pwq, barr, work, worker);
2747
	spin_unlock_irq(&pool->lock);
2748

2749 2750 2751 2752 2753 2754
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2755
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2756
		lock_map_acquire(&pwq->wq->lockdep_map);
2757
	else
2758 2759
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2760

2761
	return true;
T
Tejun Heo 已提交
2762
already_gone:
2763
	spin_unlock_irq(&pool->lock);
2764
	return false;
2765
}
2766 2767 2768 2769 2770

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2771 2772
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2773 2774 2775 2776 2777 2778 2779 2780 2781
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2782 2783 2784
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2785
	if (start_flush_work(work, &barr)) {
2786 2787 2788
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2789
	} else {
2790
		return false;
2791 2792
	}
}
2793
EXPORT_SYMBOL_GPL(flush_work);
2794

2795
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2796
{
2797
	unsigned long flags;
2798 2799 2800
	int ret;

	do {
2801 2802 2803 2804 2805 2806
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2807
			flush_work(work);
2808 2809
	} while (unlikely(ret < 0));

2810 2811 2812 2813
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2814
	flush_work(work);
2815
	clear_work_data(work);
2816 2817 2818
	return ret;
}

2819
/**
2820 2821
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2822
 *
2823 2824 2825 2826
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2827
 *
2828 2829
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2830
 *
2831
 * The caller must ensure that the workqueue on which @work was last
2832
 * queued can't be destroyed before this function returns.
2833 2834 2835
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2836
 */
2837
bool cancel_work_sync(struct work_struct *work)
2838
{
2839
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2840
}
2841
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2842

2843
/**
2844 2845
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2846
 *
2847 2848 2849
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2850
 *
2851 2852 2853
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2854
 */
2855 2856
bool flush_delayed_work(struct delayed_work *dwork)
{
2857
	local_irq_disable();
2858
	if (del_timer_sync(&dwork->timer))
2859
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2860
	local_irq_enable();
2861 2862 2863 2864
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2865
/**
2866 2867
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2868
 *
2869 2870 2871 2872 2873
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2874
 *
2875
 * This function is safe to call from any context including IRQ handler.
2876
 */
2877
bool cancel_delayed_work(struct delayed_work *dwork)
2878
{
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2889 2890
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2891
	local_irq_restore(flags);
2892
	return ret;
2893
}
2894
EXPORT_SYMBOL(cancel_delayed_work);
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2906
{
2907
	return __cancel_work_timer(&dwork->work, true);
2908
}
2909
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2910

2911
/**
2912
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2913 2914
 * @func: the function to call
 *
2915 2916
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2917
 * schedule_on_each_cpu() is very slow.
2918 2919 2920
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2921
 */
2922
int schedule_on_each_cpu(work_func_t func)
2923 2924
{
	int cpu;
2925
	struct work_struct __percpu *works;
2926

2927 2928
	works = alloc_percpu(struct work_struct);
	if (!works)
2929
		return -ENOMEM;
2930

2931 2932
	get_online_cpus();

2933
	for_each_online_cpu(cpu) {
2934 2935 2936
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2937
		schedule_work_on(cpu, work);
2938
	}
2939 2940 2941 2942

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2943
	put_online_cpus();
2944
	free_percpu(works);
2945 2946 2947
	return 0;
}

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2972 2973
void flush_scheduled_work(void)
{
2974
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2975
}
2976
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2977

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
2990
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2991 2992
{
	if (!in_interrupt()) {
2993
		fn(&ew->work);
2994 2995 2996
		return 0;
	}

2997
	INIT_WORK(&ew->work, fn);
2998 2999 3000 3001 3002 3003
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

static ssize_t wq_pool_id_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct worker_pool *pool;
	int written;

	rcu_read_lock_sched();
	pool = first_pwq(wq)->pool;
	written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    first_pwq(wq)->pool->attrs->nice);
	rcu_read_unlock_sched();

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	rcu_read_lock_sched();
	copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
	rcu_read_unlock_sched();
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = cpumask_scnprintf(buf, PAGE_SIZE,
				    first_pwq(wq)->pool->attrs->cpumask);
	rcu_read_unlock_sched();

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_id, 0444, wq_pool_id_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_setall(attrs->cpumask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/*
 * Hacky implementation of jhash of bitmaps which only considers the
 * specified number of bits.  We probably want a proper implementation in
 * include/linux/jhash.h.
 */
static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
{
	int nr_longs = bits / BITS_PER_LONG;
	int nr_leftover = bits % BITS_PER_LONG;
	unsigned long leftover = 0;

	if (nr_longs)
		hash = jhash(bitmap, nr_longs * sizeof(long), hash);
	if (nr_leftover) {
		bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
		hash = jhash(&leftover, sizeof(long), hash);
	}
	return hash;
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
	hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3365 3366 3367 3368 3369
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3370 3371 3372
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3373 3374
 */
static int init_worker_pool(struct worker_pool *pool)
3375 3376
{
	spin_lock_init(&pool->lock);
3377 3378
	pool->id = -1;
	pool->cpu = -1;
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3392
	mutex_init(&pool->manager_mutex);
3393
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3394

3395 3396 3397 3398
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3399 3400 3401 3402
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3403 3404
}

3405 3406 3407 3408
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3409
	idr_destroy(&pool->worker_idr);
3410 3411 3412 3413 3414 3415 3416 3417 3418
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3419 3420 3421
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3422 3423 3424 3425 3426
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3427
	mutex_lock(&wq_pool_mutex);
3428
	if (--pool->refcnt) {
3429
		mutex_unlock(&wq_pool_mutex);
3430 3431 3432 3433 3434 3435
		return;
	}

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
	    WARN_ON(!list_empty(&pool->worklist))) {
3436
		mutex_unlock(&wq_pool_mutex);
3437 3438 3439 3440 3441 3442 3443 3444
		return;
	}

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3445
	mutex_unlock(&wq_pool_mutex);
3446

3447 3448 3449 3450 3451
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3452
	mutex_lock(&pool->manager_arb);
3453
	mutex_lock(&pool->manager_mutex);
3454 3455 3456 3457 3458 3459 3460
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3461
	mutex_unlock(&pool->manager_mutex);
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;

3486
	mutex_lock(&wq_pool_mutex);
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3501 3502 3503
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3504
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3505 3506 3507 3508 3509 3510
	copy_workqueue_attrs(pool->attrs, attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3511
	if (create_and_start_worker(pool) < 0)
3512 3513 3514 3515 3516
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
3517
	mutex_unlock(&wq_pool_mutex);
3518 3519
	return pool;
fail:
3520
	mutex_unlock(&wq_pool_mutex);
3521 3522 3523 3524 3525
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3546
	/*
3547
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3548 3549 3550
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3551
	mutex_lock(&wq->mutex);
3552
	spin_lock_irq(&pwq_lock);
T
Tejun Heo 已提交
3553
	list_del_rcu(&pwq->pwqs_node);
3554
	spin_unlock_irq(&pwq_lock);
3555
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

	put_unbound_pool(pool);
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
	if (list_empty(&wq->pwqs))
		kfree(wq);
}

3568
/**
3569
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3570 3571
 * @pwq: target pool_workqueue
 *
3572 3573 3574
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3575
 */
3576
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3577
{
3578 3579 3580 3581
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3582
	lockdep_assert_held(&pwq_lock);
3583 3584 3585 3586 3587 3588 3589 3590 3591

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

	spin_lock(&pwq->pool->lock);

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3592

3593 3594 3595
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3596 3597 3598 3599 3600 3601

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3602 3603 3604 3605 3606
	} else {
		pwq->max_active = 0;
	}

	spin_unlock(&pwq->pool->lock);
3607 3608
}

3609 3610
static void init_and_link_pwq(struct pool_workqueue *pwq,
			      struct workqueue_struct *wq,
3611 3612
			      struct worker_pool *pool,
			      struct pool_workqueue **p_last_pwq)
3613 3614 3615 3616 3617 3618
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3619
	pwq->refcnt = 1;
3620 3621
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3622
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3623

3624
	mutex_lock(&wq->mutex);
3625
	spin_lock_irq(&pwq_lock);
3626

3627 3628
	/*
	 * Set the matching work_color.  This is synchronized with
3629
	 * wq->mutex to avoid confusing flush_workqueue().
3630
	 */
3631 3632
	if (p_last_pwq)
		*p_last_pwq = first_pwq(wq);
3633
	pwq->work_color = wq->work_color;
3634 3635 3636 3637 3638

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3639
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3640

3641
	spin_unlock_irq(&pwq_lock);
3642
	mutex_unlock(&wq->mutex);
3643 3644
}

3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  If @attrs doesn't match the
 * current attributes, a new pwq is created and made the first pwq which
 * will serve all new work items.  Older pwqs are released as in-flight
 * work items finish.  Note that a work item which repeatedly requeues
 * itself back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	struct pool_workqueue *pwq, *last_pwq;
	struct worker_pool *pool;

3665
	/* only unbound workqueues can change attributes */
3666 3667 3668
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3669 3670 3671 3672
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
	pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
	if (!pwq)
		return -ENOMEM;

	pool = get_unbound_pool(attrs);
	if (!pool) {
		kmem_cache_free(pwq_cache, pwq);
		return -ENOMEM;
	}

	init_and_link_pwq(pwq, wq, pool, &last_pwq);
	if (last_pwq) {
		spin_lock_irq(&last_pwq->pool->lock);
		put_pwq(last_pwq);
		spin_unlock_irq(&last_pwq->pool->lock);
	}

	return 0;
}

3693
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3694
{
3695
	bool highpri = wq->flags & WQ_HIGHPRI;
3696 3697 3698
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3699 3700
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3701 3702 3703
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3704 3705
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3706
			struct worker_pool *cpu_pools =
3707
				per_cpu(cpu_worker_pools, cpu);
3708

3709
			init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3710
		}
3711
		return 0;
3712
	} else {
3713
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3714
	}
T
Tejun Heo 已提交
3715 3716
}

3717 3718
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3719
{
3720 3721 3722
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3723 3724
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3725

3726
	return clamp_val(max_active, 1, lim);
3727 3728
}

3729
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3730 3731 3732
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3733
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3734
{
3735
	va_list args, args1;
L
Linus Torvalds 已提交
3736
	struct workqueue_struct *wq;
3737
	struct pool_workqueue *pwq;
3738 3739 3740 3741 3742 3743 3744 3745 3746
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
3747
		return NULL;
3748 3749 3750 3751

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3752

3753
	max_active = max_active ?: WQ_DFL_ACTIVE;
3754
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3755

3756
	/* init wq */
3757
	wq->flags = flags;
3758
	wq->saved_max_active = max_active;
3759
	mutex_init(&wq->mutex);
3760
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3761
	INIT_LIST_HEAD(&wq->pwqs);
3762 3763
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3764
	INIT_LIST_HEAD(&wq->maydays);
3765

3766
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3767
	INIT_LIST_HEAD(&wq->list);
3768

3769
	if (alloc_and_link_pwqs(wq) < 0)
3770
		goto err_free_wq;
T
Tejun Heo 已提交
3771

3772 3773 3774 3775 3776
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3777 3778
		struct worker *rescuer;

3779
		rescuer = alloc_worker();
3780
		if (!rescuer)
3781
			goto err_destroy;
3782

3783 3784
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3785
					       wq->name);
3786 3787 3788 3789
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3790

3791
		wq->rescuer = rescuer;
3792
		rescuer->task->flags |= PF_NO_SETAFFINITY;
3793
		wake_up_process(rescuer->task);
3794 3795
	}

3796 3797 3798
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3799
	/*
3800 3801 3802
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3803
	 */
3804
	mutex_lock(&wq_pool_mutex);
3805

3806
	spin_lock_irq(&pwq_lock);
3807 3808
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3809
	spin_unlock_irq(&pwq_lock);
3810

T
Tejun Heo 已提交
3811
	list_add(&wq->list, &workqueues);
3812

3813
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
3814

3815
	return wq;
3816 3817 3818 3819 3820 3821

err_free_wq:
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3822
	return NULL;
3823
}
3824
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3825

3826 3827 3828 3829 3830 3831 3832 3833
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3834
	struct pool_workqueue *pwq;
3835

3836 3837
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3838

3839
	/* sanity checks */
3840
	mutex_lock(&wq->mutex);
3841
	for_each_pwq(pwq, wq) {
3842 3843
		int i;

3844 3845
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
3846
				mutex_unlock(&wq->mutex);
3847
				return;
3848 3849 3850
			}
		}

T
Tejun Heo 已提交
3851 3852
		if (WARN_ON(pwq->refcnt > 1) ||
		    WARN_ON(pwq->nr_active) ||
3853
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3854
			mutex_unlock(&wq->mutex);
3855
			return;
3856
		}
3857
	}
3858
	mutex_unlock(&wq->mutex);
3859

3860 3861 3862 3863
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3864
	mutex_lock(&wq_pool_mutex);
3865
	list_del_init(&wq->list);
3866
	mutex_unlock(&wq_pool_mutex);
3867

3868 3869
	workqueue_sysfs_unregister(wq);

3870
	if (wq->rescuer) {
3871
		kthread_stop(wq->rescuer->task);
3872
		kfree(wq->rescuer);
3873
		wq->rescuer = NULL;
3874 3875
	}

T
Tejun Heo 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
		 * access the first pwq and put the base ref.  As both pwqs
		 * and pools are sched-RCU protected, the lock operations
		 * are safe.  @wq will be freed when the last pwq is
		 * released.
		 */
3891 3892
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
T
Tejun Heo 已提交
3893 3894 3895
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
3896
	}
3897 3898 3899
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3912
	struct pool_workqueue *pwq;
3913

3914 3915 3916 3917
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

3918
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3919

3920
	spin_lock_irq(&pwq_lock);
3921 3922 3923

	wq->saved_max_active = max_active;

3924 3925
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3926

3927
	spin_unlock_irq(&pwq_lock);
3928
}
3929
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3930

3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

3941
	return worker && worker->rescue_wq;
3942 3943
}

3944
/**
3945 3946 3947
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3948
 *
3949 3950 3951
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3952
 *
3953 3954
 * RETURNS:
 * %true if congested, %false otherwise.
3955
 */
3956
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3957
{
3958
	struct pool_workqueue *pwq;
3959 3960
	bool ret;

3961
	rcu_read_lock_sched();
3962 3963 3964 3965 3966

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
3967

3968
	ret = !list_empty(&pwq->delayed_works);
3969
	rcu_read_unlock_sched();
3970 3971

	return ret;
L
Linus Torvalds 已提交
3972
}
3973
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3974

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3987
{
3988
	struct worker_pool *pool;
3989 3990
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3991

3992 3993
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3994

3995 3996
	local_irq_save(flags);
	pool = get_work_pool(work);
3997
	if (pool) {
3998
		spin_lock(&pool->lock);
3999 4000
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4001
		spin_unlock(&pool->lock);
4002
	}
4003
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4004

4005
	return ret;
L
Linus Torvalds 已提交
4006
}
4007
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4008

4009 4010 4011
/*
 * CPU hotplug.
 *
4012
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4013
 * are a lot of assumptions on strong associations among work, pwq and
4014
 * pool which make migrating pending and scheduled works very
4015
 * difficult to implement without impacting hot paths.  Secondly,
4016
 * worker pools serve mix of short, long and very long running works making
4017 4018
 * blocked draining impractical.
 *
4019
 * This is solved by allowing the pools to be disassociated from the CPU
4020 4021
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4022
 */
L
Linus Torvalds 已提交
4023

4024
static void wq_unbind_fn(struct work_struct *work)
4025
{
4026
	int cpu = smp_processor_id();
4027
	struct worker_pool *pool;
4028
	struct worker *worker;
4029
	int wi;
4030

4031
	for_each_cpu_worker_pool(pool, cpu) {
4032
		WARN_ON_ONCE(cpu != smp_processor_id());
4033

4034
		mutex_lock(&pool->manager_mutex);
4035
		spin_lock_irq(&pool->lock);
4036

4037
		/*
4038
		 * We've blocked all manager operations.  Make all workers
4039 4040 4041 4042 4043
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4044
		for_each_pool_worker(worker, wi, pool)
4045
			worker->flags |= WORKER_UNBOUND;
4046

4047
		pool->flags |= POOL_DISASSOCIATED;
4048

4049
		spin_unlock_irq(&pool->lock);
4050
		mutex_unlock(&pool->manager_mutex);
4051
	}
4052

4053
	/*
4054
	 * Call schedule() so that we cross rq->lock and thus can guarantee
4055 4056
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
4057 4058
	 */
	schedule();
4059

4060
	/*
4061 4062
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
4063 4064 4065
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
4066 4067 4068 4069
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
4070
	 */
4071
	for_each_cpu_worker_pool(pool, cpu)
4072
		atomic_set(&pool->nr_running, 0);
4073 4074
}

T
Tejun Heo 已提交
4075 4076 4077 4078
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4079
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4080 4081 4082
 */
static void rebind_workers(struct worker_pool *pool)
{
4083 4084
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4085 4086 4087

	lockdep_assert_held(&pool->manager_mutex);

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4098

4099
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4100

4101 4102
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4103 4104

		/*
4105 4106 4107 4108 4109 4110
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4111
		 */
4112 4113
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4114

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4134
	}
4135 4136

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4137 4138
}

4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4172 4173 4174 4175
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4176
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4177 4178
					       unsigned long action,
					       void *hcpu)
4179
{
4180
	int cpu = (unsigned long)hcpu;
4181
	struct worker_pool *pool;
4182
	int pi;
4183

T
Tejun Heo 已提交
4184
	switch (action & ~CPU_TASKS_FROZEN) {
4185
	case CPU_UP_PREPARE:
4186
		for_each_cpu_worker_pool(pool, cpu) {
4187 4188
			if (pool->nr_workers)
				continue;
4189
			if (create_and_start_worker(pool) < 0)
4190
				return NOTIFY_BAD;
4191
		}
T
Tejun Heo 已提交
4192
		break;
4193

4194 4195
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4196
		mutex_lock(&wq_pool_mutex);
4197 4198

		for_each_pool(pool, pi) {
4199
			mutex_lock(&pool->manager_mutex);
4200

4201 4202 4203 4204
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4205

4206 4207 4208 4209
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4210

4211
			mutex_unlock(&pool->manager_mutex);
4212
		}
4213

4214
		mutex_unlock(&wq_pool_mutex);
4215
		break;
4216
	}
4217 4218 4219 4220 4221 4222 4223
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4224
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4225 4226 4227
						 unsigned long action,
						 void *hcpu)
{
4228
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4229 4230
	struct work_struct unbind_work;

4231 4232
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
4233
		/* unbinding should happen on the local CPU */
4234
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4235
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
4236 4237
		flush_work(&unbind_work);
		break;
4238 4239 4240 4241
	}
	return NOTIFY_OK;
}

4242
#ifdef CONFIG_SMP
4243

4244
struct work_for_cpu {
4245
	struct work_struct work;
4246 4247 4248 4249 4250
	long (*fn)(void *);
	void *arg;
	long ret;
};

4251
static void work_for_cpu_fn(struct work_struct *work)
4252
{
4253 4254
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4255 4256 4257 4258 4259 4260 4261 4262 4263
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4264 4265
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4266
 * The caller must not hold any locks which would prevent @fn from completing.
4267
 */
4268
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4269
{
4270
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4271

4272 4273 4274
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
4275 4276 4277 4278 4279
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4280 4281 4282 4283 4284
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4285
 * Start freezing workqueues.  After this function returns, all freezable
4286
 * workqueues will queue new works to their delayed_works list instead of
4287
 * pool->worklist.
4288 4289
 *
 * CONTEXT:
4290
 * Grabs and releases wq_pool_mutex, pwq_lock and pool->lock's.
4291 4292 4293
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4294
	struct worker_pool *pool;
4295 4296
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4297
	int pi;
4298

4299
	mutex_lock(&wq_pool_mutex);
4300

4301
	WARN_ON_ONCE(workqueue_freezing);
4302 4303
	workqueue_freezing = true;

4304
	/* set FREEZING */
4305
	for_each_pool(pool, pi) {
4306
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4307 4308
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4309
		spin_unlock_irq(&pool->lock);
4310
	}
4311

4312
	/* suppress further executions by setting max_active to zero */
4313
	spin_lock_irq(&pwq_lock);
4314
	list_for_each_entry(wq, &workqueues, list) {
4315 4316
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4317
	}
4318
	spin_unlock_irq(&pwq_lock);
4319

4320
	mutex_unlock(&wq_pool_mutex);
4321 4322 4323
}

/**
4324
 * freeze_workqueues_busy - are freezable workqueues still busy?
4325 4326 4327 4328 4329
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4330
 * Grabs and releases wq_pool_mutex.
4331 4332
 *
 * RETURNS:
4333 4334
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4335 4336 4337 4338
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4339 4340
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4341

4342
	mutex_lock(&wq_pool_mutex);
4343

4344
	WARN_ON_ONCE(!workqueue_freezing);
4345

4346 4347 4348
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4349 4350 4351 4352
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4353
		rcu_read_lock_sched();
4354
		for_each_pwq(pwq, wq) {
4355
			WARN_ON_ONCE(pwq->nr_active < 0);
4356
			if (pwq->nr_active) {
4357
				busy = true;
4358
				rcu_read_unlock_sched();
4359 4360 4361
				goto out_unlock;
			}
		}
4362
		rcu_read_unlock_sched();
4363 4364
	}
out_unlock:
4365
	mutex_unlock(&wq_pool_mutex);
4366 4367 4368 4369 4370 4371 4372
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4373
 * frozen works are transferred to their respective pool worklists.
4374 4375
 *
 * CONTEXT:
4376
 * Grabs and releases wq_pool_mutex, pwq_lock and pool->lock's.
4377 4378 4379
 */
void thaw_workqueues(void)
{
4380 4381 4382
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4383
	int pi;
4384

4385
	mutex_lock(&wq_pool_mutex);
4386 4387 4388 4389

	if (!workqueue_freezing)
		goto out_unlock;

4390
	/* clear FREEZING */
4391
	for_each_pool(pool, pi) {
4392
		spin_lock_irq(&pool->lock);
4393 4394
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4395
		spin_unlock_irq(&pool->lock);
4396
	}
4397

4398
	/* restore max_active and repopulate worklist */
4399
	spin_lock_irq(&pwq_lock);
4400
	list_for_each_entry(wq, &workqueues, list) {
4401 4402
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4403
	}
4404
	spin_unlock_irq(&pwq_lock);
4405 4406 4407

	workqueue_freezing = false;
out_unlock:
4408
	mutex_unlock(&wq_pool_mutex);
4409 4410 4411
}
#endif /* CONFIG_FREEZER */

4412
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4413
{
T
Tejun Heo 已提交
4414 4415
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4416

4417 4418
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4419
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4420

4421 4422 4423 4424
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4425
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4426
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4427

4428
	/* initialize CPU pools */
4429
	for_each_possible_cpu(cpu) {
4430
		struct worker_pool *pool;
4431

T
Tejun Heo 已提交
4432
		i = 0;
4433
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4434
			BUG_ON(init_worker_pool(pool));
4435
			pool->cpu = cpu;
4436
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4437 4438
			pool->attrs->nice = std_nice[i++];

T
Tejun Heo 已提交
4439
			/* alloc pool ID */
4440
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4441
			BUG_ON(worker_pool_assign_id(pool));
4442
			mutex_unlock(&wq_pool_mutex);
4443
		}
4444 4445
	}

4446
	/* create the initial worker */
4447
	for_each_online_cpu(cpu) {
4448
		struct worker_pool *pool;
4449

4450
		for_each_cpu_worker_pool(pool, cpu) {
4451
			pool->flags &= ~POOL_DISASSOCIATED;
4452
			BUG_ON(create_and_start_worker(pool) < 0);
4453
		}
4454 4455
	}

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

		attrs->nice = std_nice[i];
		cpumask_setall(attrs->cpumask);

		unbound_std_wq_attrs[i] = attrs;
	}

4468
	system_wq = alloc_workqueue("events", 0, 0);
4469
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4470
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4471 4472
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4473 4474
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4475
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4476
	       !system_unbound_wq || !system_freezable_wq);
4477
	return 0;
L
Linus Torvalds 已提交
4478
}
4479
early_initcall(init_workqueues);