workqueue.c 135.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131
 * WQ: wq->mutex protected.
 *
132
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133 134
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
135 136
 */

137
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
138

139
struct worker_pool {
140
	spinlock_t		lock;		/* the pool lock */
141
	int			cpu;		/* I: the associated cpu */
142
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162 163
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
164
	struct completion	*detach_completion; /* all workers detached */
165

166
	struct ida		worker_ida;	/* worker IDs for task name */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270 271
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

272 273 274
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

275 276 277 278 279 280 281 282 283
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

284 285
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

286 287 288
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

289
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291

292 293
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 295 296 297 298

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

299
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300

301
/* PL: hash of all unbound pools keyed by pool->attrs */
302 303
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

304
/* I: attributes used when instantiating standard unbound pools on demand */
305 306
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

307 308 309
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

310
struct workqueue_struct *system_wq __read_mostly;
311
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
312
struct workqueue_struct *system_highpri_wq __read_mostly;
313
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
314
struct workqueue_struct *system_long_wq __read_mostly;
315
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
316
struct workqueue_struct *system_unbound_wq __read_mostly;
317
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
318
struct workqueue_struct *system_freezable_wq __read_mostly;
319
EXPORT_SYMBOL_GPL(system_freezable_wq);
320 321 322 323
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324

325 326 327 328
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

329 330 331
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

332
#define assert_rcu_or_pool_mutex()					\
333
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
334 335
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
336

337
#define assert_rcu_or_wq_mutex(wq)					\
338
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
339
			   lockdep_is_held(&wq->mutex),			\
340
			   "sched RCU or wq->mutex should be held")
341

342 343 344
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345
	     (pool)++)
346

T
Tejun Heo 已提交
347 348 349
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
350
 * @pi: integer used for iteration
351
 *
352 353 354
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
355 356 357
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
358
 */
359 360
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
361
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
362
		else
T
Tejun Heo 已提交
363

364 365 366 367 368
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
369
 * This must be called with @pool->attach_mutex.
370 371 372 373
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
374 375
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
376
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
377 378
		else

379 380 381 382
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
383
 *
384
 * This must be called either with wq->mutex held or sched RCU read locked.
385 386
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
387 388 389
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
390 391
 */
#define for_each_pwq(pwq, wq)						\
392
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
393
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
394
		else
395

396 397 398 399
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

400 401 402 403 404
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
440
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
476
	.debug_hint	= work_debug_hint,
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

507 508 509 510 511 512 513
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

514 515 516 517 518
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

519 520 521 522 523 524 525
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
526 527 528 529
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

530
	lockdep_assert_held(&wq_pool_mutex);
531

532 533
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
534
	if (ret >= 0) {
T
Tejun Heo 已提交
535
		pool->id = ret;
536 537
		return 0;
	}
538
	return ret;
539 540
}

541 542 543 544 545 546 547 548
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
549 550
 *
 * Return: The unbound pool_workqueue for @node.
551 552 553 554 555 556 557 558
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
574

575
/*
576 577
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
578
 * is cleared and the high bits contain OFFQ flags and pool ID.
579
 *
580 581
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
582 583
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
584
 *
585
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586
 * corresponding to a work.  Pool is available once the work has been
587
 * queued anywhere after initialization until it is sync canceled.  pwq is
588
 * available only while the work item is queued.
589
 *
590 591 592 593
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
594
 */
595 596
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
597
{
598
	WARN_ON_ONCE(!work_pending(work));
599 600
	atomic_long_set(&work->data, data | flags | work_static(work));
}
601

602
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 604
			 unsigned long extra_flags)
{
605 606
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 608
}

609 610 611 612 613 614 615
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

616 617
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
618
{
619 620 621 622 623 624 625
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
626
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627
}
628

629
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
630
{
631 632
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
633 634
}

635
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636
{
637
	unsigned long data = atomic_long_read(&work->data);
638

639
	if (data & WORK_STRUCT_PWQ)
640 641 642
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
643 644
}

645 646 647 648
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
649 650 651
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
652 653 654 655 656
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
657 658
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
659 660
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
661
{
662
	unsigned long data = atomic_long_read(&work->data);
663
	int pool_id;
664

665
	assert_rcu_or_pool_mutex();
666

667 668
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
669
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670

671 672
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
673 674
		return NULL;

675
	return idr_find(&worker_pool_idr, pool_id);
676 677 678 679 680 681
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
682
 * Return: The worker_pool ID @work was last associated with.
683 684 685 686
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
687 688
	unsigned long data = atomic_long_read(&work->data);

689 690
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
691
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692

693
	return data >> WORK_OFFQ_POOL_SHIFT;
694 695
}

696 697
static void mark_work_canceling(struct work_struct *work)
{
698
	unsigned long pool_id = get_work_pool_id(work);
699

700 701
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 703 704 705 706 707
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

708
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 710
}

711
/*
712 713
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
714
 * they're being called with pool->lock held.
715 716
 */

717
static bool __need_more_worker(struct worker_pool *pool)
718
{
719
	return !atomic_read(&pool->nr_running);
720 721
}

722
/*
723 724
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
725 726
 *
 * Note that, because unbound workers never contribute to nr_running, this
727
 * function will always return %true for unbound pools as long as the
728
 * worklist isn't empty.
729
 */
730
static bool need_more_worker(struct worker_pool *pool)
731
{
732
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
733
}
734

735
/* Can I start working?  Called from busy but !running workers. */
736
static bool may_start_working(struct worker_pool *pool)
737
{
738
	return pool->nr_idle;
739 740 741
}

/* Do I need to keep working?  Called from currently running workers. */
742
static bool keep_working(struct worker_pool *pool)
743
{
744 745
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
746 747 748
}

/* Do we need a new worker?  Called from manager. */
749
static bool need_to_create_worker(struct worker_pool *pool)
750
{
751
	return need_more_worker(pool) && !may_start_working(pool);
752
}
753

754
/* Do we have too many workers and should some go away? */
755
static bool too_many_workers(struct worker_pool *pool)
756
{
757
	bool managing = mutex_is_locked(&pool->manager_arb);
758 759
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
760 761

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
762 763
}

764
/*
765 766 767
 * Wake up functions.
 */

768 769
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
770
{
771
	if (unlikely(list_empty(&pool->idle_list)))
772 773
		return NULL;

774
	return list_first_entry(&pool->idle_list, struct worker, entry);
775 776 777 778
}

/**
 * wake_up_worker - wake up an idle worker
779
 * @pool: worker pool to wake worker from
780
 *
781
 * Wake up the first idle worker of @pool.
782 783
 *
 * CONTEXT:
784
 * spin_lock_irq(pool->lock).
785
 */
786
static void wake_up_worker(struct worker_pool *pool)
787
{
788
	struct worker *worker = first_idle_worker(pool);
789 790 791 792 793

	if (likely(worker))
		wake_up_process(worker->task);
}

794
/**
795 796 797 798 799 800 801 802 803 804
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
805
void wq_worker_waking_up(struct task_struct *task, int cpu)
806 807 808
{
	struct worker *worker = kthread_data(task);

809
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
810
		WARN_ON_ONCE(worker->pool->cpu != cpu);
811
		atomic_inc(&worker->pool->nr_running);
812
	}
813 814 815 816 817 818 819 820 821 822 823 824 825 826
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
827
 * Return:
828 829
 * Worker task on @cpu to wake up, %NULL if none.
 */
830
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
831 832
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
833
	struct worker_pool *pool;
834

835 836 837 838 839
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
840
	if (worker->flags & WORKER_NOT_RUNNING)
841 842
		return NULL;

843 844
	pool = worker->pool;

845
	/* this can only happen on the local cpu */
846
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
847
		return NULL;
848 849 850 851 852 853

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
854 855 856
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
857
	 * manipulating idle_list, so dereferencing idle_list without pool
858
	 * lock is safe.
859
	 */
860 861
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
862
		to_wakeup = first_idle_worker(pool);
863 864 865 866 867
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
868
 * @worker: self
869 870
 * @flags: flags to set
 *
871
 * Set @flags in @worker->flags and adjust nr_running accordingly.
872
 *
873
 * CONTEXT:
874
 * spin_lock_irq(pool->lock)
875
 */
876
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
877
{
878
	struct worker_pool *pool = worker->pool;
879

880 881
	WARN_ON_ONCE(worker->task != current);

882
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
883 884
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
885
		atomic_dec(&pool->nr_running);
886 887
	}

888 889 890 891
	worker->flags |= flags;
}

/**
892
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
893
 * @worker: self
894 895
 * @flags: flags to clear
 *
896
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
897
 *
898
 * CONTEXT:
899
 * spin_lock_irq(pool->lock)
900 901 902
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
903
	struct worker_pool *pool = worker->pool;
904 905
	unsigned int oflags = worker->flags;

906 907
	WARN_ON_ONCE(worker->task != current);

908
	worker->flags &= ~flags;
909

910 911 912 913 914
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
915 916
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
917
			atomic_inc(&pool->nr_running);
918 919
}

920 921
/**
 * find_worker_executing_work - find worker which is executing a work
922
 * @pool: pool of interest
923 924
 * @work: work to find worker for
 *
925 926
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
927 928 929 930 931 932 933 934 935 936 937 938
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
939 940 941 942 943 944
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
945 946
 *
 * CONTEXT:
947
 * spin_lock_irq(pool->lock).
948
 *
949 950
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
951
 * otherwise.
952
 */
953
static struct worker *find_worker_executing_work(struct worker_pool *pool,
954
						 struct work_struct *work)
955
{
956 957
	struct worker *worker;

958
	hash_for_each_possible(pool->busy_hash, worker, hentry,
959 960 961
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
962 963 964
			return worker;

	return NULL;
965 966
}

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
982
 * spin_lock_irq(pool->lock).
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1066
static void pwq_activate_delayed_work(struct work_struct *work)
1067
{
1068
	struct pool_workqueue *pwq = get_work_pwq(work);
1069 1070

	trace_workqueue_activate_work(work);
1071
	move_linked_works(work, &pwq->pool->worklist, NULL);
1072
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1073
	pwq->nr_active++;
1074 1075
}

1076
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1077
{
1078
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1079 1080
						    struct work_struct, entry);

1081
	pwq_activate_delayed_work(work);
1082 1083
}

1084
/**
1085 1086
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1087 1088 1089
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1090
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1091 1092
 *
 * CONTEXT:
1093
 * spin_lock_irq(pool->lock).
1094
 */
1095
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1096
{
T
Tejun Heo 已提交
1097
	/* uncolored work items don't participate in flushing or nr_active */
1098
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1099
		goto out_put;
1100

1101
	pwq->nr_in_flight[color]--;
1102

1103 1104
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1105
		/* one down, submit a delayed one */
1106 1107
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1108 1109 1110
	}

	/* is flush in progress and are we at the flushing tip? */
1111
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1112
		goto out_put;
1113 1114

	/* are there still in-flight works? */
1115
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1116
		goto out_put;
1117

1118 1119
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1120 1121

	/*
1122
	 * If this was the last pwq, wake up the first flusher.  It
1123 1124
	 * will handle the rest.
	 */
1125 1126
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1127 1128
out_put:
	put_pwq(pwq);
1129 1130
}

1131
/**
1132
 * try_to_grab_pending - steal work item from worklist and disable irq
1133 1134
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1135
 * @flags: place to store irq state
1136 1137
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1138
 * stable state - idle, on timer or on worklist.
1139
 *
1140
 * Return:
1141 1142 1143
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1144 1145
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1146
 *
1147
 * Note:
1148
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1149 1150 1151
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1152 1153 1154 1155
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1156
 * This function is safe to call from any context including IRQ handler.
1157
 */
1158 1159
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1160
{
1161
	struct worker_pool *pool;
1162
	struct pool_workqueue *pwq;
1163

1164 1165
	local_irq_save(*flags);

1166 1167 1168 1169
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1170 1171 1172 1173 1174
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1175 1176 1177 1178 1179
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1180 1181 1182 1183 1184 1185 1186
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1187 1188
	pool = get_work_pool(work);
	if (!pool)
1189
		goto fail;
1190

1191
	spin_lock(&pool->lock);
1192
	/*
1193 1194 1195 1196 1197
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1198 1199
	 * item is currently queued on that pool.
	 */
1200 1201
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1202 1203 1204 1205 1206
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1207
		 * on the delayed_list, will confuse pwq->nr_active
1208 1209 1210 1211
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1212
			pwq_activate_delayed_work(work);
1213 1214

		list_del_init(&work->entry);
1215
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1216

1217
		/* work->data points to pwq iff queued, point to pool */
1218 1219 1220 1221
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1222
	}
1223
	spin_unlock(&pool->lock);
1224 1225 1226 1227 1228
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1229
	return -EAGAIN;
1230 1231
}

T
Tejun Heo 已提交
1232
/**
1233
 * insert_work - insert a work into a pool
1234
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1235 1236 1237 1238
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1239
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1240
 * work_struct flags.
T
Tejun Heo 已提交
1241 1242
 *
 * CONTEXT:
1243
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1244
 */
1245 1246
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1247
{
1248
	struct worker_pool *pool = pwq->pool;
1249

T
Tejun Heo 已提交
1250
	/* we own @work, set data and link */
1251
	set_work_pwq(work, pwq, extra_flags);
1252
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1253
	get_pwq(pwq);
1254 1255

	/*
1256 1257 1258
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1259 1260 1261
	 */
	smp_mb();

1262 1263
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1264 1265
}

1266 1267
/*
 * Test whether @work is being queued from another work executing on the
1268
 * same workqueue.
1269 1270 1271
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1272 1273 1274 1275 1276 1277 1278
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1279
	return worker && worker->current_pwq->wq == wq;
1280 1281
}

1282
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1283 1284
			 struct work_struct *work)
{
1285
	struct pool_workqueue *pwq;
1286
	struct worker_pool *last_pool;
1287
	struct list_head *worklist;
1288
	unsigned int work_flags;
1289
	unsigned int req_cpu = cpu;
1290 1291 1292 1293 1294 1295 1296 1297

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1298

1299
	debug_work_activate(work);
1300

1301
	/* if draining, only works from the same workqueue are allowed */
1302
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1303
	    WARN_ON_ONCE(!is_chained_work(wq)))
1304
		return;
1305
retry:
1306 1307 1308
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1309
	/* pwq which will be used unless @work is executing elsewhere */
1310
	if (!(wq->flags & WQ_UNBOUND))
1311
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1312 1313
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1314

1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1323

1324
		spin_lock(&last_pool->lock);
1325

1326
		worker = find_worker_executing_work(last_pool, work);
1327

1328 1329
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1330
		} else {
1331 1332
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1333
			spin_lock(&pwq->pool->lock);
1334
		}
1335
	} else {
1336
		spin_lock(&pwq->pool->lock);
1337 1338
	}

1339 1340 1341 1342
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1343 1344
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1358 1359
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1360

1361
	if (WARN_ON(!list_empty(&work->entry))) {
1362
		spin_unlock(&pwq->pool->lock);
1363 1364
		return;
	}
1365

1366 1367
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1368

1369
	if (likely(pwq->nr_active < pwq->max_active)) {
1370
		trace_workqueue_activate_work(work);
1371 1372
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1373 1374
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1375
		worklist = &pwq->delayed_works;
1376
	}
1377

1378
	insert_work(pwq, work, worklist, work_flags);
1379

1380
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1381 1382
}

1383
/**
1384 1385
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1386 1387 1388
 * @wq: workqueue to use
 * @work: work to queue
 *
1389 1390
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1391 1392
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1393
 */
1394 1395
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1396
{
1397
	bool ret = false;
1398
	unsigned long flags;
1399

1400
	local_irq_save(flags);
1401

1402
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1403
		__queue_work(cpu, wq, work);
1404
		ret = true;
1405
	}
1406

1407
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1408 1409
	return ret;
}
1410
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1411

1412
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1413
{
1414
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1415

1416
	/* should have been called from irqsafe timer with irq already off */
1417
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1418
}
1419
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1420

1421 1422
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1423
{
1424 1425 1426 1427 1428
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1429 1430
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1443
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1444

1445
	dwork->wq = wq;
1446
	dwork->cpu = cpu;
1447 1448 1449 1450 1451 1452
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1453 1454
}

1455 1456 1457 1458
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1459
 * @dwork: work to queue
1460 1461
 * @delay: number of jiffies to wait before queueing
 *
1462
 * Return: %false if @work was already on a queue, %true otherwise.  If
1463 1464
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1465
 */
1466 1467
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1468
{
1469
	struct work_struct *work = &dwork->work;
1470
	bool ret = false;
1471
	unsigned long flags;
1472

1473 1474
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1475

1476
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1477
		__queue_delayed_work(cpu, wq, dwork, delay);
1478
		ret = true;
1479
	}
1480

1481
	local_irq_restore(flags);
1482 1483
	return ret;
}
1484
EXPORT_SYMBOL(queue_delayed_work_on);
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1498
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1499 1500
 * pending and its timer was modified.
 *
1501
 * This function is safe to call from any context including IRQ handler.
1502 1503 1504 1505 1506 1507 1508
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1509

1510 1511 1512
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1513

1514 1515 1516
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1517
	}
1518 1519

	/* -ENOENT from try_to_grab_pending() becomes %true */
1520 1521
	return ret;
}
1522 1523
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1524 1525 1526 1527 1528 1529 1530 1531
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1532
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1533 1534
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1535
{
1536
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1537

1538 1539 1540 1541
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1542

1543
	/* can't use worker_set_flags(), also called from create_worker() */
1544
	worker->flags |= WORKER_IDLE;
1545
	pool->nr_idle++;
1546
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1547 1548

	/* idle_list is LIFO */
1549
	list_add(&worker->entry, &pool->idle_list);
1550

1551 1552
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1553

1554
	/*
1555
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1556
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1557 1558
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1559
	 */
1560
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1561
		     pool->nr_workers == pool->nr_idle &&
1562
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1572
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1573 1574 1575
 */
static void worker_leave_idle(struct worker *worker)
{
1576
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1577

1578 1579
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1580
	worker_clr_flags(worker, WORKER_IDLE);
1581
	pool->nr_idle--;
T
Tejun Heo 已提交
1582 1583 1584
	list_del_init(&worker->entry);
}

1585
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1586 1587 1588
{
	struct worker *worker;

1589
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1590 1591
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1592
		INIT_LIST_HEAD(&worker->scheduled);
1593
		INIT_LIST_HEAD(&worker->node);
1594 1595
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1596
	}
T
Tejun Heo 已提交
1597 1598 1599
	return worker;
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1633 1634 1635 1636 1637
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1638 1639 1640
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1641 1642 1643 1644 1645 1646
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1647
	mutex_lock(&pool->attach_mutex);
1648 1649
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1650
		detach_completion = pool->detach_completion;
1651
	mutex_unlock(&pool->attach_mutex);
1652

1653 1654 1655
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1656 1657 1658 1659
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1660 1661
/**
 * create_worker - create a new workqueue worker
1662
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1663
 *
1664
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1665 1666 1667 1668
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1669
 * Return:
T
Tejun Heo 已提交
1670 1671
 * Pointer to the newly created worker.
 */
1672
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1673 1674
{
	struct worker *worker = NULL;
1675
	int id = -1;
1676
	char id_buf[16];
T
Tejun Heo 已提交
1677

1678 1679
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1680 1681
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1682

1683
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1684 1685 1686
	if (!worker)
		goto fail;

1687
	worker->pool = pool;
T
Tejun Heo 已提交
1688 1689
	worker->id = id;

1690
	if (pool->cpu >= 0)
1691 1692
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1693
	else
1694 1695
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1696
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1697
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1698 1699 1700
	if (IS_ERR(worker->task))
		goto fail;

1701 1702 1703 1704 1705
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1706
	/* successful, attach the worker to the pool */
1707
	worker_attach_to_pool(worker, pool);
1708

1709 1710 1711 1712 1713 1714 1715
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1716
	return worker;
1717

T
Tejun Heo 已提交
1718
fail:
1719
	if (id >= 0)
1720
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1721 1722 1723 1724 1725 1726 1727 1728
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1729 1730
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1731 1732
 *
 * CONTEXT:
1733
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1734 1735 1736
 */
static void destroy_worker(struct worker *worker)
{
1737
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1738

1739 1740
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1741
	/* sanity check frenzy */
1742
	if (WARN_ON(worker->current_work) ||
1743 1744
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1745
		return;
T
Tejun Heo 已提交
1746

1747 1748
	pool->nr_workers--;
	pool->nr_idle--;
1749

T
Tejun Heo 已提交
1750
	list_del_init(&worker->entry);
1751
	worker->flags |= WORKER_DIE;
1752
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1753 1754
}

1755
static void idle_worker_timeout(unsigned long __pool)
1756
{
1757
	struct worker_pool *pool = (void *)__pool;
1758

1759
	spin_lock_irq(&pool->lock);
1760

1761
	while (too_many_workers(pool)) {
1762 1763 1764 1765
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1766
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1767 1768
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1769
		if (time_before(jiffies, expires)) {
1770
			mod_timer(&pool->idle_timer, expires);
1771
			break;
1772
		}
1773 1774

		destroy_worker(worker);
1775 1776
	}

1777
	spin_unlock_irq(&pool->lock);
1778
}
1779

1780
static void send_mayday(struct work_struct *work)
1781
{
1782 1783
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1784

1785
	lockdep_assert_held(&wq_mayday_lock);
1786

1787
	if (!wq->rescuer)
1788
		return;
1789 1790

	/* mayday mayday mayday */
1791
	if (list_empty(&pwq->mayday_node)) {
1792 1793 1794 1795 1796 1797
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1798
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1799
		wake_up_process(wq->rescuer->task);
1800
	}
1801 1802
}

1803
static void pool_mayday_timeout(unsigned long __pool)
1804
{
1805
	struct worker_pool *pool = (void *)__pool;
1806 1807
	struct work_struct *work;

1808
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1809
	spin_lock(&pool->lock);
1810

1811
	if (need_to_create_worker(pool)) {
1812 1813 1814 1815 1816 1817
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1818
		list_for_each_entry(work, &pool->worklist, entry)
1819
			send_mayday(work);
L
Linus Torvalds 已提交
1820
	}
1821

1822
	spin_unlock(&pool->lock);
1823
	spin_unlock_irq(&wq_mayday_lock);
1824

1825
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1826 1827
}

1828 1829
/**
 * maybe_create_worker - create a new worker if necessary
1830
 * @pool: pool to create a new worker for
1831
 *
1832
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1833 1834
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1835
 * sent to all rescuers with works scheduled on @pool to resolve
1836 1837
 * possible allocation deadlock.
 *
1838 1839
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1840 1841
 *
 * LOCKING:
1842
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1843 1844 1845
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1846
 * Return:
1847
 * %false if no action was taken and pool->lock stayed locked, %true
1848 1849
 * otherwise.
 */
1850
static bool maybe_create_worker(struct worker_pool *pool)
1851 1852
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1853
{
1854
	if (!need_to_create_worker(pool))
1855 1856
		return false;
restart:
1857
	spin_unlock_irq(&pool->lock);
1858

1859
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1860
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1861 1862

	while (true) {
1863
		if (create_worker(pool) || !need_to_create_worker(pool))
1864
			break;
L
Linus Torvalds 已提交
1865

1866
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1867

1868
		if (!need_to_create_worker(pool))
1869 1870 1871
			break;
	}

1872
	del_timer_sync(&pool->mayday_timer);
1873
	spin_lock_irq(&pool->lock);
1874 1875 1876 1877 1878
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1879
	if (need_to_create_worker(pool))
1880 1881 1882 1883
		goto restart;
	return true;
}

1884
/**
1885 1886
 * manage_workers - manage worker pool
 * @worker: self
1887
 *
1888
 * Assume the manager role and manage the worker pool @worker belongs
1889
 * to.  At any given time, there can be only zero or one manager per
1890
 * pool.  The exclusion is handled automatically by this function.
1891 1892 1893 1894
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1895 1896
 *
 * CONTEXT:
1897
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1898 1899
 * multiple times.  Does GFP_KERNEL allocations.
 *
1900
 * Return:
1901 1902 1903 1904 1905
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
1906
 */
1907
static bool manage_workers(struct worker *worker)
1908
{
1909
	struct worker_pool *pool = worker->pool;
1910
	bool ret = false;
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1922
	if (!mutex_trylock(&pool->manager_arb))
1923
		return ret;
1924

1925
	ret |= maybe_create_worker(pool);
1926

1927
	mutex_unlock(&pool->manager_arb);
1928
	return ret;
1929 1930
}

1931 1932
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1933
 * @worker: self
1934 1935 1936 1937 1938 1939 1940 1941 1942
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1943
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1944
 */
T
Tejun Heo 已提交
1945
static void process_one_work(struct worker *worker, struct work_struct *work)
1946 1947
__releases(&pool->lock)
__acquires(&pool->lock)
1948
{
1949
	struct pool_workqueue *pwq = get_work_pwq(work);
1950
	struct worker_pool *pool = worker->pool;
1951
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1952
	int work_color;
1953
	struct worker *collision;
1954 1955 1956 1957 1958 1959 1960 1961
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1962 1963 1964
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1965
#endif
1966
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1967
		     raw_smp_processor_id() != pool->cpu);
1968

1969 1970 1971 1972 1973 1974
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
1975
	collision = find_worker_executing_work(pool, work);
1976 1977 1978 1979 1980
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1981
	/* claim and dequeue */
1982
	debug_work_deactivate(work);
1983
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
1984
	worker->current_work = work;
1985
	worker->current_func = work->func;
1986
	worker->current_pwq = pwq;
1987
	work_color = get_work_color(work);
1988

1989 1990
	list_del_init(&work->entry);

1991
	/*
1992 1993 1994 1995
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
1996 1997
	 */
	if (unlikely(cpu_intensive))
1998
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1999

2000
	/*
2001 2002 2003 2004
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2005
	 * UNBOUND and CPU_INTENSIVE ones.
2006
	 */
2007
	if (need_more_worker(pool))
2008
		wake_up_worker(pool);
2009

2010
	/*
2011
	 * Record the last pool and clear PENDING which should be the last
2012
	 * update to @work.  Also, do this inside @pool->lock so that
2013 2014
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2015
	 */
2016
	set_work_pool_and_clear_pending(work, pool->id);
2017

2018
	spin_unlock_irq(&pool->lock);
2019

2020
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2021
	lock_map_acquire(&lockdep_map);
2022
	trace_workqueue_execute_start(work);
2023
	worker->current_func(work);
2024 2025 2026 2027 2028
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2029
	lock_map_release(&lockdep_map);
2030
	lock_map_release(&pwq->wq->lockdep_map);
2031 2032

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2033 2034
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2035 2036
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2037 2038 2039 2040
		debug_show_held_locks(current);
		dump_stack();
	}

2041 2042 2043 2044 2045 2046 2047 2048 2049
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2050
	spin_lock_irq(&pool->lock);
2051

2052 2053 2054 2055
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2056
	/* we're done with it, release */
2057
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2058
	worker->current_work = NULL;
2059
	worker->current_func = NULL;
2060
	worker->current_pwq = NULL;
2061
	worker->desc_valid = false;
2062
	pwq_dec_nr_in_flight(pwq, work_color);
2063 2064
}

2065 2066 2067 2068 2069 2070 2071 2072 2073
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2074
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2075 2076 2077
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2078
{
2079 2080
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2081
						struct work_struct, entry);
T
Tejun Heo 已提交
2082
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2083 2084 2085
	}
}

T
Tejun Heo 已提交
2086 2087
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2088
 * @__worker: self
T
Tejun Heo 已提交
2089
 *
2090 2091 2092 2093 2094
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2095 2096
 *
 * Return: 0
T
Tejun Heo 已提交
2097
 */
T
Tejun Heo 已提交
2098
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2099
{
T
Tejun Heo 已提交
2100
	struct worker *worker = __worker;
2101
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2102

2103 2104
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2105
woke_up:
2106
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2107

2108 2109
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2110
		spin_unlock_irq(&pool->lock);
2111 2112
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2113 2114

		set_task_comm(worker->task, "kworker/dying");
2115
		ida_simple_remove(&pool->worker_ida, worker->id);
2116 2117
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2118
		return 0;
T
Tejun Heo 已提交
2119
	}
2120

T
Tejun Heo 已提交
2121
	worker_leave_idle(worker);
2122
recheck:
2123
	/* no more worker necessary? */
2124
	if (!need_more_worker(pool))
2125 2126 2127
		goto sleep;

	/* do we need to manage? */
2128
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2129 2130
		goto recheck;

T
Tejun Heo 已提交
2131 2132 2133 2134 2135
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2136
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2137

2138
	/*
2139 2140 2141 2142 2143
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2144
	 */
2145
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2146 2147

	do {
T
Tejun Heo 已提交
2148
		struct work_struct *work =
2149
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2150 2151 2152 2153 2154 2155
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2156
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2157 2158 2159
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2160
		}
2161
	} while (keep_working(pool));
2162

2163
	worker_set_flags(worker, WORKER_PREP);
2164
sleep:
T
Tejun Heo 已提交
2165
	/*
2166 2167 2168 2169 2170
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2171 2172 2173
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2174
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2175 2176
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2177 2178
}

2179 2180
/**
 * rescuer_thread - the rescuer thread function
2181
 * @__rescuer: self
2182 2183
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2184
 * workqueue which has WQ_MEM_RECLAIM set.
2185
 *
2186
 * Regular work processing on a pool may block trying to create a new
2187 2188 2189 2190 2191
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2192 2193
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2194 2195 2196
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2197 2198
 *
 * Return: 0
2199
 */
2200
static int rescuer_thread(void *__rescuer)
2201
{
2202 2203
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2204
	struct list_head *scheduled = &rescuer->scheduled;
2205
	bool should_stop;
2206 2207

	set_user_nice(current, RESCUER_NICE_LEVEL);
2208 2209 2210 2211 2212 2213

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2214 2215 2216
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2217 2218 2219 2220 2221 2222 2223 2224 2225
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2226

2227
	/* see whether any pwq is asking for help */
2228
	spin_lock_irq(&wq_mayday_lock);
2229 2230 2231 2232

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2233
		struct worker_pool *pool = pwq->pool;
2234 2235 2236
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2237 2238
		list_del_init(&pwq->mayday_node);

2239
		spin_unlock_irq(&wq_mayday_lock);
2240

2241 2242 2243
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2244
		rescuer->pool = pool;
2245 2246 2247 2248 2249

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2250
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2251
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2252
			if (get_work_pwq(work) == pwq)
2253 2254 2255
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2256

2257 2258
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2259
		 * go away while we're still attached to it.
2260 2261 2262
		 */
		put_pwq(pwq);

2263
		/*
2264
		 * Leave this pool.  If need_more_worker() is %true, notify a
2265 2266 2267
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2268
		if (need_more_worker(pool))
2269
			wake_up_worker(pool);
2270

2271
		rescuer->pool = NULL;
2272 2273 2274 2275 2276
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2277 2278
	}

2279
	spin_unlock_irq(&wq_mayday_lock);
2280

2281 2282 2283 2284 2285 2286
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2287 2288
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2289 2290
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2291 2292
}

O
Oleg Nesterov 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2304 2305
/**
 * insert_wq_barrier - insert a barrier work
2306
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2307
 * @barr: wq_barrier to insert
2308 2309
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2310
 *
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2323
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2324 2325
 *
 * CONTEXT:
2326
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2327
 */
2328
static void insert_wq_barrier(struct pool_workqueue *pwq,
2329 2330
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2331
{
2332 2333 2334
	struct list_head *head;
	unsigned int linked = 0;

2335
	/*
2336
	 * debugobject calls are safe here even with pool->lock locked
2337 2338 2339 2340
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2341
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2342
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2343
	init_completion(&barr->done);
2344

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2360
	debug_work_activate(&barr->work);
2361
	insert_work(pwq, &barr->work, head,
2362
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2363 2364
}

2365
/**
2366
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2367 2368 2369 2370
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2371
 * Prepare pwqs for workqueue flushing.
2372
 *
2373 2374 2375 2376 2377
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2378 2379 2380 2381 2382 2383 2384
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2385
 * If @work_color is non-negative, all pwqs should have the same
2386 2387 2388 2389
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2390
 * mutex_lock(wq->mutex).
2391
 *
2392
 * Return:
2393 2394 2395
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2396
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2397
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2398
{
2399
	bool wait = false;
2400
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2401

2402
	if (flush_color >= 0) {
2403
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2404
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2405
	}
2406

2407
	for_each_pwq(pwq, wq) {
2408
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2409

2410
		spin_lock_irq(&pool->lock);
2411

2412
		if (flush_color >= 0) {
2413
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2414

2415 2416 2417
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2418 2419 2420
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2421

2422
		if (work_color >= 0) {
2423
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2424
			pwq->work_color = work_color;
2425
		}
L
Linus Torvalds 已提交
2426

2427
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2428
	}
2429

2430
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2431
		complete(&wq->first_flusher->done);
2432

2433
	return wait;
L
Linus Torvalds 已提交
2434 2435
}

2436
/**
L
Linus Torvalds 已提交
2437
 * flush_workqueue - ensure that any scheduled work has run to completion.
2438
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2439
 *
2440 2441
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2442
 */
2443
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2444
{
2445 2446 2447 2448 2449 2450
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2451

2452 2453
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2454

2455
	mutex_lock(&wq->mutex);
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2468
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2469 2470 2471 2472 2473
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2474
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2475 2476 2477

			wq->first_flusher = &this_flusher;

2478
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2479 2480 2481 2482 2483 2484 2485 2486
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2487
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2488
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2489
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2500
	mutex_unlock(&wq->mutex);
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2513
	mutex_lock(&wq->mutex);
2514

2515 2516 2517 2518
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2519 2520
	wq->first_flusher = NULL;

2521 2522
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2535 2536
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2556
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2557 2558 2559
		}

		if (list_empty(&wq->flusher_queue)) {
2560
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2561 2562 2563 2564 2565
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2566
		 * the new first flusher and arm pwqs.
2567
		 */
2568 2569
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2570 2571 2572 2573

		list_del_init(&next->list);
		wq->first_flusher = next;

2574
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2585
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2586
}
2587
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2588

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2603
	struct pool_workqueue *pwq;
2604 2605 2606 2607

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2608
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2609
	 */
2610
	mutex_lock(&wq->mutex);
2611
	if (!wq->nr_drainers++)
2612
		wq->flags |= __WQ_DRAINING;
2613
	mutex_unlock(&wq->mutex);
2614 2615 2616
reflush:
	flush_workqueue(wq);

2617
	mutex_lock(&wq->mutex);
2618

2619
	for_each_pwq(pwq, wq) {
2620
		bool drained;
2621

2622
		spin_lock_irq(&pwq->pool->lock);
2623
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2624
		spin_unlock_irq(&pwq->pool->lock);
2625 2626

		if (drained)
2627 2628 2629 2630
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2631
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2632
				wq->name, flush_cnt);
2633

2634
		mutex_unlock(&wq->mutex);
2635 2636 2637 2638
		goto reflush;
	}

	if (!--wq->nr_drainers)
2639
		wq->flags &= ~__WQ_DRAINING;
2640
	mutex_unlock(&wq->mutex);
2641 2642 2643
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2644
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2645
{
2646
	struct worker *worker = NULL;
2647
	struct worker_pool *pool;
2648
	struct pool_workqueue *pwq;
2649 2650

	might_sleep();
2651 2652

	local_irq_disable();
2653
	pool = get_work_pool(work);
2654 2655
	if (!pool) {
		local_irq_enable();
2656
		return false;
2657
	}
2658

2659
	spin_lock(&pool->lock);
2660
	/* see the comment in try_to_grab_pending() with the same code */
2661 2662 2663
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2664
			goto already_gone;
2665
	} else {
2666
		worker = find_worker_executing_work(pool, work);
2667
		if (!worker)
T
Tejun Heo 已提交
2668
			goto already_gone;
2669
		pwq = worker->current_pwq;
2670
	}
2671

2672
	insert_wq_barrier(pwq, barr, work, worker);
2673
	spin_unlock_irq(&pool->lock);
2674

2675 2676 2677 2678 2679 2680
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2681
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2682
		lock_map_acquire(&pwq->wq->lockdep_map);
2683
	else
2684 2685
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2686

2687
	return true;
T
Tejun Heo 已提交
2688
already_gone:
2689
	spin_unlock_irq(&pool->lock);
2690
	return false;
2691
}
2692 2693 2694 2695 2696

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2697 2698
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2699
 *
2700
 * Return:
2701 2702 2703 2704 2705
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2706 2707
	struct wq_barrier barr;

2708 2709 2710
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2711 2712 2713 2714 2715 2716 2717
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2718
}
2719
EXPORT_SYMBOL_GPL(flush_work);
2720

2721
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2722
{
2723
	unsigned long flags;
2724 2725 2726
	int ret;

	do {
2727 2728 2729 2730 2731 2732
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2733
			flush_work(work);
2734 2735
	} while (unlikely(ret < 0));

2736 2737 2738 2739
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2740
	flush_work(work);
2741
	clear_work_data(work);
2742 2743 2744
	return ret;
}

2745
/**
2746 2747
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2748
 *
2749 2750 2751 2752
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2753
 *
2754 2755
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2756
 *
2757
 * The caller must ensure that the workqueue on which @work was last
2758
 * queued can't be destroyed before this function returns.
2759
 *
2760
 * Return:
2761
 * %true if @work was pending, %false otherwise.
2762
 */
2763
bool cancel_work_sync(struct work_struct *work)
2764
{
2765
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2766
}
2767
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2768

2769
/**
2770 2771
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2772
 *
2773 2774 2775
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2776
 *
2777
 * Return:
2778 2779
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2780
 */
2781 2782
bool flush_delayed_work(struct delayed_work *dwork)
{
2783
	local_irq_disable();
2784
	if (del_timer_sync(&dwork->timer))
2785
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2786
	local_irq_enable();
2787 2788 2789 2790
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2791
/**
2792 2793
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2794
 *
2795 2796 2797 2798 2799 2800 2801 2802 2803
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2804
 *
2805
 * This function is safe to call from any context including IRQ handler.
2806
 */
2807
bool cancel_delayed_work(struct delayed_work *dwork)
2808
{
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2819 2820
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2821
	local_irq_restore(flags);
2822
	return ret;
2823
}
2824
EXPORT_SYMBOL(cancel_delayed_work);
2825

2826 2827 2828 2829 2830 2831
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2832
 * Return:
2833 2834 2835
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2836
{
2837
	return __cancel_work_timer(&dwork->work, true);
2838
}
2839
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2840

2841
/**
2842
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2843 2844
 * @func: the function to call
 *
2845 2846
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2847
 * schedule_on_each_cpu() is very slow.
2848
 *
2849
 * Return:
2850
 * 0 on success, -errno on failure.
2851
 */
2852
int schedule_on_each_cpu(work_func_t func)
2853 2854
{
	int cpu;
2855
	struct work_struct __percpu *works;
2856

2857 2858
	works = alloc_percpu(struct work_struct);
	if (!works)
2859
		return -ENOMEM;
2860

2861 2862
	get_online_cpus();

2863
	for_each_online_cpu(cpu) {
2864 2865 2866
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2867
		schedule_work_on(cpu, work);
2868
	}
2869 2870 2871 2872

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2873
	put_online_cpus();
2874
	free_percpu(works);
2875 2876 2877
	return 0;
}

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2902 2903
void flush_scheduled_work(void)
{
2904
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2905
}
2906
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2907

2908 2909 2910 2911 2912 2913 2914 2915 2916
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2917
 * Return:	0 - function was executed
2918 2919
 *		1 - function was scheduled for execution
 */
2920
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2921 2922
{
	if (!in_interrupt()) {
2923
		fn(&ew->work);
2924 2925 2926
		return 0;
	}

2927
	INIT_WORK(&ew->work, fn);
2928 2929 2930 2931 2932 2933
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

2961 2962
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
2963 2964 2965 2966 2967
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
2968
static DEVICE_ATTR_RO(per_cpu);
2969

2970 2971
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
2972 2973 2974 2975 2976 2977
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

2978 2979 2980
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
2991
static DEVICE_ATTR_RW(max_active);
2992

2993 2994 2995 2996
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
2997
};
2998
ATTRIBUTE_GROUPS(wq_sysfs);
2999

3000 3001
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3002 3003
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3004 3005
	const char *delim = "";
	int node, written = 0;
3006 3007

	rcu_read_lock_sched();
3008 3009 3010 3011 3012 3013 3014
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3026 3027 3028
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3042 3043 3044
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3060
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3075 3076 3077
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3138
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3139
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3140 3141
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3142
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3143 3144 3145 3146 3147
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3148
	.dev_groups			= wq_sysfs_groups,
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3177
 * Return: 0 on success, -errno on failure.
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3270 3271 3272
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3284
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3285 3286 3287 3288 3289 3290
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3291 3292 3293 3294 3295
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3296 3297 3298 3299 3300 3301
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3302 3303 3304 3305 3306 3307 3308 3309
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3310 3311
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3326 3327 3328 3329 3330
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3331 3332
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3333 3334
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3335 3336
 */
static int init_worker_pool(struct worker_pool *pool)
3337 3338
{
	spin_lock_init(&pool->lock);
3339 3340
	pool->id = -1;
	pool->cpu = -1;
3341
	pool->node = NUMA_NO_NODE;
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3355
	mutex_init(&pool->attach_mutex);
3356
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3357

3358
	ida_init(&pool->worker_ida);
3359 3360 3361 3362
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3363 3364 3365 3366
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3367 3368
}

3369 3370 3371 3372
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3373
	ida_destroy(&pool->worker_ida);
3374 3375 3376 3377 3378 3379 3380 3381 3382
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3383 3384 3385
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3386 3387
 *
 * Should be called with wq_pool_mutex held.
3388 3389 3390
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3391
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3392 3393
	struct worker *worker;

3394 3395 3396
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3397 3398 3399
		return;

	/* sanity checks */
3400
	if (WARN_ON(!(pool->cpu < 0)) ||
3401
	    WARN_ON(!list_empty(&pool->worklist)))
3402 3403 3404 3405 3406 3407 3408
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3409 3410 3411
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
3412
	 * attach_mutex.
3413
	 */
3414 3415
	mutex_lock(&pool->manager_arb);

3416
	spin_lock_irq(&pool->lock);
3417
	while ((worker = first_idle_worker(pool)))
3418 3419 3420
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3421

3422
	mutex_lock(&pool->attach_mutex);
3423
	if (!list_empty(&pool->workers))
3424
		pool->detach_completion = &detach_completion;
3425
	mutex_unlock(&pool->attach_mutex);
3426 3427 3428 3429

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3447
 * create a new one.
3448 3449
 *
 * Should be called with wq_pool_mutex held.
3450 3451 3452
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3453 3454 3455 3456 3457
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3458
	int node;
3459

3460
	lockdep_assert_held(&wq_pool_mutex);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3475
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3476 3477
	copy_workqueue_attrs(pool->attrs, attrs);

3478 3479 3480 3481 3482 3483
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3495 3496 3497 3498
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3499
	if (!create_worker(pool))
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3528
	bool is_last;
T
Tejun Heo 已提交
3529 3530 3531 3532

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3533
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3534
	list_del_rcu(&pwq->pwqs_node);
3535
	is_last = list_empty(&wq->pwqs);
3536
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3537

3538
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3539
	put_unbound_pool(pool);
3540 3541
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3542 3543 3544 3545 3546 3547
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3548 3549
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3550
		kfree(wq);
3551
	}
T
Tejun Heo 已提交
3552 3553
}

3554
/**
3555
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3556 3557
 * @pwq: target pool_workqueue
 *
3558 3559 3560
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3561
 */
3562
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3563
{
3564 3565 3566 3567
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3568
	lockdep_assert_held(&wq->mutex);
3569 3570 3571 3572 3573

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3574
	spin_lock_irq(&pwq->pool->lock);
3575

3576 3577 3578 3579 3580 3581
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
3582
		pwq->max_active = wq->saved_max_active;
3583

3584 3585 3586
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3587 3588 3589 3590 3591 3592

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3593 3594 3595 3596
	} else {
		pwq->max_active = 0;
	}

3597
	spin_unlock_irq(&pwq->pool->lock);
3598 3599
}

3600
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3601 3602
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3603 3604 3605
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3606 3607
	memset(pwq, 0, sizeof(*pwq));

3608 3609 3610
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3611
	pwq->refcnt = 1;
3612
	INIT_LIST_HEAD(&pwq->delayed_works);
3613
	INIT_LIST_HEAD(&pwq->pwqs_node);
3614
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3615
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3616
}
3617

3618
/* sync @pwq with the current state of its associated wq and link it */
3619
static void link_pwq(struct pool_workqueue *pwq)
3620 3621 3622 3623
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3624

3625 3626 3627 3628
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3629
	/* set the matching work_color */
3630
	pwq->work_color = wq->work_color;
3631 3632 3633 3634 3635

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3636
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3637
}
3638

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3652
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3653 3654 3655
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3656
	}
3657

3658 3659
	init_pwq(pwq, wq, pool);
	return pwq;
3660 3661
}

3662 3663 3664 3665 3666 3667 3668
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3669
		kmem_cache_free(pwq_cache, pwq);
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3682
 * calculation.  The result is stored in @cpumask.
3683 3684 3685 3686 3687 3688 3689 3690
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3691 3692 3693
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3694 3695 3696 3697
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3698
	if (!wq_numa_enabled || attrs->no_numa)
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3735 3736 3737 3738 3739
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3740 3741 3742 3743 3744 3745
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3746
 *
3747 3748 3749
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3750 3751 3752 3753
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3754 3755
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3756
	int node, ret;
3757

3758
	/* only unbound workqueues can change attributes */
3759 3760 3761
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3762 3763 3764 3765
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3766
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3767
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3768 3769
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3770 3771
		goto enomem;

3772
	/* make a copy of @attrs and sanitize it */
3773 3774 3775
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3790
	mutex_lock(&wq_pool_mutex);
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3812
	mutex_unlock(&wq_pool_mutex);
3813

3814
	/* all pwqs have been created successfully, let's install'em */
3815
	mutex_lock(&wq->mutex);
3816

3817
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3818 3819

	/* save the previous pwq and install the new one */
3820
	for_each_node(node)
3821 3822 3823 3824 3825
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3826 3827

	mutex_unlock(&wq->mutex);
3828

3829 3830 3831 3832 3833 3834
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3835 3836 3837
	ret = 0;
	/* fall through */
out_free:
3838
	free_workqueue_attrs(tmp_attrs);
3839
	free_workqueue_attrs(new_attrs);
3840
	kfree(pwq_tbl);
3841
	return ret;
3842

3843 3844 3845 3846 3847 3848 3849
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3850
enomem:
3851 3852
	ret = -ENOMEM;
	goto out_free;
3853 3854
}

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3900 3901
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3902 3903 3904 3905 3906 3907 3908 3909

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
3910
	 * wq's, the default pwq should be used.
3911 3912 3913 3914 3915
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
3916
		goto use_dfl_pwq;
3917 3918 3919 3920 3921 3922 3923
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3924 3925
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3926 3927
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3950
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3951
{
3952
	bool highpri = wq->flags & WQ_HIGHPRI;
3953
	int cpu, ret;
3954 3955

	if (!(wq->flags & WQ_UNBOUND)) {
3956 3957
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3958 3959 3960
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3961 3962
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3963
			struct worker_pool *cpu_pools =
3964
				per_cpu(cpu_worker_pools, cpu);
3965

3966 3967 3968
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3969
			link_pwq(pwq);
3970
			mutex_unlock(&wq->mutex);
3971
		}
3972
		return 0;
3973 3974 3975 3976 3977 3978 3979
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3980
	} else {
3981
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3982
	}
T
Tejun Heo 已提交
3983 3984
}

3985 3986
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3987
{
3988 3989 3990
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3991 3992
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3993

3994
	return clamp_val(max_active, 1, lim);
3995 3996
}

3997
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3998 3999 4000
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4001
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4002
{
4003
	size_t tbl_size = 0;
4004
	va_list args;
L
Linus Torvalds 已提交
4005
	struct workqueue_struct *wq;
4006
	struct pool_workqueue *pwq;
4007

4008 4009 4010 4011
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4012
	/* allocate wq and format name */
4013 4014 4015 4016
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4017
	if (!wq)
4018
		return NULL;
4019

4020 4021 4022 4023 4024 4025
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4026 4027
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4028
	va_end(args);
L
Linus Torvalds 已提交
4029

4030
	max_active = max_active ?: WQ_DFL_ACTIVE;
4031
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4032

4033
	/* init wq */
4034
	wq->flags = flags;
4035
	wq->saved_max_active = max_active;
4036
	mutex_init(&wq->mutex);
4037
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4038
	INIT_LIST_HEAD(&wq->pwqs);
4039 4040
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4041
	INIT_LIST_HEAD(&wq->maydays);
4042

4043
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4044
	INIT_LIST_HEAD(&wq->list);
4045

4046
	if (alloc_and_link_pwqs(wq) < 0)
4047
		goto err_free_wq;
T
Tejun Heo 已提交
4048

4049 4050 4051 4052 4053
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4054 4055
		struct worker *rescuer;

4056
		rescuer = alloc_worker(NUMA_NO_NODE);
4057
		if (!rescuer)
4058
			goto err_destroy;
4059

4060 4061
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4062
					       wq->name);
4063 4064 4065 4066
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4067

4068
		wq->rescuer = rescuer;
4069
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4070
		wake_up_process(rescuer->task);
4071 4072
	}

4073 4074 4075
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4076
	/*
4077 4078 4079
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4080
	 */
4081
	mutex_lock(&wq_pool_mutex);
4082

4083
	mutex_lock(&wq->mutex);
4084 4085
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4086
	mutex_unlock(&wq->mutex);
4087

T
Tejun Heo 已提交
4088
	list_add(&wq->list, &workqueues);
4089

4090
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4091

4092
	return wq;
4093 4094

err_free_wq:
4095
	free_workqueue_attrs(wq->unbound_attrs);
4096 4097 4098 4099
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4100
	return NULL;
4101
}
4102
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4103

4104 4105 4106 4107 4108 4109 4110 4111
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4112
	struct pool_workqueue *pwq;
4113
	int node;
4114

4115 4116
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4117

4118
	/* sanity checks */
4119
	mutex_lock(&wq->mutex);
4120
	for_each_pwq(pwq, wq) {
4121 4122
		int i;

4123 4124
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4125
				mutex_unlock(&wq->mutex);
4126
				return;
4127 4128 4129
			}
		}

4130
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4131
		    WARN_ON(pwq->nr_active) ||
4132
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4133
			mutex_unlock(&wq->mutex);
4134
			return;
4135
		}
4136
	}
4137
	mutex_unlock(&wq->mutex);
4138

4139 4140 4141 4142
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4143
	mutex_lock(&wq_pool_mutex);
4144
	list_del_init(&wq->list);
4145
	mutex_unlock(&wq_pool_mutex);
4146

4147 4148
	workqueue_sysfs_unregister(wq);

4149
	if (wq->rescuer) {
4150
		kthread_stop(wq->rescuer->task);
4151
		kfree(wq->rescuer);
4152
		wq->rescuer = NULL;
4153 4154
	}

T
Tejun Heo 已提交
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4165 4166
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4167
		 */
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4180
		put_pwq_unlocked(pwq);
4181
	}
4182 4183 4184
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4197
	struct pool_workqueue *pwq;
4198

4199 4200 4201 4202
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4203
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4204

4205
	mutex_lock(&wq->mutex);
4206 4207 4208

	wq->saved_max_active = max_active;

4209 4210
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4211

4212
	mutex_unlock(&wq->mutex);
4213
}
4214
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4215

4216 4217 4218 4219 4220
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4221 4222
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4223 4224 4225 4226 4227
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4228
	return worker && worker->rescue_wq;
4229 4230
}

4231
/**
4232 4233 4234
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4235
 *
4236 4237 4238
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4239
 *
4240 4241 4242 4243 4244 4245
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4246
 * Return:
4247
 * %true if congested, %false otherwise.
4248
 */
4249
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4250
{
4251
	struct pool_workqueue *pwq;
4252 4253
	bool ret;

4254
	rcu_read_lock_sched();
4255

4256 4257 4258
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4259 4260 4261
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4262
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4263

4264
	ret = !list_empty(&pwq->delayed_works);
4265
	rcu_read_unlock_sched();
4266 4267

	return ret;
L
Linus Torvalds 已提交
4268
}
4269
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4270

4271 4272 4273 4274 4275 4276 4277 4278
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4279
 * Return:
4280 4281 4282
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4283
{
4284
	struct worker_pool *pool;
4285 4286
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4287

4288 4289
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4290

4291 4292
	local_irq_save(flags);
	pool = get_work_pool(work);
4293
	if (pool) {
4294
		spin_lock(&pool->lock);
4295 4296
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4297
		spin_unlock(&pool->lock);
4298
	}
4299
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4300

4301
	return ret;
L
Linus Torvalds 已提交
4302
}
4303
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4304

4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4382 4383 4384
/*
 * CPU hotplug.
 *
4385
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4386
 * are a lot of assumptions on strong associations among work, pwq and
4387
 * pool which make migrating pending and scheduled works very
4388
 * difficult to implement without impacting hot paths.  Secondly,
4389
 * worker pools serve mix of short, long and very long running works making
4390 4391
 * blocked draining impractical.
 *
4392
 * This is solved by allowing the pools to be disassociated from the CPU
4393 4394
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4395
 */
L
Linus Torvalds 已提交
4396

4397
static void wq_unbind_fn(struct work_struct *work)
4398
{
4399
	int cpu = smp_processor_id();
4400
	struct worker_pool *pool;
4401
	struct worker *worker;
4402

4403
	for_each_cpu_worker_pool(pool, cpu) {
4404
		mutex_lock(&pool->attach_mutex);
4405
		spin_lock_irq(&pool->lock);
4406

4407
		/*
4408
		 * We've blocked all attach/detach operations. Make all workers
4409 4410 4411 4412 4413
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4414
		for_each_pool_worker(worker, pool)
4415
			worker->flags |= WORKER_UNBOUND;
4416

4417
		pool->flags |= POOL_DISASSOCIATED;
4418

4419
		spin_unlock_irq(&pool->lock);
4420
		mutex_unlock(&pool->attach_mutex);
4421

4422 4423 4424 4425 4426 4427 4428
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4429

4430 4431 4432 4433 4434 4435 4436 4437
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4438
		atomic_set(&pool->nr_running, 0);
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4449 4450
}

T
Tejun Heo 已提交
4451 4452 4453 4454
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4455
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4456 4457 4458
 */
static void rebind_workers(struct worker_pool *pool)
{
4459
	struct worker *worker;
T
Tejun Heo 已提交
4460

4461
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4462

4463 4464 4465 4466 4467 4468 4469
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4470
	for_each_pool_worker(worker, pool)
4471 4472
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4473

4474
	spin_lock_irq(&pool->lock);
4475
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4476

4477
	for_each_pool_worker(worker, pool) {
4478
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4479 4480

		/*
4481 4482 4483 4484 4485 4486
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4487
		 */
4488 4489
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4490

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4510
	}
4511 4512

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4513 4514
}

4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4530
	lockdep_assert_held(&pool->attach_mutex);
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4542
	for_each_pool_worker(worker, pool)
4543 4544 4545 4546
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4547 4548 4549 4550
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4551
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4552 4553
					       unsigned long action,
					       void *hcpu)
4554
{
4555
	int cpu = (unsigned long)hcpu;
4556
	struct worker_pool *pool;
4557
	struct workqueue_struct *wq;
4558
	int pi;
4559

T
Tejun Heo 已提交
4560
	switch (action & ~CPU_TASKS_FROZEN) {
4561
	case CPU_UP_PREPARE:
4562
		for_each_cpu_worker_pool(pool, cpu) {
4563 4564
			if (pool->nr_workers)
				continue;
4565
			if (!create_worker(pool))
4566
				return NOTIFY_BAD;
4567
		}
T
Tejun Heo 已提交
4568
		break;
4569

4570 4571
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4572
		mutex_lock(&wq_pool_mutex);
4573 4574

		for_each_pool(pool, pi) {
4575
			mutex_lock(&pool->attach_mutex);
4576

4577 4578 4579 4580 4581
			if (pool->cpu == cpu) {
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4582

4583
			mutex_unlock(&pool->attach_mutex);
4584
		}
4585

4586 4587 4588 4589
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4590
		mutex_unlock(&wq_pool_mutex);
4591
		break;
4592
	}
4593 4594 4595 4596 4597 4598 4599
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4600
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4601 4602 4603
						 unsigned long action,
						 void *hcpu)
{
4604
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4605
	struct work_struct unbind_work;
4606
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4607

4608 4609
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4610
		/* unbinding per-cpu workers should happen on the local CPU */
4611
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4612
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4613 4614 4615 4616 4617 4618 4619 4620

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4621
		flush_work(&unbind_work);
4622
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4623
		break;
4624 4625 4626 4627
	}
	return NOTIFY_OK;
}

4628
#ifdef CONFIG_SMP
4629

4630
struct work_for_cpu {
4631
	struct work_struct work;
4632 4633 4634 4635 4636
	long (*fn)(void *);
	void *arg;
	long ret;
};

4637
static void work_for_cpu_fn(struct work_struct *work)
4638
{
4639 4640
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4641 4642 4643 4644 4645 4646 4647 4648 4649
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4650
 * It is up to the caller to ensure that the cpu doesn't go offline.
4651
 * The caller must not hold any locks which would prevent @fn from completing.
4652 4653
 *
 * Return: The value @fn returns.
4654
 */
4655
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4656
{
4657
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4658

4659 4660
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4661
	flush_work(&wfc.work);
4662
	destroy_work_on_stack(&wfc.work);
4663 4664 4665 4666 4667
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4668 4669 4670 4671 4672
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4673
 * Start freezing workqueues.  After this function returns, all freezable
4674
 * workqueues will queue new works to their delayed_works list instead of
4675
 * pool->worklist.
4676 4677
 *
 * CONTEXT:
4678
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4679 4680 4681
 */
void freeze_workqueues_begin(void)
{
4682 4683
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4684

4685
	mutex_lock(&wq_pool_mutex);
4686

4687
	WARN_ON_ONCE(workqueue_freezing);
4688 4689
	workqueue_freezing = true;

4690
	list_for_each_entry(wq, &workqueues, list) {
4691
		mutex_lock(&wq->mutex);
4692 4693
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4694
		mutex_unlock(&wq->mutex);
4695
	}
4696

4697
	mutex_unlock(&wq_pool_mutex);
4698 4699 4700
}

/**
4701
 * freeze_workqueues_busy - are freezable workqueues still busy?
4702 4703 4704 4705 4706
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4707
 * Grabs and releases wq_pool_mutex.
4708
 *
4709
 * Return:
4710 4711
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4712 4713 4714 4715
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4716 4717
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4718

4719
	mutex_lock(&wq_pool_mutex);
4720

4721
	WARN_ON_ONCE(!workqueue_freezing);
4722

4723 4724 4725
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4726 4727 4728 4729
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4730
		rcu_read_lock_sched();
4731
		for_each_pwq(pwq, wq) {
4732
			WARN_ON_ONCE(pwq->nr_active < 0);
4733
			if (pwq->nr_active) {
4734
				busy = true;
4735
				rcu_read_unlock_sched();
4736 4737 4738
				goto out_unlock;
			}
		}
4739
		rcu_read_unlock_sched();
4740 4741
	}
out_unlock:
4742
	mutex_unlock(&wq_pool_mutex);
4743 4744 4745 4746 4747 4748 4749
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4750
 * frozen works are transferred to their respective pool worklists.
4751 4752
 *
 * CONTEXT:
4753
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4754 4755 4756
 */
void thaw_workqueues(void)
{
4757 4758
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4759

4760
	mutex_lock(&wq_pool_mutex);
4761 4762 4763 4764

	if (!workqueue_freezing)
		goto out_unlock;

4765
	workqueue_freezing = false;
4766

4767 4768
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4769
		mutex_lock(&wq->mutex);
4770 4771
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4772
		mutex_unlock(&wq->mutex);
4773 4774 4775
	}

out_unlock:
4776
	mutex_unlock(&wq_pool_mutex);
4777 4778 4779
}
#endif /* CONFIG_FREEZER */

4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4792 4793 4794 4795 4796
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4797 4798 4799
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4800 4801 4802 4803 4804 4805 4806 4807 4808
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4809 4810
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4826
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4827
{
T
Tejun Heo 已提交
4828 4829
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4830

4831 4832 4833 4834
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4835
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4836
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4837

4838 4839
	wq_numa_init();

4840
	/* initialize CPU pools */
4841
	for_each_possible_cpu(cpu) {
4842
		struct worker_pool *pool;
4843

T
Tejun Heo 已提交
4844
		i = 0;
4845
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4846
			BUG_ON(init_worker_pool(pool));
4847
			pool->cpu = cpu;
4848
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4849
			pool->attrs->nice = std_nice[i++];
4850
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4851

T
Tejun Heo 已提交
4852
			/* alloc pool ID */
4853
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4854
			BUG_ON(worker_pool_assign_id(pool));
4855
			mutex_unlock(&wq_pool_mutex);
4856
		}
4857 4858
	}

4859
	/* create the initial worker */
4860
	for_each_online_cpu(cpu) {
4861
		struct worker_pool *pool;
4862

4863
		for_each_cpu_worker_pool(pool, cpu) {
4864
			pool->flags &= ~POOL_DISASSOCIATED;
4865
			BUG_ON(!create_worker(pool));
4866
		}
4867 4868
	}

4869
	/* create default unbound and ordered wq attrs */
4870 4871 4872 4873 4874 4875
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
4886 4887
	}

4888
	system_wq = alloc_workqueue("events", 0, 0);
4889
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4890
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4891 4892
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4893 4894
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4895 4896 4897 4898 4899
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
4900
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4901 4902 4903
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
4904
	return 0;
L
Linus Torvalds 已提交
4905
}
4906
early_initcall(init_workqueues);