workqueue.c 103.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125
struct worker_pool {
126
	spinlock_t		lock;		/* the pool lock */
127
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
128
	int			id;		/* I: pool ID */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141 142 143 144
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

145
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146
	struct ida		worker_ida;	/* L: for worker IDs */
147 148 149 150 151 152 153

	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
154 155
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
156
/*
157 158 159 160
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
161
 */
162
struct pool_workqueue {
163
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
164
	struct workqueue_struct *wq;		/* I: the owning workqueue */
165 166 167 168
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
169
	int			nr_active;	/* L: nr of active works */
170
	int			max_active;	/* L: max active works */
171
	struct list_head	delayed_works;	/* L: delayed works */
172
	struct list_head	pwqs_node;	/* I: node on wq->pwqs */
173
	struct list_head	mayday_node;	/* W: node on wq->maydays */
174
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
175

176 177 178 179 180 181 182 183 184
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

L
Linus Torvalds 已提交
185 186 187 188 189
/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
190
	unsigned int		flags;		/* W: WQ_* flags */
191
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
192
	struct list_head	pwqs;		/* I: all pwqs of this wq */
T
Tejun Heo 已提交
193
	struct list_head	list;		/* W: list of all workqueues */
194 195 196 197

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
198
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
199 200 201 202
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

203
	struct list_head	maydays;	/* W: pwqs requesting rescue */
204 205
	struct worker		*rescuer;	/* I: rescue worker */

206
	int			nr_drainers;	/* W: drain in progress */
207
	int			saved_max_active; /* W: saved pwq max_active */
208
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
209
	struct lockdep_map	lockdep_map;
210
#endif
211
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
212 213
};

214 215
static struct kmem_cache *pwq_cache;

216 217
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
218
struct workqueue_struct *system_highpri_wq __read_mostly;
219
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
220
struct workqueue_struct *system_long_wq __read_mostly;
221
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
222
struct workqueue_struct *system_unbound_wq __read_mostly;
223
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
224
struct workqueue_struct *system_freezable_wq __read_mostly;
225
EXPORT_SYMBOL_GPL(system_freezable_wq);
226

227 228 229
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

230
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
231 232
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
233

234 235
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
236

237 238
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
239 240 241 242 243 244 245 246 247 248
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
249
	return WORK_CPU_END;
250 251
}

252 253 254
/*
 * CPU iterators
 *
255
 * An extra cpu number is defined using an invalid cpu number
256
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
257 258
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
259
 *
260 261
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
262
 */
263 264
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
265
	     (cpu) < WORK_CPU_END;					\
266
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
267

268 269
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
270
	     (cpu) < WORK_CPU_END;					\
271
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
272

T
Tejun Heo 已提交
273 274 275 276 277 278 279 280
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
 * @id: integer used for iteration
 */
#define for_each_pool(pool, id)						\
	idr_for_each_entry(&worker_pool_idr, pool, id)

281 282 283 284 285 286 287
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
 */
#define for_each_pwq(pwq, wq)						\
	list_for_each_entry((pwq), &(wq)->pwqs, pwqs_node)
288

289 290 291 292
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

293 294 295 296 297
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
333
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
369
	.debug_hint	= work_debug_hint,
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

405 406
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
407
static LIST_HEAD(workqueues);
408
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
409

410
/*
411 412
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
413
 */
414 415
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_std_worker_pools);
T
Tejun Heo 已提交
416
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
417

T
Tejun Heo 已提交
418 419 420 421
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
422
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
423

T
Tejun Heo 已提交
424
static struct worker_pool *std_worker_pools(int cpu)
425
{
426
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
427
		return per_cpu(cpu_std_worker_pools, cpu);
428
	else
T
Tejun Heo 已提交
429
		return unbound_std_worker_pools;
430 431
}

T
Tejun Heo 已提交
432 433
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
434
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
435 436
}

T
Tejun Heo 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

450 451 452 453 454 455 456 457 458
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

459 460
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
461
	struct worker_pool *pools = std_worker_pools(cpu);
462

T
Tejun Heo 已提交
463
	return &pools[highpri];
464 465
}

466
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
467
{
468
	return list_first_entry(&wq->pwqs, struct pool_workqueue, pwqs_node);
469 470
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
486

487
/*
488 489
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
490
 * is cleared and the high bits contain OFFQ flags and pool ID.
491
 *
492 493
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
494 495
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
496
 *
497
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
498
 * corresponding to a work.  Pool is available once the work has been
499
 * queued anywhere after initialization until it is sync canceled.  pwq is
500
 * available only while the work item is queued.
501
 *
502 503 504 505
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
506
 */
507 508
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
509
{
510
	WARN_ON_ONCE(!work_pending(work));
511 512
	atomic_long_set(&work->data, data | flags | work_static(work));
}
513

514
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
515 516
			 unsigned long extra_flags)
{
517 518
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
519 520
}

521 522 523 524 525 526 527
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

528 529
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
530
{
531 532 533 534 535 536 537
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
538
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
539
}
540

541
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
542
{
543 544
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
545 546
}

547
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
548
{
549
	unsigned long data = atomic_long_read(&work->data);
550

551
	if (data & WORK_STRUCT_PWQ)
552 553 554
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
555 556
}

557 558 559 560 561 562 563
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
564
{
565
	unsigned long data = atomic_long_read(&work->data);
566 567
	struct worker_pool *pool;
	int pool_id;
568

569 570
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
571
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
572

573 574
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
575 576
		return NULL;

577 578 579 580 581 582 583 584 585 586 587 588 589 590
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
591 592
	unsigned long data = atomic_long_read(&work->data);

593 594
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
595
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
596

597
	return data >> WORK_OFFQ_POOL_SHIFT;
598 599
}

600 601
static void mark_work_canceling(struct work_struct *work)
{
602
	unsigned long pool_id = get_work_pool_id(work);
603

604 605
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
606 607 608 609 610 611
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

612
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
613 614
}

615
/*
616 617
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
618
 * they're being called with pool->lock held.
619 620
 */

621
static bool __need_more_worker(struct worker_pool *pool)
622
{
623
	return !atomic_read(&pool->nr_running);
624 625
}

626
/*
627 628
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
629 630
 *
 * Note that, because unbound workers never contribute to nr_running, this
631
 * function will always return %true for unbound pools as long as the
632
 * worklist isn't empty.
633
 */
634
static bool need_more_worker(struct worker_pool *pool)
635
{
636
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
637
}
638

639
/* Can I start working?  Called from busy but !running workers. */
640
static bool may_start_working(struct worker_pool *pool)
641
{
642
	return pool->nr_idle;
643 644 645
}

/* Do I need to keep working?  Called from currently running workers. */
646
static bool keep_working(struct worker_pool *pool)
647
{
648 649
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
650 651 652
}

/* Do we need a new worker?  Called from manager. */
653
static bool need_to_create_worker(struct worker_pool *pool)
654
{
655
	return need_more_worker(pool) && !may_start_working(pool);
656
}
657

658
/* Do I need to be the manager? */
659
static bool need_to_manage_workers(struct worker_pool *pool)
660
{
661
	return need_to_create_worker(pool) ||
662
		(pool->flags & POOL_MANAGE_WORKERS);
663 664 665
}

/* Do we have too many workers and should some go away? */
666
static bool too_many_workers(struct worker_pool *pool)
667
{
668
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
669 670
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
671

672 673 674 675 676 677 678
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

679
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
680 681
}

682
/*
683 684 685
 * Wake up functions.
 */

686
/* Return the first worker.  Safe with preemption disabled */
687
static struct worker *first_worker(struct worker_pool *pool)
688
{
689
	if (unlikely(list_empty(&pool->idle_list)))
690 691
		return NULL;

692
	return list_first_entry(&pool->idle_list, struct worker, entry);
693 694 695 696
}

/**
 * wake_up_worker - wake up an idle worker
697
 * @pool: worker pool to wake worker from
698
 *
699
 * Wake up the first idle worker of @pool.
700 701
 *
 * CONTEXT:
702
 * spin_lock_irq(pool->lock).
703
 */
704
static void wake_up_worker(struct worker_pool *pool)
705
{
706
	struct worker *worker = first_worker(pool);
707 708 709 710 711

	if (likely(worker))
		wake_up_process(worker->task);
}

712
/**
713 714 715 716 717 718 719 720 721 722
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
723
void wq_worker_waking_up(struct task_struct *task, int cpu)
724 725 726
{
	struct worker *worker = kthread_data(task);

727
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
728
		WARN_ON_ONCE(worker->pool->cpu != cpu);
729
		atomic_inc(&worker->pool->nr_running);
730
	}
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
748
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
749 750
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
751
	struct worker_pool *pool;
752

753 754 755 756 757
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
758
	if (worker->flags & WORKER_NOT_RUNNING)
759 760
		return NULL;

761 762
	pool = worker->pool;

763
	/* this can only happen on the local cpu */
764 765
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
766 767 768 769 770 771

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
772 773 774
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
775
	 * manipulating idle_list, so dereferencing idle_list without pool
776
	 * lock is safe.
777
	 */
778 779
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
780
		to_wakeup = first_worker(pool);
781 782 783 784 785
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
786
 * @worker: self
787 788 789
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
790 791 792
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
793
 *
794
 * CONTEXT:
795
 * spin_lock_irq(pool->lock)
796 797 798 799
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
800
	struct worker_pool *pool = worker->pool;
801

802 803
	WARN_ON_ONCE(worker->task != current);

804 805 806 807 808 809 810 811
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
812
			if (atomic_dec_and_test(&pool->nr_running) &&
813
			    !list_empty(&pool->worklist))
814
				wake_up_worker(pool);
815
		} else
816
			atomic_dec(&pool->nr_running);
817 818
	}

819 820 821 822
	worker->flags |= flags;
}

/**
823
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
824
 * @worker: self
825 826
 * @flags: flags to clear
 *
827
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
828
 *
829
 * CONTEXT:
830
 * spin_lock_irq(pool->lock)
831 832 833
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
834
	struct worker_pool *pool = worker->pool;
835 836
	unsigned int oflags = worker->flags;

837 838
	WARN_ON_ONCE(worker->task != current);

839
	worker->flags &= ~flags;
840

841 842 843 844 845
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
846 847
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
848
			atomic_inc(&pool->nr_running);
849 850
}

851 852
/**
 * find_worker_executing_work - find worker which is executing a work
853
 * @pool: pool of interest
854 855
 * @work: work to find worker for
 *
856 857
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
877 878
 *
 * CONTEXT:
879
 * spin_lock_irq(pool->lock).
880 881 882 883
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
884
 */
885
static struct worker *find_worker_executing_work(struct worker_pool *pool,
886
						 struct work_struct *work)
887
{
888 889
	struct worker *worker;

890
	hash_for_each_possible(pool->busy_hash, worker, hentry,
891 892 893
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
894 895 896
			return worker;

	return NULL;
897 898
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
914
 * spin_lock_irq(pool->lock).
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

940
static void pwq_activate_delayed_work(struct work_struct *work)
941
{
942
	struct pool_workqueue *pwq = get_work_pwq(work);
943 944

	trace_workqueue_activate_work(work);
945
	move_linked_works(work, &pwq->pool->worklist, NULL);
946
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
947
	pwq->nr_active++;
948 949
}

950
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
951
{
952
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
953 954
						    struct work_struct, entry);

955
	pwq_activate_delayed_work(work);
956 957
}

958
/**
959 960
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
961 962 963
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
964
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
965 966
 *
 * CONTEXT:
967
 * spin_lock_irq(pool->lock).
968
 */
969
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
970 971 972 973 974
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

975
	pwq->nr_in_flight[color]--;
976

977 978
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
979
		/* one down, submit a delayed one */
980 981
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
982 983 984
	}

	/* is flush in progress and are we at the flushing tip? */
985
	if (likely(pwq->flush_color != color))
986 987 988
		return;

	/* are there still in-flight works? */
989
	if (pwq->nr_in_flight[color])
990 991
		return;

992 993
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
994 995

	/*
996
	 * If this was the last pwq, wake up the first flusher.  It
997 998
	 * will handle the rest.
	 */
999 1000
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
1001 1002
}

1003
/**
1004
 * try_to_grab_pending - steal work item from worklist and disable irq
1005 1006
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1007
 * @flags: place to store irq state
1008 1009 1010 1011 1012 1013 1014
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1015 1016
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1017
 *
1018
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1019 1020 1021
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1022 1023 1024 1025
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1026
 * This function is safe to call from any context including IRQ handler.
1027
 */
1028 1029
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1030
{
1031
	struct worker_pool *pool;
1032
	struct pool_workqueue *pwq;
1033

1034 1035
	local_irq_save(*flags);

1036 1037 1038 1039
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1040 1041 1042 1043 1044
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1045 1046 1047 1048 1049
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1050 1051 1052 1053 1054 1055 1056
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1057 1058
	pool = get_work_pool(work);
	if (!pool)
1059
		goto fail;
1060

1061
	spin_lock(&pool->lock);
1062
	/*
1063 1064 1065 1066 1067
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1068 1069
	 * item is currently queued on that pool.
	 */
1070 1071
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1072 1073 1074 1075 1076
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1077
		 * on the delayed_list, will confuse pwq->nr_active
1078 1079 1080 1081
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1082
			pwq_activate_delayed_work(work);
1083 1084

		list_del_init(&work->entry);
1085
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1086

1087
		/* work->data points to pwq iff queued, point to pool */
1088 1089 1090 1091
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1092
	}
1093
	spin_unlock(&pool->lock);
1094 1095 1096 1097 1098
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1099
	return -EAGAIN;
1100 1101
}

T
Tejun Heo 已提交
1102
/**
1103
 * insert_work - insert a work into a pool
1104
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1105 1106 1107 1108
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1109
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1110
 * work_struct flags.
T
Tejun Heo 已提交
1111 1112
 *
 * CONTEXT:
1113
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1114
 */
1115 1116
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1117
{
1118
	struct worker_pool *pool = pwq->pool;
1119

T
Tejun Heo 已提交
1120
	/* we own @work, set data and link */
1121
	set_work_pwq(work, pwq, extra_flags);
1122
	list_add_tail(&work->entry, head);
1123 1124 1125 1126 1127 1128 1129 1130

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1131 1132
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1133 1134
}

1135 1136
/*
 * Test whether @work is being queued from another work executing on the
1137
 * same workqueue.
1138 1139 1140
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1141 1142 1143 1144 1145 1146 1147
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1148
	return worker && worker->current_pwq->wq == wq;
1149 1150
}

1151
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1152 1153
			 struct work_struct *work)
{
1154
	struct pool_workqueue *pwq;
1155
	struct list_head *worklist;
1156
	unsigned int work_flags;
1157
	unsigned int req_cpu = cpu;
1158 1159 1160 1161 1162 1163 1164 1165

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1166

1167
	debug_work_activate(work);
1168

1169
	/* if dying, only works from the same workqueue are allowed */
1170
	if (unlikely(wq->flags & WQ_DRAINING) &&
1171
	    WARN_ON_ONCE(!is_chained_work(wq)))
1172 1173
		return;

1174
	/* determine the pwq to use */
1175
	if (!(wq->flags & WQ_UNBOUND)) {
1176
		struct worker_pool *last_pool;
1177

1178
		if (cpu == WORK_CPU_UNBOUND)
1179 1180
			cpu = raw_smp_processor_id();

1181
		/*
1182 1183 1184 1185
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1186
		 */
1187
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1188
		last_pool = get_work_pool(work);
1189

1190
		if (last_pool && last_pool != pwq->pool) {
1191 1192
			struct worker *worker;

1193
			spin_lock(&last_pool->lock);
1194

1195
			worker = find_worker_executing_work(last_pool, work);
1196

1197
			if (worker && worker->current_pwq->wq == wq) {
1198
				pwq = per_cpu_ptr(wq->cpu_pwqs, last_pool->cpu);
1199
			} else {
1200
				/* meh... not running there, queue here */
1201
				spin_unlock(&last_pool->lock);
1202
				spin_lock(&pwq->pool->lock);
1203
			}
1204
		} else {
1205
			spin_lock(&pwq->pool->lock);
1206
		}
1207
	} else {
1208
		pwq = first_pwq(wq);
1209
		spin_lock(&pwq->pool->lock);
1210 1211
	}

1212 1213
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1214

1215
	if (WARN_ON(!list_empty(&work->entry))) {
1216
		spin_unlock(&pwq->pool->lock);
1217 1218
		return;
	}
1219

1220 1221
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1222

1223
	if (likely(pwq->nr_active < pwq->max_active)) {
1224
		trace_workqueue_activate_work(work);
1225 1226
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1227 1228
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1229
		worklist = &pwq->delayed_works;
1230
	}
1231

1232
	insert_work(pwq, work, worklist, work_flags);
1233

1234
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1235 1236
}

1237
/**
1238 1239
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1240 1241 1242
 * @wq: workqueue to use
 * @work: work to queue
 *
1243
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1244
 *
1245 1246
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1247
 */
1248 1249
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1250
{
1251
	bool ret = false;
1252
	unsigned long flags;
1253

1254
	local_irq_save(flags);
1255

1256
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1257
		__queue_work(cpu, wq, work);
1258
		ret = true;
1259
	}
1260

1261
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1262 1263
	return ret;
}
1264
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1265

1266
/**
1267
 * queue_work - queue work on a workqueue
1268 1269 1270
 * @wq: workqueue to use
 * @work: work to queue
 *
1271
 * Returns %false if @work was already on a queue, %true otherwise.
1272
 *
1273 1274
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1275
 */
1276
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1277
{
1278
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1279
}
1280
EXPORT_SYMBOL_GPL(queue_work);
1281

1282
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1283
{
1284
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1285

1286
	/* should have been called from irqsafe timer with irq already off */
1287
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1288
}
1289
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1290

1291 1292
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1293
{
1294 1295 1296 1297 1298
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1299 1300
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1313
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1314

1315
	dwork->wq = wq;
1316
	dwork->cpu = cpu;
1317 1318 1319 1320 1321 1322
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1323 1324
}

1325 1326 1327 1328
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1329
 * @dwork: work to queue
1330 1331
 * @delay: number of jiffies to wait before queueing
 *
1332 1333 1334
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1335
 */
1336 1337
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1338
{
1339
	struct work_struct *work = &dwork->work;
1340
	bool ret = false;
1341
	unsigned long flags;
1342

1343 1344
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1345

1346
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1347
		__queue_delayed_work(cpu, wq, dwork, delay);
1348
		ret = true;
1349
	}
1350

1351
	local_irq_restore(flags);
1352 1353
	return ret;
}
1354
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1355

1356 1357 1358 1359 1360 1361
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1362
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1363
 */
1364
bool queue_delayed_work(struct workqueue_struct *wq,
1365 1366
			struct delayed_work *dwork, unsigned long delay)
{
1367
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1368 1369
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1386
 * This function is safe to call from any context including IRQ handler.
1387 1388 1389 1390 1391 1392 1393
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1394

1395 1396 1397
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1398

1399 1400 1401
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1402
	}
1403 1404

	/* -ENOENT from try_to_grab_pending() becomes %true */
1405 1406
	return ret;
}
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1423

T
Tejun Heo 已提交
1424 1425 1426 1427 1428 1429 1430 1431
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1432
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1433 1434
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1435
{
1436
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1437

1438 1439 1440 1441
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1442

1443 1444
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1445
	pool->nr_idle++;
1446
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1447 1448

	/* idle_list is LIFO */
1449
	list_add(&worker->entry, &pool->idle_list);
1450

1451 1452
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1453

1454
	/*
1455
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1456
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1457 1458
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1459
	 */
1460
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1461
		     pool->nr_workers == pool->nr_idle &&
1462
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1472
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1473 1474 1475
 */
static void worker_leave_idle(struct worker *worker)
{
1476
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1477

1478 1479
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1480
	worker_clr_flags(worker, WORKER_IDLE);
1481
	pool->nr_idle--;
T
Tejun Heo 已提交
1482 1483 1484
	list_del_init(&worker->entry);
}

1485
/**
1486 1487 1488 1489
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1490 1491 1492 1493 1494 1495
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1496
 * This function is to be used by unbound workers and rescuers to bind
1497 1498 1499
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1500
 * verbatim as it's best effort and blocking and pool may be
1501 1502
 * [dis]associated in the meantime.
 *
1503
 * This function tries set_cpus_allowed() and locks pool and verifies the
1504
 * binding against %POOL_DISASSOCIATED which is set during
1505 1506 1507
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1508 1509
 *
 * CONTEXT:
1510
 * Might sleep.  Called without any lock but returns with pool->lock
1511 1512 1513
 * held.
 *
 * RETURNS:
1514
 * %true if the associated pool is online (@worker is successfully
1515 1516
 * bound), %false if offline.
 */
1517
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1518
__acquires(&pool->lock)
1519 1520
{
	while (true) {
1521
		/*
1522 1523 1524
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1525
		 * against POOL_DISASSOCIATED.
1526
		 */
1527
		if (!(pool->flags & POOL_DISASSOCIATED))
1528
			set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
1529

1530
		spin_lock_irq(&pool->lock);
1531
		if (pool->flags & POOL_DISASSOCIATED)
1532
			return false;
1533
		if (task_cpu(current) == pool->cpu &&
1534
		    cpumask_equal(&current->cpus_allowed,
1535
				  get_cpu_mask(pool->cpu)))
1536
			return true;
1537
		spin_unlock_irq(&pool->lock);
1538

1539 1540 1541 1542 1543 1544
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1545
		cpu_relax();
1546
		cond_resched();
1547 1548 1549
	}
}

1550
/*
1551
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1552
 * list_empty(@worker->entry) before leaving idle and call this function.
1553 1554 1555
 */
static void idle_worker_rebind(struct worker *worker)
{
1556
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1557
	if (worker_maybe_bind_and_lock(worker->pool))
1558
		worker_clr_flags(worker, WORKER_UNBOUND);
1559

1560 1561
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1562
	spin_unlock_irq(&worker->pool->lock);
1563 1564
}

1565
/*
1566
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1567 1568 1569
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1570
 */
1571
static void busy_worker_rebind_fn(struct work_struct *work)
1572 1573 1574
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1575
	if (worker_maybe_bind_and_lock(worker->pool))
1576
		worker_clr_flags(worker, WORKER_UNBOUND);
1577

1578
	spin_unlock_irq(&worker->pool->lock);
1579 1580
}

1581
/**
1582 1583
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1584
 *
1585
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1586 1587
 * is different for idle and busy ones.
 *
1588 1589 1590 1591
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1592
 *
1593 1594 1595 1596
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1597
 *
1598 1599 1600 1601
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1602
 */
1603
static void rebind_workers(struct worker_pool *pool)
1604
{
1605
	struct worker *worker, *n;
1606 1607
	int i;

1608 1609
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1610

1611
	/* dequeue and kick idle ones */
1612 1613 1614 1615 1616 1617
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1618

1619 1620 1621 1622 1623 1624
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1625

1626
	/* rebind busy workers */
1627
	for_each_busy_worker(worker, i, pool) {
1628 1629
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1630

1631 1632 1633
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1634

1635
		debug_work_activate(rebind_work);
1636

1637 1638
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1639
		 * and @pwq->pool consistent for sanity.
1640 1641 1642 1643 1644 1645
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

1646
		insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1647 1648
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1649
	}
1650 1651
}

T
Tejun Heo 已提交
1652 1653 1654 1655 1656
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1657 1658
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1659
		INIT_LIST_HEAD(&worker->scheduled);
1660
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1661 1662
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1663
	}
T
Tejun Heo 已提交
1664 1665 1666 1667 1668
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1669
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1670
 *
1671
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1681
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1682
{
1683
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1684
	struct worker *worker = NULL;
1685
	int id = -1;
T
Tejun Heo 已提交
1686

1687
	spin_lock_irq(&pool->lock);
1688
	while (ida_get_new(&pool->worker_ida, &id)) {
1689
		spin_unlock_irq(&pool->lock);
1690
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1691
			goto fail;
1692
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1693
	}
1694
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1695 1696 1697 1698 1699

	worker = alloc_worker();
	if (!worker)
		goto fail;

1700
	worker->pool = pool;
T
Tejun Heo 已提交
1701 1702
	worker->id = id;

1703
	if (pool->cpu != WORK_CPU_UNBOUND)
1704
		worker->task = kthread_create_on_node(worker_thread,
1705
					worker, cpu_to_node(pool->cpu),
1706
					"kworker/%d:%d%s", pool->cpu, id, pri);
1707 1708
	else
		worker->task = kthread_create(worker_thread, worker,
1709
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1710 1711 1712
	if (IS_ERR(worker->task))
		goto fail;

1713
	if (std_worker_pool_pri(pool))
1714 1715
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1716
	/*
1717
	 * Determine CPU binding of the new worker depending on
1718
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1719 1720 1721 1722 1723
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1724
	 */
1725
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1726
		kthread_bind(worker->task, pool->cpu);
1727
	} else {
1728
		worker->task->flags |= PF_THREAD_BOUND;
1729
		worker->flags |= WORKER_UNBOUND;
1730
	}
T
Tejun Heo 已提交
1731 1732 1733 1734

	return worker;
fail:
	if (id >= 0) {
1735
		spin_lock_irq(&pool->lock);
1736
		ida_remove(&pool->worker_ida, id);
1737
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1747
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1748 1749
 *
 * CONTEXT:
1750
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1751 1752 1753
 */
static void start_worker(struct worker *worker)
{
1754
	worker->flags |= WORKER_STARTED;
1755
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1756
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1757 1758 1759 1760 1761 1762 1763
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1764
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1765 1766
 *
 * CONTEXT:
1767
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1768 1769 1770
 */
static void destroy_worker(struct worker *worker)
{
1771
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1772 1773 1774
	int id = worker->id;

	/* sanity check frenzy */
1775 1776 1777
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1778

T
Tejun Heo 已提交
1779
	if (worker->flags & WORKER_STARTED)
1780
		pool->nr_workers--;
T
Tejun Heo 已提交
1781
	if (worker->flags & WORKER_IDLE)
1782
		pool->nr_idle--;
T
Tejun Heo 已提交
1783 1784

	list_del_init(&worker->entry);
1785
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1786

1787
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1788

T
Tejun Heo 已提交
1789 1790 1791
	kthread_stop(worker->task);
	kfree(worker);

1792
	spin_lock_irq(&pool->lock);
1793
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1794 1795
}

1796
static void idle_worker_timeout(unsigned long __pool)
1797
{
1798
	struct worker_pool *pool = (void *)__pool;
1799

1800
	spin_lock_irq(&pool->lock);
1801

1802
	if (too_many_workers(pool)) {
1803 1804 1805 1806
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1807
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1808 1809 1810
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1811
			mod_timer(&pool->idle_timer, expires);
1812 1813
		else {
			/* it's been idle for too long, wake up manager */
1814
			pool->flags |= POOL_MANAGE_WORKERS;
1815
			wake_up_worker(pool);
1816
		}
1817 1818
	}

1819
	spin_unlock_irq(&pool->lock);
1820
}
1821

1822
static void send_mayday(struct work_struct *work)
1823
{
1824 1825
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1826 1827

	lockdep_assert_held(&workqueue_lock);
1828 1829

	if (!(wq->flags & WQ_RESCUER))
1830
		return;
1831 1832

	/* mayday mayday mayday */
1833 1834
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1835
		wake_up_process(wq->rescuer->task);
1836
	}
1837 1838
}

1839
static void pool_mayday_timeout(unsigned long __pool)
1840
{
1841
	struct worker_pool *pool = (void *)__pool;
1842 1843
	struct work_struct *work;

1844 1845
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1846

1847
	if (need_to_create_worker(pool)) {
1848 1849 1850 1851 1852 1853
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1854
		list_for_each_entry(work, &pool->worklist, entry)
1855
			send_mayday(work);
L
Linus Torvalds 已提交
1856
	}
1857

1858 1859
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1860

1861
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1862 1863
}

1864 1865
/**
 * maybe_create_worker - create a new worker if necessary
1866
 * @pool: pool to create a new worker for
1867
 *
1868
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1869 1870
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1871
 * sent to all rescuers with works scheduled on @pool to resolve
1872 1873 1874 1875 1876 1877
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1878
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1879 1880 1881 1882
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1883
 * false if no action was taken and pool->lock stayed locked, true
1884 1885
 * otherwise.
 */
1886
static bool maybe_create_worker(struct worker_pool *pool)
1887 1888
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1889
{
1890
	if (!need_to_create_worker(pool))
1891 1892
		return false;
restart:
1893
	spin_unlock_irq(&pool->lock);
1894

1895
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1896
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1897 1898 1899 1900

	while (true) {
		struct worker *worker;

1901
		worker = create_worker(pool);
1902
		if (worker) {
1903
			del_timer_sync(&pool->mayday_timer);
1904
			spin_lock_irq(&pool->lock);
1905
			start_worker(worker);
1906 1907
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1908 1909 1910
			return true;
		}

1911
		if (!need_to_create_worker(pool))
1912
			break;
L
Linus Torvalds 已提交
1913

1914 1915
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1916

1917
		if (!need_to_create_worker(pool))
1918 1919 1920
			break;
	}

1921
	del_timer_sync(&pool->mayday_timer);
1922
	spin_lock_irq(&pool->lock);
1923
	if (need_to_create_worker(pool))
1924 1925 1926 1927 1928 1929
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1930
 * @pool: pool to destroy workers for
1931
 *
1932
 * Destroy @pool workers which have been idle for longer than
1933 1934 1935
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1936
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1937 1938 1939
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1940
 * false if no action was taken and pool->lock stayed locked, true
1941 1942
 * otherwise.
 */
1943
static bool maybe_destroy_workers(struct worker_pool *pool)
1944 1945
{
	bool ret = false;
L
Linus Torvalds 已提交
1946

1947
	while (too_many_workers(pool)) {
1948 1949
		struct worker *worker;
		unsigned long expires;
1950

1951
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1952
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1953

1954
		if (time_before(jiffies, expires)) {
1955
			mod_timer(&pool->idle_timer, expires);
1956
			break;
1957
		}
L
Linus Torvalds 已提交
1958

1959 1960
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1961
	}
1962

1963
	return ret;
1964 1965
}

1966
/**
1967 1968
 * manage_workers - manage worker pool
 * @worker: self
1969
 *
1970
 * Assume the manager role and manage the worker pool @worker belongs
1971
 * to.  At any given time, there can be only zero or one manager per
1972
 * pool.  The exclusion is handled automatically by this function.
1973 1974 1975 1976
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1977 1978
 *
 * CONTEXT:
1979
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1980 1981 1982
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
1983 1984
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
1985
 */
1986
static bool manage_workers(struct worker *worker)
1987
{
1988
	struct worker_pool *pool = worker->pool;
1989
	bool ret = false;
1990

1991
	if (pool->flags & POOL_MANAGING_WORKERS)
1992
		return ret;
1993

1994
	pool->flags |= POOL_MANAGING_WORKERS;
1995

1996 1997 1998 1999 2000 2001
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2002
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2003 2004
	 * manager against CPU hotplug.
	 *
2005
	 * assoc_mutex would always be free unless CPU hotplug is in
2006
	 * progress.  trylock first without dropping @pool->lock.
2007
	 */
2008
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2009
		spin_unlock_irq(&pool->lock);
2010
		mutex_lock(&pool->assoc_mutex);
2011 2012
		/*
		 * CPU hotplug could have happened while we were waiting
2013
		 * for assoc_mutex.  Hotplug itself can't handle us
2014
		 * because manager isn't either on idle or busy list, and
2015
		 * @pool's state and ours could have deviated.
2016
		 *
2017
		 * As hotplug is now excluded via assoc_mutex, we can
2018
		 * simply try to bind.  It will succeed or fail depending
2019
		 * on @pool's current state.  Try it and adjust
2020 2021
		 * %WORKER_UNBOUND accordingly.
		 */
2022
		if (worker_maybe_bind_and_lock(pool))
2023 2024 2025
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2026

2027 2028
		ret = true;
	}
2029

2030
	pool->flags &= ~POOL_MANAGE_WORKERS;
2031 2032

	/*
2033 2034
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2035
	 */
2036 2037
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2038

2039
	pool->flags &= ~POOL_MANAGING_WORKERS;
2040
	mutex_unlock(&pool->assoc_mutex);
2041
	return ret;
2042 2043
}

2044 2045
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2046
 * @worker: self
2047 2048 2049 2050 2051 2052 2053 2054 2055
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2056
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2057
 */
T
Tejun Heo 已提交
2058
static void process_one_work(struct worker *worker, struct work_struct *work)
2059 2060
__releases(&pool->lock)
__acquires(&pool->lock)
2061
{
2062
	struct pool_workqueue *pwq = get_work_pwq(work);
2063
	struct worker_pool *pool = worker->pool;
2064
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2065
	int work_color;
2066
	struct worker *collision;
2067 2068 2069 2070 2071 2072 2073 2074
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2075 2076 2077
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2078
#endif
2079 2080 2081
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2082
	 * unbound or a disassociated pool.
2083
	 */
2084
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2085
		     !(pool->flags & POOL_DISASSOCIATED) &&
2086
		     raw_smp_processor_id() != pool->cpu);
2087

2088 2089 2090 2091 2092 2093
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2094
	collision = find_worker_executing_work(pool, work);
2095 2096 2097 2098 2099
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2100
	/* claim and dequeue */
2101
	debug_work_deactivate(work);
2102
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2103
	worker->current_work = work;
2104
	worker->current_func = work->func;
2105
	worker->current_pwq = pwq;
2106
	work_color = get_work_color(work);
2107

2108 2109
	list_del_init(&work->entry);

2110 2111 2112 2113 2114 2115 2116
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2117
	/*
2118
	 * Unbound pool isn't concurrency managed and work items should be
2119 2120
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2121 2122
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2123

2124
	/*
2125
	 * Record the last pool and clear PENDING which should be the last
2126
	 * update to @work.  Also, do this inside @pool->lock so that
2127 2128
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2129
	 */
2130
	set_work_pool_and_clear_pending(work, pool->id);
2131

2132
	spin_unlock_irq(&pool->lock);
2133

2134
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2135
	lock_map_acquire(&lockdep_map);
2136
	trace_workqueue_execute_start(work);
2137
	worker->current_func(work);
2138 2139 2140 2141 2142
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2143
	lock_map_release(&lockdep_map);
2144
	lock_map_release(&pwq->wq->lockdep_map);
2145 2146

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2147 2148
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2149 2150
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2151 2152 2153 2154
		debug_show_held_locks(current);
		dump_stack();
	}

2155
	spin_lock_irq(&pool->lock);
2156

2157 2158 2159 2160
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2161
	/* we're done with it, release */
2162
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2163
	worker->current_work = NULL;
2164
	worker->current_func = NULL;
2165 2166
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2167 2168
}

2169 2170 2171 2172 2173 2174 2175 2176 2177
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2178
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2179 2180 2181
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2182
{
2183 2184
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2185
						struct work_struct, entry);
T
Tejun Heo 已提交
2186
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2187 2188 2189
	}
}

T
Tejun Heo 已提交
2190 2191
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2192
 * @__worker: self
T
Tejun Heo 已提交
2193
 *
2194 2195
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2196 2197 2198
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2199
 */
T
Tejun Heo 已提交
2200
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2201
{
T
Tejun Heo 已提交
2202
	struct worker *worker = __worker;
2203
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2204

2205 2206
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2207
woke_up:
2208
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2209

2210 2211
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2212
		spin_unlock_irq(&pool->lock);
2213

2214
		/* if DIE is set, destruction is requested */
2215 2216 2217 2218 2219
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2220
		/* otherwise, rebind */
2221 2222
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2223
	}
2224

T
Tejun Heo 已提交
2225
	worker_leave_idle(worker);
2226
recheck:
2227
	/* no more worker necessary? */
2228
	if (!need_more_worker(pool))
2229 2230 2231
		goto sleep;

	/* do we need to manage? */
2232
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2233 2234
		goto recheck;

T
Tejun Heo 已提交
2235 2236 2237 2238 2239
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2240
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2241

2242 2243 2244 2245 2246 2247 2248 2249
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2250
		struct work_struct *work =
2251
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2252 2253 2254 2255 2256 2257
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2258
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2259 2260 2261
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2262
		}
2263
	} while (keep_working(pool));
2264 2265

	worker_set_flags(worker, WORKER_PREP, false);
2266
sleep:
2267
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2268
		goto recheck;
2269

T
Tejun Heo 已提交
2270
	/*
2271 2272 2273 2274 2275
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2276 2277 2278
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2279
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2280 2281
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2282 2283
}

2284 2285
/**
 * rescuer_thread - the rescuer thread function
2286
 * @__rescuer: self
2287 2288 2289 2290
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2291
 * Regular work processing on a pool may block trying to create a new
2292 2293 2294 2295 2296
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2297 2298
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2299 2300 2301 2302
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2303
static int rescuer_thread(void *__rescuer)
2304
{
2305 2306
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2307 2308 2309
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2310 2311 2312 2313 2314 2315

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2316 2317 2318
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2319 2320
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2321
		rescuer->task->flags &= ~PF_WQ_WORKER;
2322
		return 0;
2323
	}
2324

2325 2326 2327 2328 2329 2330
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2331
		struct worker_pool *pool = pwq->pool;
2332 2333 2334
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2335 2336 2337
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2338 2339

		/* migrate to the target cpu if possible */
2340
		worker_maybe_bind_and_lock(pool);
2341
		rescuer->pool = pool;
2342 2343 2344 2345 2346

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2347
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2348
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2349
			if (get_work_pwq(work) == pwq)
2350 2351 2352
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2353 2354

		/*
2355
		 * Leave this pool.  If keep_working() is %true, notify a
2356 2357 2358
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2359 2360
		if (keep_working(pool))
			wake_up_worker(pool);
2361

2362
		rescuer->pool = NULL;
2363 2364
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2365 2366
	}

2367 2368
	spin_unlock_irq(&workqueue_lock);

2369 2370
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2371 2372
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2373 2374
}

O
Oleg Nesterov 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2386 2387
/**
 * insert_wq_barrier - insert a barrier work
2388
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2389
 * @barr: wq_barrier to insert
2390 2391
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2392
 *
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2405
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2406 2407
 *
 * CONTEXT:
2408
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2409
 */
2410
static void insert_wq_barrier(struct pool_workqueue *pwq,
2411 2412
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2413
{
2414 2415 2416
	struct list_head *head;
	unsigned int linked = 0;

2417
	/*
2418
	 * debugobject calls are safe here even with pool->lock locked
2419 2420 2421 2422
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2423
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2424
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2425
	init_completion(&barr->done);
2426

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2442
	debug_work_activate(&barr->work);
2443
	insert_work(pwq, &barr->work, head,
2444
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2445 2446
}

2447
/**
2448
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2449 2450 2451 2452
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2453
 * Prepare pwqs for workqueue flushing.
2454
 *
2455 2456 2457 2458 2459
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2460 2461 2462 2463 2464 2465 2466
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2467
 * If @work_color is non-negative, all pwqs should have the same
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2478
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2479
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2480
{
2481
	bool wait = false;
2482
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2483

2484
	if (flush_color >= 0) {
2485
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2486
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2487
	}
2488

2489
	for_each_pwq(pwq, wq) {
2490
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2491

2492
		spin_lock_irq(&pool->lock);
2493

2494
		if (flush_color >= 0) {
2495
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2496

2497 2498 2499
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2500 2501 2502
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2503

2504
		if (work_color >= 0) {
2505
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2506
			pwq->work_color = work_color;
2507
		}
L
Linus Torvalds 已提交
2508

2509
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2510
	}
2511

2512
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2513
		complete(&wq->first_flusher->done);
2514

2515
	return wait;
L
Linus Torvalds 已提交
2516 2517
}

2518
/**
L
Linus Torvalds 已提交
2519
 * flush_workqueue - ensure that any scheduled work has run to completion.
2520
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2521 2522 2523 2524
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2525 2526
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2527
 */
2528
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2529
{
2530 2531 2532 2533 2534 2535
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2536

2537 2538
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2553
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2554 2555 2556 2557 2558
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2559
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2560 2561 2562

			wq->first_flusher = &this_flusher;

2563
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2564 2565 2566 2567 2568 2569 2570 2571
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2572
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2573
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2574
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2600 2601 2602 2603
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2604 2605
	wq->first_flusher = NULL;

2606 2607
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2620 2621
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2641
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2642 2643 2644
		}

		if (list_empty(&wq->flusher_queue)) {
2645
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2646 2647 2648 2649 2650
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2651
		 * the new first flusher and arm pwqs.
2652
		 */
2653 2654
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2655 2656 2657 2658

		list_del_init(&next->list);
		wq->first_flusher = next;

2659
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2671
}
2672
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2673

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2688
	struct pool_workqueue *pwq;
2689 2690 2691 2692 2693 2694

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
2695
	spin_lock_irq(&workqueue_lock);
2696 2697
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
2698
	spin_unlock_irq(&workqueue_lock);
2699 2700 2701
reflush:
	flush_workqueue(wq);

2702
	for_each_pwq(pwq, wq) {
2703
		bool drained;
2704

2705 2706 2707
		spin_lock_irq(&pwq->pool->lock);
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
		spin_unlock_irq(&pwq->pool->lock);
2708 2709

		if (drained)
2710 2711 2712 2713
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2714 2715
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2716 2717 2718
		goto reflush;
	}

2719
	spin_lock_irq(&workqueue_lock);
2720 2721
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
2722
	spin_unlock_irq(&workqueue_lock);
2723 2724 2725
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2726
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2727
{
2728
	struct worker *worker = NULL;
2729
	struct worker_pool *pool;
2730
	struct pool_workqueue *pwq;
2731 2732

	might_sleep();
2733 2734
	pool = get_work_pool(work);
	if (!pool)
2735
		return false;
2736

2737
	spin_lock_irq(&pool->lock);
2738
	/* see the comment in try_to_grab_pending() with the same code */
2739 2740 2741
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2742
			goto already_gone;
2743
	} else {
2744
		worker = find_worker_executing_work(pool, work);
2745
		if (!worker)
T
Tejun Heo 已提交
2746
			goto already_gone;
2747
		pwq = worker->current_pwq;
2748
	}
2749

2750
	insert_wq_barrier(pwq, barr, work, worker);
2751
	spin_unlock_irq(&pool->lock);
2752

2753 2754 2755 2756 2757 2758
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2759 2760
	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&pwq->wq->lockdep_map);
2761
	else
2762 2763
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2764

2765
	return true;
T
Tejun Heo 已提交
2766
already_gone:
2767
	spin_unlock_irq(&pool->lock);
2768
	return false;
2769
}
2770 2771 2772 2773 2774

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2775 2776
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2777 2778 2779 2780 2781 2782 2783 2784 2785
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2786 2787 2788
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2789
	if (start_flush_work(work, &barr)) {
2790 2791 2792
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2793
	} else {
2794
		return false;
2795 2796
	}
}
2797
EXPORT_SYMBOL_GPL(flush_work);
2798

2799
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2800
{
2801
	unsigned long flags;
2802 2803 2804
	int ret;

	do {
2805 2806 2807 2808 2809 2810
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2811
			flush_work(work);
2812 2813
	} while (unlikely(ret < 0));

2814 2815 2816 2817
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2818
	flush_work(work);
2819
	clear_work_data(work);
2820 2821 2822
	return ret;
}

2823
/**
2824 2825
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2826
 *
2827 2828 2829 2830
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2831
 *
2832 2833
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2834
 *
2835
 * The caller must ensure that the workqueue on which @work was last
2836
 * queued can't be destroyed before this function returns.
2837 2838 2839
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2840
 */
2841
bool cancel_work_sync(struct work_struct *work)
2842
{
2843
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2844
}
2845
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2846

2847
/**
2848 2849
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2850
 *
2851 2852 2853
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2854
 *
2855 2856 2857
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2858
 */
2859 2860
bool flush_delayed_work(struct delayed_work *dwork)
{
2861
	local_irq_disable();
2862
	if (del_timer_sync(&dwork->timer))
2863
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2864
	local_irq_enable();
2865 2866 2867 2868
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2869
/**
2870 2871
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2872
 *
2873 2874 2875 2876 2877
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2878
 *
2879
 * This function is safe to call from any context including IRQ handler.
2880
 */
2881
bool cancel_delayed_work(struct delayed_work *dwork)
2882
{
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2893 2894
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2895
	local_irq_restore(flags);
2896
	return ret;
2897
}
2898
EXPORT_SYMBOL(cancel_delayed_work);
2899

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2910
{
2911
	return __cancel_work_timer(&dwork->work, true);
2912
}
2913
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2914

2915
/**
2916 2917 2918 2919 2920 2921
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2922
bool schedule_work_on(int cpu, struct work_struct *work)
2923
{
2924
	return queue_work_on(cpu, system_wq, work);
2925 2926 2927
}
EXPORT_SYMBOL(schedule_work_on);

2928 2929 2930 2931
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2932 2933
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2934 2935 2936 2937
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2938
 */
2939
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2940
{
2941
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2942
}
2943
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2944

2945 2946 2947
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2948
 * @dwork: job to be done
2949 2950 2951 2952 2953
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
2954 2955
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
2956
{
2957
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2958
}
2959
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2960

2961 2962
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2963 2964
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2965 2966 2967 2968
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2969
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2970
{
2971
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2972
}
2973
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2974

2975
/**
2976
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2977 2978
 * @func: the function to call
 *
2979 2980
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2981
 * schedule_on_each_cpu() is very slow.
2982 2983 2984
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2985
 */
2986
int schedule_on_each_cpu(work_func_t func)
2987 2988
{
	int cpu;
2989
	struct work_struct __percpu *works;
2990

2991 2992
	works = alloc_percpu(struct work_struct);
	if (!works)
2993
		return -ENOMEM;
2994

2995 2996
	get_online_cpus();

2997
	for_each_online_cpu(cpu) {
2998 2999 3000
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3001
		schedule_work_on(cpu, work);
3002
	}
3003 3004 3005 3006

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3007
	put_online_cpus();
3008
	free_percpu(works);
3009 3010 3011
	return 0;
}

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3036 3037
void flush_scheduled_work(void)
{
3038
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3039
}
3040
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3041

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3054
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3055 3056
{
	if (!in_interrupt()) {
3057
		fn(&ew->work);
3058 3059 3060
		return 0;
	}

3061
	INIT_WORK(&ew->work, fn);
3062 3063 3064 3065 3066 3067
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3068 3069
int keventd_up(void)
{
3070
	return system_wq != NULL;
L
Linus Torvalds 已提交
3071 3072
}

3073
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3074
{
3075
	bool highpri = wq->flags & WQ_HIGHPRI;
3076 3077 3078
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3079 3080
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3081 3082 3083
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3084 3085
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3086

3087
			pwq->pool = get_std_worker_pool(cpu, highpri);
3088 3089 3090 3091 3092 3093 3094 3095 3096
			list_add_tail(&pwq->pwqs_node, &wq->pwqs);
		}
	} else {
		struct pool_workqueue *pwq;

		pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
		if (!pwq)
			return -ENOMEM;

3097
		pwq->pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
3098 3099 3100 3101
		list_add_tail(&pwq->pwqs_node, &wq->pwqs);
	}

	return 0;
T
Tejun Heo 已提交
3102 3103
}

3104
static void free_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3105
{
3106
	if (!(wq->flags & WQ_UNBOUND))
3107 3108 3109 3110
		free_percpu(wq->cpu_pwqs);
	else if (!list_empty(&wq->pwqs))
		kmem_cache_free(pwq_cache, list_first_entry(&wq->pwqs,
					struct pool_workqueue, pwqs_node));
T
Tejun Heo 已提交
3111 3112
}

3113 3114
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3115
{
3116 3117 3118
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3119 3120
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3121

3122
	return clamp_val(max_active, 1, lim);
3123 3124
}

3125
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3126 3127 3128
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3129
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3130
{
3131
	va_list args, args1;
L
Linus Torvalds 已提交
3132
	struct workqueue_struct *wq;
3133
	struct pool_workqueue *pwq;
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3148

3149 3150 3151 3152 3153 3154 3155
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3156
	max_active = max_active ?: WQ_DFL_ACTIVE;
3157
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3158

3159
	/* init wq */
3160
	wq->flags = flags;
3161
	wq->saved_max_active = max_active;
3162
	mutex_init(&wq->flush_mutex);
3163
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3164
	INIT_LIST_HEAD(&wq->pwqs);
3165 3166
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3167
	INIT_LIST_HEAD(&wq->maydays);
3168

3169
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3170
	INIT_LIST_HEAD(&wq->list);
3171

3172
	if (alloc_and_link_pwqs(wq) < 0)
3173 3174
		goto err;

3175
	for_each_pwq(pwq, wq) {
3176 3177 3178 3179 3180
		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
		pwq->wq = wq;
		pwq->flush_color = -1;
		pwq->max_active = max_active;
		INIT_LIST_HEAD(&pwq->delayed_works);
3181
		INIT_LIST_HEAD(&pwq->mayday_node);
3182
	}
T
Tejun Heo 已提交
3183

3184 3185 3186 3187 3188 3189 3190
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3191 3192
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3193
					       wq->name);
3194 3195 3196 3197 3198
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3199 3200
	}

3201 3202 3203 3204 3205
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
3206
	spin_lock_irq(&workqueue_lock);
3207

3208
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3209 3210
		for_each_pwq(pwq, wq)
			pwq->max_active = 0;
3211

T
Tejun Heo 已提交
3212
	list_add(&wq->list, &workqueues);
3213

3214
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3215

3216
	return wq;
T
Tejun Heo 已提交
3217 3218
err:
	if (wq) {
3219
		free_pwqs(wq);
3220
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3221 3222 3223
		kfree(wq);
	}
	return NULL;
3224
}
3225
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3226

3227 3228 3229 3230 3231 3232 3233 3234
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3235
	struct pool_workqueue *pwq;
3236

3237 3238
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3239

3240
	/* sanity checks */
3241
	for_each_pwq(pwq, wq) {
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			if (WARN_ON(pwq->nr_in_flight[i]))
				return;
		if (WARN_ON(pwq->nr_active) ||
		    WARN_ON(!list_empty(&pwq->delayed_works)))
			return;
	}

3252 3253 3254 3255
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3256
	spin_lock_irq(&workqueue_lock);
3257
	list_del(&wq->list);
3258
	spin_unlock_irq(&workqueue_lock);
3259

3260 3261
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3262
		kfree(wq->rescuer);
3263 3264
	}

3265
	free_pwqs(wq);
3266 3267 3268 3269
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3270
/**
3271 3272
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3273 3274
 * @max_active: new max_active value.
 *
3275
 * Set @pwq->max_active to @max_active and activate delayed works if
3276 3277 3278
 * increased.
 *
 * CONTEXT:
3279
 * spin_lock_irq(pool->lock).
3280
 */
3281
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3282
{
3283
	pwq->max_active = max_active;
3284

3285 3286 3287
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3288 3289
}

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3302
	struct pool_workqueue *pwq;
3303

3304
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3305

3306
	spin_lock_irq(&workqueue_lock);
3307 3308 3309

	wq->saved_max_active = max_active;

3310
	for_each_pwq(pwq, wq) {
3311
		struct worker_pool *pool = pwq->pool;
3312

3313
		spin_lock(&pool->lock);
3314

3315
		if (!(wq->flags & WQ_FREEZABLE) ||
3316
		    !(pool->flags & POOL_FREEZING))
3317
			pwq_set_max_active(pwq, max_active);
3318

3319
		spin_unlock(&pool->lock);
3320
	}
3321

3322
	spin_unlock_irq(&workqueue_lock);
3323
}
3324
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3325

3326
/**
3327 3328 3329
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3330
 *
3331 3332 3333
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3334
 *
3335 3336
 * RETURNS:
 * %true if congested, %false otherwise.
3337
 */
3338
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3339
{
3340 3341 3342 3343 3344 3345
	struct pool_workqueue *pwq;

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
3346

3347
	return !list_empty(&pwq->delayed_works);
L
Linus Torvalds 已提交
3348
}
3349
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3350

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3363
{
3364
	struct worker_pool *pool = get_work_pool(work);
3365 3366
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3367

3368 3369
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3370

3371 3372 3373 3374 3375 3376
	if (pool) {
		spin_lock_irqsave(&pool->lock, flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		spin_unlock_irqrestore(&pool->lock, flags);
	}
L
Linus Torvalds 已提交
3377

3378
	return ret;
L
Linus Torvalds 已提交
3379
}
3380
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3381

3382 3383 3384
/*
 * CPU hotplug.
 *
3385
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3386
 * are a lot of assumptions on strong associations among work, pwq and
3387
 * pool which make migrating pending and scheduled works very
3388
 * difficult to implement without impacting hot paths.  Secondly,
3389
 * worker pools serve mix of short, long and very long running works making
3390 3391
 * blocked draining impractical.
 *
3392
 * This is solved by allowing the pools to be disassociated from the CPU
3393 3394
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3395
 */
L
Linus Torvalds 已提交
3396

3397
static void wq_unbind_fn(struct work_struct *work)
3398
{
3399
	int cpu = smp_processor_id();
3400
	struct worker_pool *pool;
3401 3402
	struct worker *worker;
	int i;
3403

3404
	for_each_std_worker_pool(pool, cpu) {
3405
		WARN_ON_ONCE(cpu != smp_processor_id());
3406

3407 3408
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3409

3410 3411 3412 3413 3414 3415 3416
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3417
		list_for_each_entry(worker, &pool->idle_list, entry)
3418
			worker->flags |= WORKER_UNBOUND;
3419

3420
		for_each_busy_worker(worker, i, pool)
3421
			worker->flags |= WORKER_UNBOUND;
3422

3423
		pool->flags |= POOL_DISASSOCIATED;
3424

3425 3426 3427
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3428

3429
	/*
3430
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3431 3432
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3433 3434
	 */
	schedule();
3435

3436
	/*
3437 3438
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3439 3440 3441
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3442 3443 3444 3445
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3446
	 */
3447
	for_each_std_worker_pool(pool, cpu)
3448
		atomic_set(&pool->nr_running, 0);
3449 3450
}

T
Tejun Heo 已提交
3451 3452 3453 3454
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3455
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3456 3457
					       unsigned long action,
					       void *hcpu)
3458
{
3459
	int cpu = (unsigned long)hcpu;
3460
	struct worker_pool *pool;
3461

T
Tejun Heo 已提交
3462
	switch (action & ~CPU_TASKS_FROZEN) {
3463
	case CPU_UP_PREPARE:
3464
		for_each_std_worker_pool(pool, cpu) {
3465 3466 3467 3468 3469 3470 3471 3472 3473
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3474
			spin_lock_irq(&pool->lock);
3475
			start_worker(worker);
3476
			spin_unlock_irq(&pool->lock);
3477
		}
T
Tejun Heo 已提交
3478
		break;
3479

3480 3481
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3482
		for_each_std_worker_pool(pool, cpu) {
3483 3484 3485
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3486
			pool->flags &= ~POOL_DISASSOCIATED;
3487 3488 3489 3490 3491
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3492
		break;
3493
	}
3494 3495 3496 3497 3498 3499 3500
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3501
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3502 3503 3504
						 unsigned long action,
						 void *hcpu)
{
3505
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
3506 3507
	struct work_struct unbind_work;

3508 3509
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3510
		/* unbinding should happen on the local CPU */
3511
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3512
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3513 3514
		flush_work(&unbind_work);
		break;
3515 3516 3517 3518
	}
	return NOTIFY_OK;
}

3519
#ifdef CONFIG_SMP
3520

3521
struct work_for_cpu {
3522
	struct work_struct work;
3523 3524 3525 3526 3527
	long (*fn)(void *);
	void *arg;
	long ret;
};

3528
static void work_for_cpu_fn(struct work_struct *work)
3529
{
3530 3531
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3532 3533 3534 3535 3536 3537 3538 3539 3540
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3541 3542
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3543
 * The caller must not hold any locks which would prevent @fn from completing.
3544
 */
3545
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
3546
{
3547
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3548

3549 3550 3551
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3552 3553 3554 3555 3556
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3557 3558 3559 3560 3561
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3562 3563
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3564
 * pool->worklist.
3565 3566
 *
 * CONTEXT:
3567
 * Grabs and releases workqueue_lock and pool->lock's.
3568 3569 3570
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
3571
	struct worker_pool *pool;
3572 3573
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
T
Tejun Heo 已提交
3574
	int id;
3575

3576
	spin_lock_irq(&workqueue_lock);
3577

3578
	WARN_ON_ONCE(workqueue_freezing);
3579 3580
	workqueue_freezing = true;

3581
	/* set FREEZING */
T
Tejun Heo 已提交
3582 3583 3584 3585
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
3586 3587
		spin_unlock(&pool->lock);
	}
3588

3589 3590 3591 3592
	/* suppress further executions by setting max_active to zero */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3593

3594 3595 3596 3597
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq->max_active = 0;
			spin_unlock(&pwq->pool->lock);
3598
		}
3599 3600
	}

3601
	spin_unlock_irq(&workqueue_lock);
3602 3603 3604
}

/**
3605
 * freeze_workqueues_busy - are freezable workqueues still busy?
3606 3607 3608 3609 3610 3611 3612 3613
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3614 3615
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3616 3617 3618 3619
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
3620 3621
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
3622

3623
	spin_lock_irq(&workqueue_lock);
3624

3625
	WARN_ON_ONCE(!workqueue_freezing);
3626

3627 3628 3629
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3630 3631 3632 3633
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
3634
		for_each_pwq(pwq, wq) {
3635
			WARN_ON_ONCE(pwq->nr_active < 0);
3636
			if (pwq->nr_active) {
3637 3638 3639 3640 3641 3642
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
3643
	spin_unlock_irq(&workqueue_lock);
3644 3645 3646 3647 3648 3649 3650
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3651
 * frozen works are transferred to their respective pool worklists.
3652 3653
 *
 * CONTEXT:
3654
 * Grabs and releases workqueue_lock and pool->lock's.
3655 3656 3657
 */
void thaw_workqueues(void)
{
3658 3659 3660 3661
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
	int id;
3662

3663
	spin_lock_irq(&workqueue_lock);
3664 3665 3666 3667

	if (!workqueue_freezing)
		goto out_unlock;

3668 3669 3670 3671 3672 3673 3674
	/* clear FREEZING */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
		spin_unlock(&pool->lock);
	}
3675

3676 3677 3678 3679
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3680

3681 3682 3683 3684
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq_set_max_active(pwq, wq->saved_max_active);
			spin_unlock(&pwq->pool->lock);
3685
		}
3686 3687
	}

3688 3689 3690 3691 3692 3693 3694
	/* kick workers */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		wake_up_worker(pool);
		spin_unlock(&pool->lock);
	}

3695 3696
	workqueue_freezing = false;
out_unlock:
3697
	spin_unlock_irq(&workqueue_lock);
3698 3699 3700
}
#endif /* CONFIG_FREEZER */

3701
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3702
{
3703
	int cpu;
T
Tejun Heo 已提交
3704

3705 3706
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3707
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3708

3709 3710 3711 3712
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

3713
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3714
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3715

3716 3717
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3718
		struct worker_pool *pool;
3719

3720
		for_each_std_worker_pool(pool, cpu) {
3721
			spin_lock_init(&pool->lock);
3722
			pool->cpu = cpu;
3723
			pool->flags |= POOL_DISASSOCIATED;
3724 3725
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3726
			hash_init(pool->busy_hash);
3727

3728 3729 3730
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3731

3732
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3733 3734
				    (unsigned long)pool);

3735
			mutex_init(&pool->assoc_mutex);
3736
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3737 3738 3739

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3740
		}
3741 3742
	}

3743
	/* create the initial worker */
3744
	for_each_online_wq_cpu(cpu) {
3745
		struct worker_pool *pool;
3746

3747
		for_each_std_worker_pool(pool, cpu) {
3748 3749
			struct worker *worker;

3750 3751 3752
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3753
			worker = create_worker(pool);
3754
			BUG_ON(!worker);
3755
			spin_lock_irq(&pool->lock);
3756
			start_worker(worker);
3757
			spin_unlock_irq(&pool->lock);
3758
		}
3759 3760
	}

3761
	system_wq = alloc_workqueue("events", 0, 0);
3762
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3763
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3764 3765
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3766 3767
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3768
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3769
	       !system_unbound_wq || !system_freezable_wq);
3770
	return 0;
L
Linus Torvalds 已提交
3771
}
3772
early_initcall(init_workqueues);