workqueue.c 141.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74

T
Tejun Heo 已提交
75 76 77
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
78
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82

83 84
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
85

86
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87

88
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
89
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90

91 92 93
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

94 95 96
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
97 98 99 100 101 102 103 104
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
105
	HIGHPRI_NICE_LEVEL	= -20,
106 107

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
108
};
L
Linus Torvalds 已提交
109 110

/*
T
Tejun Heo 已提交
111 112
 * Structure fields follow one of the following exclusion rules.
 *
113 114
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
115
 *
116 117 118
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
119
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
120
 *
121 122 123 124
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
125
 *
126
 * M: pool->manager_mutex protected.
127
 *
128
 * PL: wq_pool_mutex protected.
129
 *
130
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131
 *
132 133
 * WQ: wq->mutex protected.
 *
134
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
135 136
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
137 138
 */

139
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
140

141
struct worker_pool {
142
	spinlock_t		lock;		/* the pool lock */
143
	int			cpu;		/* I: the associated cpu */
144
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
145
	int			id;		/* I: pool ID */
146
	unsigned int		flags;		/* X: flags */
147 148 149

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
150 151

	/* nr_idle includes the ones off idle_list for rebinding */
152 153 154 155 156 157
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

158
	/* a workers is either on busy_hash or idle_list, or the manager */
159 160 161
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

162
	/* see manage_workers() for details on the two manager mutexes */
163
	struct mutex		manager_arb;	/* manager arbitration */
164
	struct mutex		manager_mutex;	/* manager exclusion */
165
	struct idr		worker_idr;	/* M: worker IDs and iteration */
166

T
Tejun Heo 已提交
167
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
168 169
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
170

171 172 173 174 175 176
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
177 178 179 180 181 182

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
183 184
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
185
/*
186 187 188 189
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
190
 */
191
struct pool_workqueue {
192
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
193
	struct workqueue_struct *wq;		/* I: the owning workqueue */
194 195
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
196
	int			refcnt;		/* L: reference count */
197 198
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
199
	int			nr_active;	/* L: nr of active works */
200
	int			max_active;	/* L: max active works */
201
	struct list_head	delayed_works;	/* L: delayed works */
202
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
203
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
204 205 206 207 208

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
209
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
210 211 212
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
213
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
214

215 216 217 218
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
219 220
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
221 222 223
	struct completion	done;		/* flush completion */
};

224 225
struct wq_device;

L
Linus Torvalds 已提交
226
/*
227 228
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
229 230
 */
struct workqueue_struct {
231
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
232
	struct list_head	list;		/* PL: list of all workqueues */
233

234 235 236
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
237
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
238 239 240
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
241

242
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
243 244
	struct worker		*rescuer;	/* I: rescue worker */

245
	int			nr_drainers;	/* WQ: drain in progress */
246
	int			saved_max_active; /* WQ: saved pwq max_active */
247

248
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
249
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
250

251 252 253
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
254
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
255
	struct lockdep_map	lockdep_map;
256
#endif
257
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
258 259 260 261

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
262
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
263 264
};

265 266
static struct kmem_cache *pwq_cache;

267 268 269 270
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

271 272 273
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

274 275 276 277 278 279 280 281 282
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

283 284
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

285 286 287
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

288
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
289
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
290

291 292
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
293 294 295 296 297

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

298
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
299

300
/* PL: hash of all unbound pools keyed by pool->attrs */
301 302
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

303
/* I: attributes used when instantiating standard unbound pools on demand */
304 305
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

306 307 308
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

309
struct workqueue_struct *system_wq __read_mostly;
310
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
311
struct workqueue_struct *system_highpri_wq __read_mostly;
312
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
313
struct workqueue_struct *system_long_wq __read_mostly;
314
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
315
struct workqueue_struct *system_unbound_wq __read_mostly;
316
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
317
struct workqueue_struct *system_freezable_wq __read_mostly;
318
EXPORT_SYMBOL_GPL(system_freezable_wq);
319 320 321 322
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
323

324 325 326 327
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

328 329 330
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

331
#define assert_rcu_or_pool_mutex()					\
332
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
333 334
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
335

336
#define assert_rcu_or_wq_mutex(wq)					\
337
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
338
			   lockdep_is_held(&wq->mutex),			\
339
			   "sched RCU or wq->mutex should be held")
340

341 342 343
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
344
	     (pool)++)
345

T
Tejun Heo 已提交
346 347 348
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
349
 * @pi: integer used for iteration
350
 *
351 352 353
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
354 355 356
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
357
 */
358 359
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
360
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
361
		else
T
Tejun Heo 已提交
362

363 364 365 366 367 368
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
369
 * This must be called with @pool->manager_mutex.
370 371 372 373 374 375
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
376
		if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
377 378
		else

379 380 381 382
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
383
 *
384
 * This must be called either with wq->mutex held or sched RCU read locked.
385 386
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
387 388 389
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
390 391
 */
#define for_each_pwq(pwq, wq)						\
392
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
393
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
394
		else
395

396 397 398 399
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

400 401 402 403 404
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
440
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
476
	.debug_hint	= work_debug_hint,
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

507 508 509 510 511 512 513
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

514 515 516 517 518
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

519 520 521 522 523 524 525
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
526 527 528 529
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

530
	lockdep_assert_held(&wq_pool_mutex);
531

532 533
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
534
	if (ret >= 0) {
T
Tejun Heo 已提交
535
		pool->id = ret;
536 537
		return 0;
	}
538
	return ret;
539 540
}

541 542 543 544 545 546 547 548
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
549 550
 *
 * Return: The unbound pool_workqueue for @node.
551 552 553 554 555 556 557 558
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
574

575
/*
576 577
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
578
 * is cleared and the high bits contain OFFQ flags and pool ID.
579
 *
580 581
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
582 583
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
584
 *
585
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586
 * corresponding to a work.  Pool is available once the work has been
587
 * queued anywhere after initialization until it is sync canceled.  pwq is
588
 * available only while the work item is queued.
589
 *
590 591 592 593
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
594
 */
595 596
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
597
{
598
	WARN_ON_ONCE(!work_pending(work));
599 600
	atomic_long_set(&work->data, data | flags | work_static(work));
}
601

602
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 604
			 unsigned long extra_flags)
{
605 606
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 608
}

609 610 611 612 613 614 615
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

616 617
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
618
{
619 620 621 622 623 624 625
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
626
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627
}
628

629
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
630
{
631 632
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
633 634
}

635
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636
{
637
	unsigned long data = atomic_long_read(&work->data);
638

639
	if (data & WORK_STRUCT_PWQ)
640 641 642
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
643 644
}

645 646 647 648
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
649 650 651
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
652 653 654 655 656
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
657 658
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
659 660
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
661
{
662
	unsigned long data = atomic_long_read(&work->data);
663
	int pool_id;
664

665
	assert_rcu_or_pool_mutex();
666

667 668
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
669
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670

671 672
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
673 674
		return NULL;

675
	return idr_find(&worker_pool_idr, pool_id);
676 677 678 679 680 681
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
682
 * Return: The worker_pool ID @work was last associated with.
683 684 685 686
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
687 688
	unsigned long data = atomic_long_read(&work->data);

689 690
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
691
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692

693
	return data >> WORK_OFFQ_POOL_SHIFT;
694 695
}

696 697
static void mark_work_canceling(struct work_struct *work)
{
698
	unsigned long pool_id = get_work_pool_id(work);
699

700 701
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 703 704 705 706 707
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

708
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 710
}

711
/*
712 713
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
714
 * they're being called with pool->lock held.
715 716
 */

717
static bool __need_more_worker(struct worker_pool *pool)
718
{
719
	return !atomic_read(&pool->nr_running);
720 721
}

722
/*
723 724
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
725 726
 *
 * Note that, because unbound workers never contribute to nr_running, this
727
 * function will always return %true for unbound pools as long as the
728
 * worklist isn't empty.
729
 */
730
static bool need_more_worker(struct worker_pool *pool)
731
{
732
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
733
}
734

735
/* Can I start working?  Called from busy but !running workers. */
736
static bool may_start_working(struct worker_pool *pool)
737
{
738
	return pool->nr_idle;
739 740 741
}

/* Do I need to keep working?  Called from currently running workers. */
742
static bool keep_working(struct worker_pool *pool)
743
{
744 745
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
746 747 748
}

/* Do we need a new worker?  Called from manager. */
749
static bool need_to_create_worker(struct worker_pool *pool)
750
{
751
	return need_more_worker(pool) && !may_start_working(pool);
752
}
753

754
/* Do I need to be the manager? */
755
static bool need_to_manage_workers(struct worker_pool *pool)
756
{
757
	return need_to_create_worker(pool) ||
758
		(pool->flags & POOL_MANAGE_WORKERS);
759 760 761
}

/* Do we have too many workers and should some go away? */
762
static bool too_many_workers(struct worker_pool *pool)
763
{
764
	bool managing = mutex_is_locked(&pool->manager_arb);
765 766
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
767

768 769 770 771 772 773 774
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

775
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
776 777
}

778
/*
779 780 781
 * Wake up functions.
 */

782
/* Return the first worker.  Safe with preemption disabled */
783
static struct worker *first_worker(struct worker_pool *pool)
784
{
785
	if (unlikely(list_empty(&pool->idle_list)))
786 787
		return NULL;

788
	return list_first_entry(&pool->idle_list, struct worker, entry);
789 790 791 792
}

/**
 * wake_up_worker - wake up an idle worker
793
 * @pool: worker pool to wake worker from
794
 *
795
 * Wake up the first idle worker of @pool.
796 797
 *
 * CONTEXT:
798
 * spin_lock_irq(pool->lock).
799
 */
800
static void wake_up_worker(struct worker_pool *pool)
801
{
802
	struct worker *worker = first_worker(pool);
803 804 805 806 807

	if (likely(worker))
		wake_up_process(worker->task);
}

808
/**
809 810 811 812 813 814 815 816 817 818
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
819
void wq_worker_waking_up(struct task_struct *task, int cpu)
820 821 822
{
	struct worker *worker = kthread_data(task);

823
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
824
		WARN_ON_ONCE(worker->pool->cpu != cpu);
825
		atomic_inc(&worker->pool->nr_running);
826
	}
827 828 829 830 831 832 833 834 835 836 837 838 839 840
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
841
 * Return:
842 843
 * Worker task on @cpu to wake up, %NULL if none.
 */
844
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
845 846
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
847
	struct worker_pool *pool;
848

849 850 851 852 853
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
854
	if (worker->flags & WORKER_NOT_RUNNING)
855 856
		return NULL;

857 858
	pool = worker->pool;

859
	/* this can only happen on the local cpu */
860 861
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
862 863 864 865 866 867

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
868 869 870
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
871
	 * manipulating idle_list, so dereferencing idle_list without pool
872
	 * lock is safe.
873
	 */
874 875
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
876
		to_wakeup = first_worker(pool);
877 878 879 880 881
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
882
 * @worker: self
883 884 885
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
886 887 888
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
889
 *
890
 * CONTEXT:
891
 * spin_lock_irq(pool->lock)
892 893 894 895
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
896
	struct worker_pool *pool = worker->pool;
897

898 899
	WARN_ON_ONCE(worker->task != current);

900 901 902 903 904 905 906 907
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
908
			if (atomic_dec_and_test(&pool->nr_running) &&
909
			    !list_empty(&pool->worklist))
910
				wake_up_worker(pool);
911
		} else
912
			atomic_dec(&pool->nr_running);
913 914
	}

915 916 917 918
	worker->flags |= flags;
}

/**
919
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
920
 * @worker: self
921 922
 * @flags: flags to clear
 *
923
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
924
 *
925
 * CONTEXT:
926
 * spin_lock_irq(pool->lock)
927 928 929
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
930
	struct worker_pool *pool = worker->pool;
931 932
	unsigned int oflags = worker->flags;

933 934
	WARN_ON_ONCE(worker->task != current);

935
	worker->flags &= ~flags;
936

937 938 939 940 941
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
942 943
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
944
			atomic_inc(&pool->nr_running);
945 946
}

947 948
/**
 * find_worker_executing_work - find worker which is executing a work
949
 * @pool: pool of interest
950 951
 * @work: work to find worker for
 *
952 953
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
954 955 956 957 958 959 960 961 962 963 964 965
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
966 967 968 969 970 971
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
972 973
 *
 * CONTEXT:
974
 * spin_lock_irq(pool->lock).
975
 *
976 977
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
978
 * otherwise.
979
 */
980
static struct worker *find_worker_executing_work(struct worker_pool *pool,
981
						 struct work_struct *work)
982
{
983 984
	struct worker *worker;

985
	hash_for_each_possible(pool->busy_hash, worker, hentry,
986 987 988
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
989 990 991
			return worker;

	return NULL;
992 993
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1009
 * spin_lock_irq(pool->lock).
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1093
static void pwq_activate_delayed_work(struct work_struct *work)
1094
{
1095
	struct pool_workqueue *pwq = get_work_pwq(work);
1096 1097

	trace_workqueue_activate_work(work);
1098
	move_linked_works(work, &pwq->pool->worklist, NULL);
1099
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1100
	pwq->nr_active++;
1101 1102
}

1103
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1104
{
1105
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1106 1107
						    struct work_struct, entry);

1108
	pwq_activate_delayed_work(work);
1109 1110
}

1111
/**
1112 1113
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1114 1115 1116
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1117
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1118 1119
 *
 * CONTEXT:
1120
 * spin_lock_irq(pool->lock).
1121
 */
1122
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1123
{
T
Tejun Heo 已提交
1124
	/* uncolored work items don't participate in flushing or nr_active */
1125
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1126
		goto out_put;
1127

1128
	pwq->nr_in_flight[color]--;
1129

1130 1131
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1132
		/* one down, submit a delayed one */
1133 1134
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1135 1136 1137
	}

	/* is flush in progress and are we at the flushing tip? */
1138
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1139
		goto out_put;
1140 1141

	/* are there still in-flight works? */
1142
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1143
		goto out_put;
1144

1145 1146
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1147 1148

	/*
1149
	 * If this was the last pwq, wake up the first flusher.  It
1150 1151
	 * will handle the rest.
	 */
1152 1153
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1154 1155
out_put:
	put_pwq(pwq);
1156 1157
}

1158
/**
1159
 * try_to_grab_pending - steal work item from worklist and disable irq
1160 1161
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1162
 * @flags: place to store irq state
1163 1164
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1165
 * stable state - idle, on timer or on worklist.
1166
 *
1167
 * Return:
1168 1169 1170
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1171 1172
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1173
 *
1174
 * Note:
1175
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1176 1177 1178
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1179 1180 1181 1182
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1183
 * This function is safe to call from any context including IRQ handler.
1184
 */
1185 1186
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1187
{
1188
	struct worker_pool *pool;
1189
	struct pool_workqueue *pwq;
1190

1191 1192
	local_irq_save(*flags);

1193 1194 1195 1196
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1197 1198 1199 1200 1201
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1202 1203 1204 1205 1206
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1207 1208 1209 1210 1211 1212 1213
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1214 1215
	pool = get_work_pool(work);
	if (!pool)
1216
		goto fail;
1217

1218
	spin_lock(&pool->lock);
1219
	/*
1220 1221 1222 1223 1224
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1225 1226
	 * item is currently queued on that pool.
	 */
1227 1228
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1229 1230 1231 1232 1233
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1234
		 * on the delayed_list, will confuse pwq->nr_active
1235 1236 1237 1238
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1239
			pwq_activate_delayed_work(work);
1240 1241

		list_del_init(&work->entry);
1242
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1243

1244
		/* work->data points to pwq iff queued, point to pool */
1245 1246 1247 1248
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1249
	}
1250
	spin_unlock(&pool->lock);
1251 1252 1253 1254 1255
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1256
	return -EAGAIN;
1257 1258
}

T
Tejun Heo 已提交
1259
/**
1260
 * insert_work - insert a work into a pool
1261
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1262 1263 1264 1265
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1266
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1267
 * work_struct flags.
T
Tejun Heo 已提交
1268 1269
 *
 * CONTEXT:
1270
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1271
 */
1272 1273
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1274
{
1275
	struct worker_pool *pool = pwq->pool;
1276

T
Tejun Heo 已提交
1277
	/* we own @work, set data and link */
1278
	set_work_pwq(work, pwq, extra_flags);
1279
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1280
	get_pwq(pwq);
1281 1282

	/*
1283 1284 1285
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1286 1287 1288
	 */
	smp_mb();

1289 1290
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1291 1292
}

1293 1294
/*
 * Test whether @work is being queued from another work executing on the
1295
 * same workqueue.
1296 1297 1298
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1299 1300 1301 1302 1303 1304 1305
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1306
	return worker && worker->current_pwq->wq == wq;
1307 1308
}

1309
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1310 1311
			 struct work_struct *work)
{
1312
	struct pool_workqueue *pwq;
1313
	struct worker_pool *last_pool;
1314
	struct list_head *worklist;
1315
	unsigned int work_flags;
1316
	unsigned int req_cpu = cpu;
1317 1318 1319 1320 1321 1322 1323 1324

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1325

1326
	debug_work_activate(work);
1327

1328
	/* if draining, only works from the same workqueue are allowed */
1329
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1330
	    WARN_ON_ONCE(!is_chained_work(wq)))
1331
		return;
1332
retry:
1333 1334 1335
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1336
	/* pwq which will be used unless @work is executing elsewhere */
1337
	if (!(wq->flags & WQ_UNBOUND))
1338
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1339 1340
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1341

1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1350

1351
		spin_lock(&last_pool->lock);
1352

1353
		worker = find_worker_executing_work(last_pool, work);
1354

1355 1356
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1357
		} else {
1358 1359
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1360
			spin_lock(&pwq->pool->lock);
1361
		}
1362
	} else {
1363
		spin_lock(&pwq->pool->lock);
1364 1365
	}

1366 1367 1368 1369
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1370 1371
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1385 1386
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1387

1388
	if (WARN_ON(!list_empty(&work->entry))) {
1389
		spin_unlock(&pwq->pool->lock);
1390 1391
		return;
	}
1392

1393 1394
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1395

1396
	if (likely(pwq->nr_active < pwq->max_active)) {
1397
		trace_workqueue_activate_work(work);
1398 1399
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1400 1401
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1402
		worklist = &pwq->delayed_works;
1403
	}
1404

1405
	insert_work(pwq, work, worklist, work_flags);
1406

1407
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1408 1409
}

1410
/**
1411 1412
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1413 1414 1415
 * @wq: workqueue to use
 * @work: work to queue
 *
1416 1417
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1418 1419
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1420
 */
1421 1422
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1423
{
1424
	bool ret = false;
1425
	unsigned long flags;
1426

1427
	local_irq_save(flags);
1428

1429
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1430
		__queue_work(cpu, wq, work);
1431
		ret = true;
1432
	}
1433

1434
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1435 1436
	return ret;
}
1437
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1438

1439
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1440
{
1441
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1442

1443
	/* should have been called from irqsafe timer with irq already off */
1444
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1445
}
1446
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1447

1448 1449
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1450
{
1451 1452 1453 1454 1455
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1456 1457
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1470
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1471

1472
	dwork->wq = wq;
1473
	dwork->cpu = cpu;
1474 1475 1476 1477 1478 1479
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1480 1481
}

1482 1483 1484 1485
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1486
 * @dwork: work to queue
1487 1488
 * @delay: number of jiffies to wait before queueing
 *
1489
 * Return: %false if @work was already on a queue, %true otherwise.  If
1490 1491
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1492
 */
1493 1494
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1495
{
1496
	struct work_struct *work = &dwork->work;
1497
	bool ret = false;
1498
	unsigned long flags;
1499

1500 1501
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1502

1503
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1504
		__queue_delayed_work(cpu, wq, dwork, delay);
1505
		ret = true;
1506
	}
1507

1508
	local_irq_restore(flags);
1509 1510
	return ret;
}
1511
EXPORT_SYMBOL(queue_delayed_work_on);
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1525
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1526 1527
 * pending and its timer was modified.
 *
1528
 * This function is safe to call from any context including IRQ handler.
1529 1530 1531 1532 1533 1534 1535
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1536

1537 1538 1539
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1540

1541 1542 1543
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1544
	}
1545 1546

	/* -ENOENT from try_to_grab_pending() becomes %true */
1547 1548
	return ret;
}
1549 1550
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1551 1552 1553 1554 1555 1556 1557 1558
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1559
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1560 1561
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1562
{
1563
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1564

1565 1566 1567 1568
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1569

1570 1571
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1572
	pool->nr_idle++;
1573
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1574 1575

	/* idle_list is LIFO */
1576
	list_add(&worker->entry, &pool->idle_list);
1577

1578 1579
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1580

1581
	/*
1582
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1583
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1584 1585
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1586
	 */
1587
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1588
		     pool->nr_workers == pool->nr_idle &&
1589
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1599
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1600 1601 1602
 */
static void worker_leave_idle(struct worker *worker)
{
1603
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1604

1605 1606
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1607
	worker_clr_flags(worker, WORKER_IDLE);
1608
	pool->nr_idle--;
T
Tejun Heo 已提交
1609 1610 1611
	list_del_init(&worker->entry);
}

1612
/**
1613 1614 1615 1616
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1617 1618 1619 1620 1621 1622
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1623
 * This function is to be used by unbound workers and rescuers to bind
1624 1625 1626
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1627
 * verbatim as it's best effort and blocking and pool may be
1628 1629
 * [dis]associated in the meantime.
 *
1630
 * This function tries set_cpus_allowed() and locks pool and verifies the
1631
 * binding against %POOL_DISASSOCIATED which is set during
1632 1633 1634
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1635 1636
 *
 * CONTEXT:
1637
 * Might sleep.  Called without any lock but returns with pool->lock
1638 1639
 * held.
 *
1640
 * Return:
1641
 * %true if the associated pool is online (@worker is successfully
1642 1643
 * bound), %false if offline.
 */
1644
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1645
__acquires(&pool->lock)
1646 1647
{
	while (true) {
1648
		/*
1649 1650 1651
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1652
		 * against POOL_DISASSOCIATED.
1653
		 */
1654
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1655
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1656

1657
		spin_lock_irq(&pool->lock);
1658
		if (pool->flags & POOL_DISASSOCIATED)
1659
			return false;
1660
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1661
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1662
			return true;
1663
		spin_unlock_irq(&pool->lock);
1664

1665 1666 1667 1668 1669 1670
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1671
		cpu_relax();
1672
		cond_resched();
1673 1674 1675
	}
}

T
Tejun Heo 已提交
1676 1677 1678 1679 1680
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1681 1682
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1683
		INIT_LIST_HEAD(&worker->scheduled);
1684 1685
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1686
	}
T
Tejun Heo 已提交
1687 1688 1689 1690 1691
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1692
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1693
 *
1694 1695
 * Create a new worker which is attached to @pool.  The new worker must be
 * started by start_worker().
T
Tejun Heo 已提交
1696 1697 1698 1699
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1700
 * Return:
T
Tejun Heo 已提交
1701 1702
 * Pointer to the newly created worker.
 */
1703
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1704 1705
{
	struct worker *worker = NULL;
1706
	int id = -1;
1707
	char id_buf[16];
T
Tejun Heo 已提交
1708

1709 1710
	lockdep_assert_held(&pool->manager_mutex);

1711 1712 1713 1714
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
1715
	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
1716 1717
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1718 1719 1720 1721 1722

	worker = alloc_worker();
	if (!worker)
		goto fail;

1723
	worker->pool = pool;
T
Tejun Heo 已提交
1724 1725
	worker->id = id;

1726
	if (pool->cpu >= 0)
1727 1728
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1729
	else
1730 1731
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1732
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1733
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1734 1735 1736
	if (IS_ERR(worker->task))
		goto fail;

1737 1738 1739 1740 1741
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1742 1743 1744 1745
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1746
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1747

T
Tejun Heo 已提交
1748 1749 1750 1751 1752 1753
	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1754
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1755

1756 1757 1758
	/* successful, commit the pointer to idr */
	idr_replace(&pool->worker_idr, worker, worker->id);

T
Tejun Heo 已提交
1759
	return worker;
1760

T
Tejun Heo 已提交
1761
fail:
1762
	if (id >= 0)
1763
		idr_remove(&pool->worker_idr, id);
T
Tejun Heo 已提交
1764 1765 1766 1767 1768 1769 1770 1771
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1772
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1773 1774
 *
 * CONTEXT:
1775
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1776 1777 1778
 */
static void start_worker(struct worker *worker)
{
1779
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1780
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1781 1782 1783
	wake_up_process(worker->task);
}

1784 1785 1786 1787
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1788
 * Grab the managership of @pool and create and start a new worker for it.
1789 1790
 *
 * Return: 0 on success. A negative error code otherwise.
1791 1792 1793 1794 1795
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1796 1797
	mutex_lock(&pool->manager_mutex);

1798 1799 1800 1801 1802 1803 1804
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1805 1806
	mutex_unlock(&pool->manager_mutex);

1807 1808 1809
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1810 1811 1812 1813
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1814 1815
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1816 1817
 *
 * CONTEXT:
1818
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1819 1820 1821
 */
static void destroy_worker(struct worker *worker)
{
1822
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1823

1824 1825 1826
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1827
	/* sanity check frenzy */
1828
	if (WARN_ON(worker->current_work) ||
1829 1830
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1831
		return;
T
Tejun Heo 已提交
1832

1833 1834
	pool->nr_workers--;
	pool->nr_idle--;
T
Tejun Heo 已提交
1835

1836 1837 1838 1839 1840 1841
	/*
	 * Once WORKER_DIE is set, the kworker may destroy itself at any
	 * point.  Pin to ensure the task stays until we're done with it.
	 */
	get_task_struct(worker->task);

T
Tejun Heo 已提交
1842
	list_del_init(&worker->entry);
1843
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1844

1845 1846
	idr_remove(&pool->worker_idr, worker->id);

1847
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1848

T
Tejun Heo 已提交
1849
	kthread_stop(worker->task);
1850
	put_task_struct(worker->task);
T
Tejun Heo 已提交
1851 1852
	kfree(worker);

1853
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1854 1855
}

1856
static void idle_worker_timeout(unsigned long __pool)
1857
{
1858
	struct worker_pool *pool = (void *)__pool;
1859

1860
	spin_lock_irq(&pool->lock);
1861

1862
	if (too_many_workers(pool)) {
1863 1864 1865 1866
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1867
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1868 1869 1870
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1871
			mod_timer(&pool->idle_timer, expires);
1872 1873
		else {
			/* it's been idle for too long, wake up manager */
1874
			pool->flags |= POOL_MANAGE_WORKERS;
1875
			wake_up_worker(pool);
1876
		}
1877 1878
	}

1879
	spin_unlock_irq(&pool->lock);
1880
}
1881

1882
static void send_mayday(struct work_struct *work)
1883
{
1884 1885
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1886

1887
	lockdep_assert_held(&wq_mayday_lock);
1888

1889
	if (!wq->rescuer)
1890
		return;
1891 1892

	/* mayday mayday mayday */
1893
	if (list_empty(&pwq->mayday_node)) {
1894 1895 1896 1897 1898 1899
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1900
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1901
		wake_up_process(wq->rescuer->task);
1902
	}
1903 1904
}

1905
static void pool_mayday_timeout(unsigned long __pool)
1906
{
1907
	struct worker_pool *pool = (void *)__pool;
1908 1909
	struct work_struct *work;

1910
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1911
	spin_lock(&pool->lock);
1912

1913
	if (need_to_create_worker(pool)) {
1914 1915 1916 1917 1918 1919
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1920
		list_for_each_entry(work, &pool->worklist, entry)
1921
			send_mayday(work);
L
Linus Torvalds 已提交
1922
	}
1923

1924
	spin_unlock(&pool->lock);
1925
	spin_unlock_irq(&wq_mayday_lock);
1926

1927
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1928 1929
}

1930 1931
/**
 * maybe_create_worker - create a new worker if necessary
1932
 * @pool: pool to create a new worker for
1933
 *
1934
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1935 1936
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1937
 * sent to all rescuers with works scheduled on @pool to resolve
1938 1939
 * possible allocation deadlock.
 *
1940 1941
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1942 1943
 *
 * LOCKING:
1944
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1945 1946 1947
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1948
 * Return:
1949
 * %false if no action was taken and pool->lock stayed locked, %true
1950 1951
 * otherwise.
 */
1952
static bool maybe_create_worker(struct worker_pool *pool)
1953 1954
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1955
{
1956
	if (!need_to_create_worker(pool))
1957 1958
		return false;
restart:
1959
	spin_unlock_irq(&pool->lock);
1960

1961
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1962
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1963 1964 1965 1966

	while (true) {
		struct worker *worker;

1967
		worker = create_worker(pool);
1968
		if (worker) {
1969
			del_timer_sync(&pool->mayday_timer);
1970
			spin_lock_irq(&pool->lock);
1971
			start_worker(worker);
1972 1973
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1974 1975 1976
			return true;
		}

1977
		if (!need_to_create_worker(pool))
1978
			break;
L
Linus Torvalds 已提交
1979

1980 1981
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1982

1983
		if (!need_to_create_worker(pool))
1984 1985 1986
			break;
	}

1987
	del_timer_sync(&pool->mayday_timer);
1988
	spin_lock_irq(&pool->lock);
1989
	if (need_to_create_worker(pool))
1990 1991 1992 1993 1994 1995
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1996
 * @pool: pool to destroy workers for
1997
 *
1998
 * Destroy @pool workers which have been idle for longer than
1999 2000 2001
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2002
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2003 2004
 * multiple times.  Called only from manager.
 *
2005
 * Return:
2006
 * %false if no action was taken and pool->lock stayed locked, %true
2007 2008
 * otherwise.
 */
2009
static bool maybe_destroy_workers(struct worker_pool *pool)
2010 2011
{
	bool ret = false;
L
Linus Torvalds 已提交
2012

2013
	while (too_many_workers(pool)) {
2014 2015
		struct worker *worker;
		unsigned long expires;
2016

2017
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2018
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2019

2020
		if (time_before(jiffies, expires)) {
2021
			mod_timer(&pool->idle_timer, expires);
2022
			break;
2023
		}
L
Linus Torvalds 已提交
2024

2025 2026
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2027
	}
2028

2029
	return ret;
2030 2031
}

2032
/**
2033 2034
 * manage_workers - manage worker pool
 * @worker: self
2035
 *
2036
 * Assume the manager role and manage the worker pool @worker belongs
2037
 * to.  At any given time, there can be only zero or one manager per
2038
 * pool.  The exclusion is handled automatically by this function.
2039 2040 2041 2042
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2043 2044
 *
 * CONTEXT:
2045
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2046 2047
 * multiple times.  Does GFP_KERNEL allocations.
 *
2048
 * Return:
2049 2050 2051 2052 2053
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2054
 */
2055
static bool manage_workers(struct worker *worker)
2056
{
2057
	struct worker_pool *pool = worker->pool;
2058
	bool ret = false;
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2081
	if (!mutex_trylock(&pool->manager_arb))
2082
		return ret;
2083

2084
	/*
2085 2086
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2087
	 */
2088
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2089
		spin_unlock_irq(&pool->lock);
2090
		mutex_lock(&pool->manager_mutex);
2091
		spin_lock_irq(&pool->lock);
2092 2093
		ret = true;
	}
2094

2095
	pool->flags &= ~POOL_MANAGE_WORKERS;
2096 2097

	/*
2098 2099
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2100
	 */
2101 2102
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2103

2104
	mutex_unlock(&pool->manager_mutex);
2105
	mutex_unlock(&pool->manager_arb);
2106
	return ret;
2107 2108
}

2109 2110
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2111
 * @worker: self
2112 2113 2114 2115 2116 2117 2118 2119 2120
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2121
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2122
 */
T
Tejun Heo 已提交
2123
static void process_one_work(struct worker *worker, struct work_struct *work)
2124 2125
__releases(&pool->lock)
__acquires(&pool->lock)
2126
{
2127
	struct pool_workqueue *pwq = get_work_pwq(work);
2128
	struct worker_pool *pool = worker->pool;
2129
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2130
	int work_color;
2131
	struct worker *collision;
2132 2133 2134 2135 2136 2137 2138 2139
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2140 2141 2142
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2143
#endif
2144 2145 2146
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2147
	 * unbound or a disassociated pool.
2148
	 */
2149
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2150
		     !(pool->flags & POOL_DISASSOCIATED) &&
2151
		     raw_smp_processor_id() != pool->cpu);
2152

2153 2154 2155 2156 2157 2158
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2159
	collision = find_worker_executing_work(pool, work);
2160 2161 2162 2163 2164
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2165
	/* claim and dequeue */
2166
	debug_work_deactivate(work);
2167
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2168
	worker->current_work = work;
2169
	worker->current_func = work->func;
2170
	worker->current_pwq = pwq;
2171
	work_color = get_work_color(work);
2172

2173 2174
	list_del_init(&work->entry);

2175 2176 2177 2178 2179 2180 2181
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2182
	/*
2183
	 * Unbound pool isn't concurrency managed and work items should be
2184 2185
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2186 2187
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2188

2189
	/*
2190
	 * Record the last pool and clear PENDING which should be the last
2191
	 * update to @work.  Also, do this inside @pool->lock so that
2192 2193
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2194
	 */
2195
	set_work_pool_and_clear_pending(work, pool->id);
2196

2197
	spin_unlock_irq(&pool->lock);
2198

2199
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2200
	lock_map_acquire(&lockdep_map);
2201
	trace_workqueue_execute_start(work);
2202
	worker->current_func(work);
2203 2204 2205 2206 2207
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2208
	lock_map_release(&lockdep_map);
2209
	lock_map_release(&pwq->wq->lockdep_map);
2210 2211

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2212 2213
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2214 2215
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2216 2217 2218 2219
		debug_show_held_locks(current);
		dump_stack();
	}

2220 2221 2222 2223 2224 2225 2226 2227 2228
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2229
	spin_lock_irq(&pool->lock);
2230

2231 2232 2233 2234
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2235
	/* we're done with it, release */
2236
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2237
	worker->current_work = NULL;
2238
	worker->current_func = NULL;
2239
	worker->current_pwq = NULL;
2240
	worker->desc_valid = false;
2241
	pwq_dec_nr_in_flight(pwq, work_color);
2242 2243
}

2244 2245 2246 2247 2248 2249 2250 2251 2252
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2253
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2254 2255 2256
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2257
{
2258 2259
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2260
						struct work_struct, entry);
T
Tejun Heo 已提交
2261
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2262 2263 2264
	}
}

T
Tejun Heo 已提交
2265 2266
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2267
 * @__worker: self
T
Tejun Heo 已提交
2268
 *
2269 2270 2271 2272 2273
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2274 2275
 *
 * Return: 0
T
Tejun Heo 已提交
2276
 */
T
Tejun Heo 已提交
2277
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2278
{
T
Tejun Heo 已提交
2279
	struct worker *worker = __worker;
2280
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2281

2282 2283
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2284
woke_up:
2285
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2286

2287 2288
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2289
		spin_unlock_irq(&pool->lock);
2290 2291 2292
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2293
	}
2294

T
Tejun Heo 已提交
2295
	worker_leave_idle(worker);
2296
recheck:
2297
	/* no more worker necessary? */
2298
	if (!need_more_worker(pool))
2299 2300 2301
		goto sleep;

	/* do we need to manage? */
2302
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2303 2304
		goto recheck;

T
Tejun Heo 已提交
2305 2306 2307 2308 2309
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2310
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2311

2312
	/*
2313 2314 2315 2316 2317
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2318
	 */
2319
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2320 2321

	do {
T
Tejun Heo 已提交
2322
		struct work_struct *work =
2323
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2324 2325 2326 2327 2328 2329
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2330
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2331 2332 2333
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2334
		}
2335
	} while (keep_working(pool));
2336 2337

	worker_set_flags(worker, WORKER_PREP, false);
2338
sleep:
2339
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2340
		goto recheck;
2341

T
Tejun Heo 已提交
2342
	/*
2343 2344 2345 2346 2347
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2348 2349 2350
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2351
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2352 2353
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2354 2355
}

2356 2357
/**
 * rescuer_thread - the rescuer thread function
2358
 * @__rescuer: self
2359 2360
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2361
 * workqueue which has WQ_MEM_RECLAIM set.
2362
 *
2363
 * Regular work processing on a pool may block trying to create a new
2364 2365 2366 2367 2368
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2369 2370
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2371 2372 2373
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2374 2375
 *
 * Return: 0
2376
 */
2377
static int rescuer_thread(void *__rescuer)
2378
{
2379 2380
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2381
	struct list_head *scheduled = &rescuer->scheduled;
2382
	bool should_stop;
2383 2384

	set_user_nice(current, RESCUER_NICE_LEVEL);
2385 2386 2387 2388 2389 2390

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2391 2392 2393
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2394 2395 2396 2397 2398 2399 2400 2401 2402
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2403

2404
	/* see whether any pwq is asking for help */
2405
	spin_lock_irq(&wq_mayday_lock);
2406 2407 2408 2409

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2410
		struct worker_pool *pool = pwq->pool;
2411 2412 2413
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2414 2415
		list_del_init(&pwq->mayday_node);

2416
		spin_unlock_irq(&wq_mayday_lock);
2417 2418

		/* migrate to the target cpu if possible */
2419
		worker_maybe_bind_and_lock(pool);
2420
		rescuer->pool = pool;
2421 2422 2423 2424 2425

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2426
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2427
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2428
			if (get_work_pwq(work) == pwq)
2429 2430 2431
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2432

2433 2434 2435 2436 2437 2438
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2439
		/*
2440
		 * Leave this pool.  If keep_working() is %true, notify a
2441 2442 2443
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2444 2445
		if (keep_working(pool))
			wake_up_worker(pool);
2446

2447
		rescuer->pool = NULL;
2448
		spin_unlock(&pool->lock);
2449
		spin_lock(&wq_mayday_lock);
2450 2451
	}

2452
	spin_unlock_irq(&wq_mayday_lock);
2453

2454 2455 2456 2457 2458 2459
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2460 2461
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2462 2463
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2464 2465
}

O
Oleg Nesterov 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2477 2478
/**
 * insert_wq_barrier - insert a barrier work
2479
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2480
 * @barr: wq_barrier to insert
2481 2482
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2483
 *
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2496
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2497 2498
 *
 * CONTEXT:
2499
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2500
 */
2501
static void insert_wq_barrier(struct pool_workqueue *pwq,
2502 2503
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2504
{
2505 2506 2507
	struct list_head *head;
	unsigned int linked = 0;

2508
	/*
2509
	 * debugobject calls are safe here even with pool->lock locked
2510 2511 2512 2513
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2514
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2515
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2516
	init_completion(&barr->done);
2517

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2533
	debug_work_activate(&barr->work);
2534
	insert_work(pwq, &barr->work, head,
2535
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2536 2537
}

2538
/**
2539
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2540 2541 2542 2543
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2544
 * Prepare pwqs for workqueue flushing.
2545
 *
2546 2547 2548 2549 2550
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2551 2552 2553 2554 2555 2556 2557
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2558
 * If @work_color is non-negative, all pwqs should have the same
2559 2560 2561 2562
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2563
 * mutex_lock(wq->mutex).
2564
 *
2565
 * Return:
2566 2567 2568
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2569
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2570
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2571
{
2572
	bool wait = false;
2573
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2574

2575
	if (flush_color >= 0) {
2576
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2577
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2578
	}
2579

2580
	for_each_pwq(pwq, wq) {
2581
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2582

2583
		spin_lock_irq(&pool->lock);
2584

2585
		if (flush_color >= 0) {
2586
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2587

2588 2589 2590
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2591 2592 2593
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2594

2595
		if (work_color >= 0) {
2596
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2597
			pwq->work_color = work_color;
2598
		}
L
Linus Torvalds 已提交
2599

2600
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2601
	}
2602

2603
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2604
		complete(&wq->first_flusher->done);
2605

2606
	return wait;
L
Linus Torvalds 已提交
2607 2608
}

2609
/**
L
Linus Torvalds 已提交
2610
 * flush_workqueue - ensure that any scheduled work has run to completion.
2611
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2612
 *
2613 2614
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2615
 */
2616
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2617
{
2618 2619 2620 2621 2622 2623
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2624

2625 2626
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2627

2628
	mutex_lock(&wq->mutex);
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2641
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2642 2643 2644 2645 2646
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2647
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2648 2649 2650

			wq->first_flusher = &this_flusher;

2651
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2652 2653 2654 2655 2656 2657 2658 2659
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2660
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2661
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2662
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2673
	mutex_unlock(&wq->mutex);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2686
	mutex_lock(&wq->mutex);
2687

2688 2689 2690 2691
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2692 2693
	wq->first_flusher = NULL;

2694 2695
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2708 2709
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2729
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2730 2731 2732
		}

		if (list_empty(&wq->flusher_queue)) {
2733
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2734 2735 2736 2737 2738
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2739
		 * the new first flusher and arm pwqs.
2740
		 */
2741 2742
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2743 2744 2745 2746

		list_del_init(&next->list);
		wq->first_flusher = next;

2747
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2758
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2759
}
2760
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2761

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2776
	struct pool_workqueue *pwq;
2777 2778 2779 2780

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2781
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2782
	 */
2783
	mutex_lock(&wq->mutex);
2784
	if (!wq->nr_drainers++)
2785
		wq->flags |= __WQ_DRAINING;
2786
	mutex_unlock(&wq->mutex);
2787 2788 2789
reflush:
	flush_workqueue(wq);

2790
	mutex_lock(&wq->mutex);
2791

2792
	for_each_pwq(pwq, wq) {
2793
		bool drained;
2794

2795
		spin_lock_irq(&pwq->pool->lock);
2796
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2797
		spin_unlock_irq(&pwq->pool->lock);
2798 2799

		if (drained)
2800 2801 2802 2803
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2804
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2805
				wq->name, flush_cnt);
2806

2807
		mutex_unlock(&wq->mutex);
2808 2809 2810 2811
		goto reflush;
	}

	if (!--wq->nr_drainers)
2812
		wq->flags &= ~__WQ_DRAINING;
2813
	mutex_unlock(&wq->mutex);
2814 2815 2816
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2817
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2818
{
2819
	struct worker *worker = NULL;
2820
	struct worker_pool *pool;
2821
	struct pool_workqueue *pwq;
2822 2823

	might_sleep();
2824 2825

	local_irq_disable();
2826
	pool = get_work_pool(work);
2827 2828
	if (!pool) {
		local_irq_enable();
2829
		return false;
2830
	}
2831

2832
	spin_lock(&pool->lock);
2833
	/* see the comment in try_to_grab_pending() with the same code */
2834 2835 2836
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2837
			goto already_gone;
2838
	} else {
2839
		worker = find_worker_executing_work(pool, work);
2840
		if (!worker)
T
Tejun Heo 已提交
2841
			goto already_gone;
2842
		pwq = worker->current_pwq;
2843
	}
2844

2845
	insert_wq_barrier(pwq, barr, work, worker);
2846
	spin_unlock_irq(&pool->lock);
2847

2848 2849 2850 2851 2852 2853
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2854
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2855
		lock_map_acquire(&pwq->wq->lockdep_map);
2856
	else
2857 2858
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2859

2860
	return true;
T
Tejun Heo 已提交
2861
already_gone:
2862
	spin_unlock_irq(&pool->lock);
2863
	return false;
2864
}
2865 2866 2867 2868 2869

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2870 2871
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2872
 *
2873
 * Return:
2874 2875 2876 2877 2878
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2879 2880
	struct wq_barrier barr;

2881 2882 2883
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2884 2885 2886 2887 2888 2889 2890
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2891
}
2892
EXPORT_SYMBOL_GPL(flush_work);
2893

2894
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2895
{
2896
	unsigned long flags;
2897 2898 2899
	int ret;

	do {
2900 2901 2902 2903 2904 2905
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2906
			flush_work(work);
2907 2908
	} while (unlikely(ret < 0));

2909 2910 2911 2912
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2913
	flush_work(work);
2914
	clear_work_data(work);
2915 2916 2917
	return ret;
}

2918
/**
2919 2920
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2921
 *
2922 2923 2924 2925
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2926
 *
2927 2928
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2929
 *
2930
 * The caller must ensure that the workqueue on which @work was last
2931
 * queued can't be destroyed before this function returns.
2932
 *
2933
 * Return:
2934
 * %true if @work was pending, %false otherwise.
2935
 */
2936
bool cancel_work_sync(struct work_struct *work)
2937
{
2938
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2939
}
2940
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2941

2942
/**
2943 2944
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2945
 *
2946 2947 2948
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2949
 *
2950
 * Return:
2951 2952
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2953
 */
2954 2955
bool flush_delayed_work(struct delayed_work *dwork)
{
2956
	local_irq_disable();
2957
	if (del_timer_sync(&dwork->timer))
2958
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2959
	local_irq_enable();
2960 2961 2962 2963
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2964
/**
2965 2966
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2967
 *
2968 2969 2970 2971 2972 2973 2974 2975 2976
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2977
 *
2978
 * This function is safe to call from any context including IRQ handler.
2979
 */
2980
bool cancel_delayed_work(struct delayed_work *dwork)
2981
{
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2992 2993
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2994
	local_irq_restore(flags);
2995
	return ret;
2996
}
2997
EXPORT_SYMBOL(cancel_delayed_work);
2998

2999 3000 3001 3002 3003 3004
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
3005
 * Return:
3006 3007 3008
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3009
{
3010
	return __cancel_work_timer(&dwork->work, true);
3011
}
3012
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3013

3014
/**
3015
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3016 3017
 * @func: the function to call
 *
3018 3019
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3020
 * schedule_on_each_cpu() is very slow.
3021
 *
3022
 * Return:
3023
 * 0 on success, -errno on failure.
3024
 */
3025
int schedule_on_each_cpu(work_func_t func)
3026 3027
{
	int cpu;
3028
	struct work_struct __percpu *works;
3029

3030 3031
	works = alloc_percpu(struct work_struct);
	if (!works)
3032
		return -ENOMEM;
3033

3034 3035
	get_online_cpus();

3036
	for_each_online_cpu(cpu) {
3037 3038 3039
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3040
		schedule_work_on(cpu, work);
3041
	}
3042 3043 3044 3045

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3046
	put_online_cpus();
3047
	free_percpu(works);
3048 3049 3050
	return 0;
}

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3075 3076
void flush_scheduled_work(void)
{
3077
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3078
}
3079
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3080

3081 3082 3083 3084 3085 3086 3087 3088 3089
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3090
 * Return:	0 - function was executed
3091 3092
 *		1 - function was scheduled for execution
 */
3093
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3094 3095
{
	if (!in_interrupt()) {
3096
		fn(&ew->work);
3097 3098 3099
		return 0;
	}

3100
	INIT_WORK(&ew->work, fn);
3101 3102 3103 3104 3105 3106
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3134 3135
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3136 3137 3138 3139 3140
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3141
static DEVICE_ATTR_RO(per_cpu);
3142

3143 3144
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3145 3146 3147 3148 3149 3150
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3151 3152 3153
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3164
static DEVICE_ATTR_RW(max_active);
3165

3166 3167 3168 3169
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3170
};
3171
ATTRIBUTE_GROUPS(wq_sysfs);
3172

3173 3174
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3175 3176
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3177 3178
	const char *delim = "";
	int node, written = 0;
3179 3180

	rcu_read_lock_sched();
3181 3182 3183 3184 3185 3186 3187
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3199 3200 3201
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3215 3216 3217
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3233
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3248 3249 3250
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3311
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3312
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3313 3314
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3315
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3316 3317 3318 3319 3320
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3321
	.dev_groups			= wq_sysfs_groups,
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3350
 * Return: 0 on success, -errno on failure.
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3443 3444 3445
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3457
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3458 3459 3460 3461 3462 3463
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3464 3465 3466 3467 3468
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3469 3470 3471 3472 3473 3474
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3475 3476 3477 3478 3479 3480 3481 3482
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3483 3484
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3499 3500 3501 3502 3503
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3504 3505
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3506 3507
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3508 3509
 */
static int init_worker_pool(struct worker_pool *pool)
3510 3511
{
	spin_lock_init(&pool->lock);
3512 3513
	pool->id = -1;
	pool->cpu = -1;
3514
	pool->node = NUMA_NO_NODE;
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3528
	mutex_init(&pool->manager_mutex);
3529
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3530

3531 3532 3533 3534
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3535 3536 3537 3538
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3539 3540
}

3541 3542 3543 3544
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3545
	idr_destroy(&pool->worker_idr);
3546 3547 3548 3549 3550 3551 3552 3553 3554
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3555 3556 3557
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3558 3559
 *
 * Should be called with wq_pool_mutex held.
3560 3561 3562 3563 3564
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3565 3566 3567
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3568 3569 3570 3571
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3572
	    WARN_ON(!list_empty(&pool->worklist)))
3573 3574 3575 3576 3577 3578 3579
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3580 3581 3582 3583 3584
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3585
	mutex_lock(&pool->manager_arb);
3586
	mutex_lock(&pool->manager_mutex);
3587 3588 3589 3590 3591 3592 3593
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3594
	mutex_unlock(&pool->manager_mutex);
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3612
 * create a new one.
3613 3614
 *
 * Should be called with wq_pool_mutex held.
3615 3616 3617
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3618 3619 3620 3621 3622
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3623
	int node;
3624

3625
	lockdep_assert_held(&wq_pool_mutex);
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3640 3641 3642
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3643
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3644 3645
	copy_workqueue_attrs(pool->attrs, attrs);

3646 3647 3648 3649 3650 3651
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3663 3664 3665 3666
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3667
	if (create_and_start_worker(pool) < 0)
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3696
	bool is_last;
T
Tejun Heo 已提交
3697 3698 3699 3700

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3701
	/*
3702
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3703 3704 3705
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3706
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3707
	list_del_rcu(&pwq->pwqs_node);
3708
	is_last = list_empty(&wq->pwqs);
3709
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3710

3711
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3712
	put_unbound_pool(pool);
3713 3714
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3715 3716 3717 3718 3719 3720
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3721 3722
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3723
		kfree(wq);
3724
	}
T
Tejun Heo 已提交
3725 3726
}

3727
/**
3728
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3729 3730
 * @pwq: target pool_workqueue
 *
3731 3732 3733
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3734
 */
3735
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3736
{
3737 3738 3739 3740
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3741
	lockdep_assert_held(&wq->mutex);
3742 3743 3744 3745 3746

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3747
	spin_lock_irq(&pwq->pool->lock);
3748 3749 3750

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3751

3752 3753 3754
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3755 3756 3757 3758 3759 3760

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3761 3762 3763 3764
	} else {
		pwq->max_active = 0;
	}

3765
	spin_unlock_irq(&pwq->pool->lock);
3766 3767
}

3768
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3769 3770
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3771 3772 3773
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3774 3775
	memset(pwq, 0, sizeof(*pwq));

3776 3777 3778
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3779
	pwq->refcnt = 1;
3780
	INIT_LIST_HEAD(&pwq->delayed_works);
3781
	INIT_LIST_HEAD(&pwq->pwqs_node);
3782
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3783
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3784
}
3785

3786
/* sync @pwq with the current state of its associated wq and link it */
3787
static void link_pwq(struct pool_workqueue *pwq)
3788 3789 3790 3791
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3792

3793 3794 3795 3796
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3797 3798
	/*
	 * Set the matching work_color.  This is synchronized with
3799
	 * wq->mutex to avoid confusing flush_workqueue().
3800
	 */
3801
	pwq->work_color = wq->work_color;
3802 3803 3804 3805 3806

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3807
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3808
}
3809

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3823
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3824 3825 3826
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3827
	}
3828

3829 3830
	init_pwq(pwq, wq, pool);
	return pwq;
3831 3832
}

3833 3834 3835 3836 3837 3838 3839
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3840
		kmem_cache_free(pwq_cache, pwq);
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3853
 * calculation.  The result is stored in @cpumask.
3854 3855 3856 3857 3858 3859 3860 3861
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3862 3863 3864
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3865 3866 3867 3868
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3869
	if (!wq_numa_enabled || attrs->no_numa)
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3906 3907 3908 3909 3910
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3911 3912 3913 3914 3915 3916
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3917
 *
3918 3919 3920
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3921 3922 3923 3924
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3925 3926
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3927
	int node, ret;
3928

3929
	/* only unbound workqueues can change attributes */
3930 3931 3932
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3933 3934 3935 3936
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3937
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3938
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3939 3940
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3941 3942
		goto enomem;

3943
	/* make a copy of @attrs and sanitize it */
3944 3945 3946
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3961
	mutex_lock(&wq_pool_mutex);
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3983
	mutex_unlock(&wq_pool_mutex);
3984

3985
	/* all pwqs have been created successfully, let's install'em */
3986
	mutex_lock(&wq->mutex);
3987

3988
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3989 3990

	/* save the previous pwq and install the new one */
3991
	for_each_node(node)
3992 3993 3994 3995 3996
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3997 3998

	mutex_unlock(&wq->mutex);
3999

4000 4001 4002 4003 4004 4005
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
4006 4007 4008
	ret = 0;
	/* fall through */
out_free:
4009
	free_workqueue_attrs(tmp_attrs);
4010
	free_workqueue_attrs(new_attrs);
4011
	kfree(pwq_tbl);
4012
	return ret;
4013

4014 4015 4016 4017 4018 4019 4020
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
4021
enomem:
4022 4023
	ret = -ENOMEM;
	goto out_free;
4024 4025
}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4071 4072
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4073 4074 4075 4076 4077 4078 4079 4080

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
4081
	 * wq's, the default pwq should be used.
4082 4083 4084 4085 4086
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
4087
		goto use_dfl_pwq;
4088 4089 4090 4091 4092 4093 4094
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
4095 4096
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
4097 4098
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4121
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4122
{
4123
	bool highpri = wq->flags & WQ_HIGHPRI;
4124
	int cpu, ret;
4125 4126

	if (!(wq->flags & WQ_UNBOUND)) {
4127 4128
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4129 4130 4131
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4132 4133
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4134
			struct worker_pool *cpu_pools =
4135
				per_cpu(cpu_worker_pools, cpu);
4136

4137 4138 4139
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4140
			link_pwq(pwq);
4141
			mutex_unlock(&wq->mutex);
4142
		}
4143
		return 0;
4144 4145 4146 4147 4148 4149 4150
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4151
	} else {
4152
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4153
	}
T
Tejun Heo 已提交
4154 4155
}

4156 4157
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4158
{
4159 4160 4161
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4162 4163
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4164

4165
	return clamp_val(max_active, 1, lim);
4166 4167
}

4168
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4169 4170 4171
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4172
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4173
{
4174
	size_t tbl_size = 0;
4175
	va_list args;
L
Linus Torvalds 已提交
4176
	struct workqueue_struct *wq;
4177
	struct pool_workqueue *pwq;
4178

4179 4180 4181 4182
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4183
	/* allocate wq and format name */
4184 4185 4186 4187
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4188
	if (!wq)
4189
		return NULL;
4190

4191 4192 4193 4194 4195 4196
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4197 4198
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4199
	va_end(args);
L
Linus Torvalds 已提交
4200

4201
	max_active = max_active ?: WQ_DFL_ACTIVE;
4202
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4203

4204
	/* init wq */
4205
	wq->flags = flags;
4206
	wq->saved_max_active = max_active;
4207
	mutex_init(&wq->mutex);
4208
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4209
	INIT_LIST_HEAD(&wq->pwqs);
4210 4211
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4212
	INIT_LIST_HEAD(&wq->maydays);
4213

4214
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4215
	INIT_LIST_HEAD(&wq->list);
4216

4217
	if (alloc_and_link_pwqs(wq) < 0)
4218
		goto err_free_wq;
T
Tejun Heo 已提交
4219

4220 4221 4222 4223 4224
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4225 4226
		struct worker *rescuer;

4227
		rescuer = alloc_worker();
4228
		if (!rescuer)
4229
			goto err_destroy;
4230

4231 4232
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4233
					       wq->name);
4234 4235 4236 4237
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4238

4239
		wq->rescuer = rescuer;
4240
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4241
		wake_up_process(rescuer->task);
4242 4243
	}

4244 4245 4246
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4247
	/*
4248 4249 4250
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4251
	 */
4252
	mutex_lock(&wq_pool_mutex);
4253

4254
	mutex_lock(&wq->mutex);
4255 4256
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4257
	mutex_unlock(&wq->mutex);
4258

T
Tejun Heo 已提交
4259
	list_add(&wq->list, &workqueues);
4260

4261
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4262

4263
	return wq;
4264 4265

err_free_wq:
4266
	free_workqueue_attrs(wq->unbound_attrs);
4267 4268 4269 4270
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4271
	return NULL;
4272
}
4273
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4274

4275 4276 4277 4278 4279 4280 4281 4282
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4283
	struct pool_workqueue *pwq;
4284
	int node;
4285

4286 4287
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4288

4289
	/* sanity checks */
4290
	mutex_lock(&wq->mutex);
4291
	for_each_pwq(pwq, wq) {
4292 4293
		int i;

4294 4295
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4296
				mutex_unlock(&wq->mutex);
4297
				return;
4298 4299 4300
			}
		}

4301
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4302
		    WARN_ON(pwq->nr_active) ||
4303
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4304
			mutex_unlock(&wq->mutex);
4305
			return;
4306
		}
4307
	}
4308
	mutex_unlock(&wq->mutex);
4309

4310 4311 4312 4313
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4314
	mutex_lock(&wq_pool_mutex);
4315
	list_del_init(&wq->list);
4316
	mutex_unlock(&wq_pool_mutex);
4317

4318 4319
	workqueue_sysfs_unregister(wq);

4320
	if (wq->rescuer) {
4321
		kthread_stop(wq->rescuer->task);
4322
		kfree(wq->rescuer);
4323
		wq->rescuer = NULL;
4324 4325
	}

T
Tejun Heo 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4336 4337
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4338
		 */
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4351
		put_pwq_unlocked(pwq);
4352
	}
4353 4354 4355
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4368
	struct pool_workqueue *pwq;
4369

4370 4371 4372 4373
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4374
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4375

4376
	mutex_lock(&wq->mutex);
4377 4378 4379

	wq->saved_max_active = max_active;

4380 4381
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4382

4383
	mutex_unlock(&wq->mutex);
4384
}
4385
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4386

4387 4388 4389 4390 4391
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4392 4393
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4394 4395 4396 4397 4398
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4399
	return worker && worker->rescue_wq;
4400 4401
}

4402
/**
4403 4404 4405
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4406
 *
4407 4408 4409
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4410
 *
4411 4412 4413 4414 4415 4416
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4417
 * Return:
4418
 * %true if congested, %false otherwise.
4419
 */
4420
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4421
{
4422
	struct pool_workqueue *pwq;
4423 4424
	bool ret;

4425
	rcu_read_lock_sched();
4426

4427 4428 4429
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4430 4431 4432
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4433
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4434

4435
	ret = !list_empty(&pwq->delayed_works);
4436
	rcu_read_unlock_sched();
4437 4438

	return ret;
L
Linus Torvalds 已提交
4439
}
4440
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4441

4442 4443 4444 4445 4446 4447 4448 4449
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4450
 * Return:
4451 4452 4453
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4454
{
4455
	struct worker_pool *pool;
4456 4457
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4458

4459 4460
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4461

4462 4463
	local_irq_save(flags);
	pool = get_work_pool(work);
4464
	if (pool) {
4465
		spin_lock(&pool->lock);
4466 4467
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4468
		spin_unlock(&pool->lock);
4469
	}
4470
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4471

4472
	return ret;
L
Linus Torvalds 已提交
4473
}
4474
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4475

4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
4546
		pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
4547 4548 4549 4550 4551 4552
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4553 4554 4555
/*
 * CPU hotplug.
 *
4556
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4557
 * are a lot of assumptions on strong associations among work, pwq and
4558
 * pool which make migrating pending and scheduled works very
4559
 * difficult to implement without impacting hot paths.  Secondly,
4560
 * worker pools serve mix of short, long and very long running works making
4561 4562
 * blocked draining impractical.
 *
4563
 * This is solved by allowing the pools to be disassociated from the CPU
4564 4565
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4566
 */
L
Linus Torvalds 已提交
4567

4568
static void wq_unbind_fn(struct work_struct *work)
4569
{
4570
	int cpu = smp_processor_id();
4571
	struct worker_pool *pool;
4572
	struct worker *worker;
4573
	int wi;
4574

4575
	for_each_cpu_worker_pool(pool, cpu) {
4576
		WARN_ON_ONCE(cpu != smp_processor_id());
4577

4578
		mutex_lock(&pool->manager_mutex);
4579
		spin_lock_irq(&pool->lock);
4580

4581
		/*
4582
		 * We've blocked all manager operations.  Make all workers
4583 4584 4585 4586 4587
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4588
		for_each_pool_worker(worker, wi, pool)
4589
			worker->flags |= WORKER_UNBOUND;
4590

4591
		pool->flags |= POOL_DISASSOCIATED;
4592

4593
		spin_unlock_irq(&pool->lock);
4594
		mutex_unlock(&pool->manager_mutex);
4595

4596 4597 4598 4599 4600 4601 4602
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4603

4604 4605 4606 4607 4608 4609 4610 4611
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4612
		atomic_set(&pool->nr_running, 0);
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4623 4624
}

T
Tejun Heo 已提交
4625 4626 4627 4628
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4629
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4630 4631 4632
 */
static void rebind_workers(struct worker_pool *pool)
{
4633 4634
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4635 4636 4637

	lockdep_assert_held(&pool->manager_mutex);

4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4648

4649
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4650

4651 4652
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4653 4654

		/*
4655 4656 4657 4658 4659 4660
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4661
		 */
4662 4663
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4664

4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4684
	}
4685 4686

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4687 4688
}

4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4722 4723 4724 4725
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4726
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4727 4728
					       unsigned long action,
					       void *hcpu)
4729
{
4730
	int cpu = (unsigned long)hcpu;
4731
	struct worker_pool *pool;
4732
	struct workqueue_struct *wq;
4733
	int pi;
4734

T
Tejun Heo 已提交
4735
	switch (action & ~CPU_TASKS_FROZEN) {
4736
	case CPU_UP_PREPARE:
4737
		for_each_cpu_worker_pool(pool, cpu) {
4738 4739
			if (pool->nr_workers)
				continue;
4740
			if (create_and_start_worker(pool) < 0)
4741
				return NOTIFY_BAD;
4742
		}
T
Tejun Heo 已提交
4743
		break;
4744

4745 4746
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4747
		mutex_lock(&wq_pool_mutex);
4748 4749

		for_each_pool(pool, pi) {
4750
			mutex_lock(&pool->manager_mutex);
4751

4752 4753 4754 4755
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4756

4757 4758 4759 4760
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4761

4762
			mutex_unlock(&pool->manager_mutex);
4763
		}
4764

4765 4766 4767 4768
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4769
		mutex_unlock(&wq_pool_mutex);
4770
		break;
4771
	}
4772 4773 4774 4775 4776 4777 4778
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4779
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4780 4781 4782
						 unsigned long action,
						 void *hcpu)
{
4783
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4784
	struct work_struct unbind_work;
4785
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4786

4787 4788
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4789
		/* unbinding per-cpu workers should happen on the local CPU */
4790
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4791
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4792 4793 4794 4795 4796 4797 4798 4799

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4800
		flush_work(&unbind_work);
4801
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4802
		break;
4803 4804 4805 4806
	}
	return NOTIFY_OK;
}

4807
#ifdef CONFIG_SMP
4808

4809
struct work_for_cpu {
4810
	struct work_struct work;
4811 4812 4813 4814 4815
	long (*fn)(void *);
	void *arg;
	long ret;
};

4816
static void work_for_cpu_fn(struct work_struct *work)
4817
{
4818 4819
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4820 4821 4822 4823 4824 4825 4826 4827 4828
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4829
 * It is up to the caller to ensure that the cpu doesn't go offline.
4830
 * The caller must not hold any locks which would prevent @fn from completing.
4831 4832
 *
 * Return: The value @fn returns.
4833
 */
4834
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4835
{
4836
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4837

4838 4839
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4840
	flush_work(&wfc.work);
4841
	destroy_work_on_stack(&wfc.work);
4842 4843 4844 4845 4846
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4847 4848 4849 4850 4851
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4852
 * Start freezing workqueues.  After this function returns, all freezable
4853
 * workqueues will queue new works to their delayed_works list instead of
4854
 * pool->worklist.
4855 4856
 *
 * CONTEXT:
4857
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4858 4859 4860
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4861
	struct worker_pool *pool;
4862 4863
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4864
	int pi;
4865

4866
	mutex_lock(&wq_pool_mutex);
4867

4868
	WARN_ON_ONCE(workqueue_freezing);
4869 4870
	workqueue_freezing = true;

4871
	/* set FREEZING */
4872
	for_each_pool(pool, pi) {
4873
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4874 4875
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4876
		spin_unlock_irq(&pool->lock);
4877
	}
4878

4879
	list_for_each_entry(wq, &workqueues, list) {
4880
		mutex_lock(&wq->mutex);
4881 4882
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4883
		mutex_unlock(&wq->mutex);
4884
	}
4885

4886
	mutex_unlock(&wq_pool_mutex);
4887 4888 4889
}

/**
4890
 * freeze_workqueues_busy - are freezable workqueues still busy?
4891 4892 4893 4894 4895
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4896
 * Grabs and releases wq_pool_mutex.
4897
 *
4898
 * Return:
4899 4900
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4901 4902 4903 4904
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4905 4906
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4907

4908
	mutex_lock(&wq_pool_mutex);
4909

4910
	WARN_ON_ONCE(!workqueue_freezing);
4911

4912 4913 4914
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4915 4916 4917 4918
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4919
		rcu_read_lock_sched();
4920
		for_each_pwq(pwq, wq) {
4921
			WARN_ON_ONCE(pwq->nr_active < 0);
4922
			if (pwq->nr_active) {
4923
				busy = true;
4924
				rcu_read_unlock_sched();
4925 4926 4927
				goto out_unlock;
			}
		}
4928
		rcu_read_unlock_sched();
4929 4930
	}
out_unlock:
4931
	mutex_unlock(&wq_pool_mutex);
4932 4933 4934 4935 4936 4937 4938
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4939
 * frozen works are transferred to their respective pool worklists.
4940 4941
 *
 * CONTEXT:
4942
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4943 4944 4945
 */
void thaw_workqueues(void)
{
4946 4947 4948
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4949
	int pi;
4950

4951
	mutex_lock(&wq_pool_mutex);
4952 4953 4954 4955

	if (!workqueue_freezing)
		goto out_unlock;

4956
	/* clear FREEZING */
4957
	for_each_pool(pool, pi) {
4958
		spin_lock_irq(&pool->lock);
4959 4960
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4961
		spin_unlock_irq(&pool->lock);
4962
	}
4963

4964 4965
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4966
		mutex_lock(&wq->mutex);
4967 4968
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4969
		mutex_unlock(&wq->mutex);
4970 4971 4972 4973
	}

	workqueue_freezing = false;
out_unlock:
4974
	mutex_unlock(&wq_pool_mutex);
4975 4976 4977
}
#endif /* CONFIG_FREEZER */

4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4990 4991 4992 4993 4994
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4995 4996 4997
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4998 4999 5000 5001 5002 5003 5004 5005 5006
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
5007 5008
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5024
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5025
{
T
Tejun Heo 已提交
5026 5027
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5028

5029 5030 5031 5032
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5033
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5034
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5035

5036 5037
	wq_numa_init();

5038
	/* initialize CPU pools */
5039
	for_each_possible_cpu(cpu) {
5040
		struct worker_pool *pool;
5041

T
Tejun Heo 已提交
5042
		i = 0;
5043
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5044
			BUG_ON(init_worker_pool(pool));
5045
			pool->cpu = cpu;
5046
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5047
			pool->attrs->nice = std_nice[i++];
5048
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5049

T
Tejun Heo 已提交
5050
			/* alloc pool ID */
5051
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5052
			BUG_ON(worker_pool_assign_id(pool));
5053
			mutex_unlock(&wq_pool_mutex);
5054
		}
5055 5056
	}

5057
	/* create the initial worker */
5058
	for_each_online_cpu(cpu) {
5059
		struct worker_pool *pool;
5060

5061
		for_each_cpu_worker_pool(pool, cpu) {
5062
			pool->flags &= ~POOL_DISASSOCIATED;
5063
			BUG_ON(create_and_start_worker(pool) < 0);
5064
		}
5065 5066
	}

5067
	/* create default unbound and ordered wq attrs */
5068 5069 5070 5071 5072 5073
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5084 5085
	}

5086
	system_wq = alloc_workqueue("events", 0, 0);
5087
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5088
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5089 5090
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5091 5092
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5093 5094 5095 5096 5097
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5098
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5099 5100 5101
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5102
	return 0;
L
Linus Torvalds 已提交
5103
}
5104
early_initcall(init_workqueues);