workqueue.c 103.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125
struct worker_pool {
126
	spinlock_t		lock;		/* the pool lock */
127
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
128
	int			id;		/* I: pool ID */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141 142 143 144
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

145
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146
	struct ida		worker_ida;	/* L: for worker IDs */
147 148 149 150 151 152 153

	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
154 155
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
156
/*
157 158 159 160
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
161
 */
162
struct pool_workqueue {
163
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
164
	struct workqueue_struct *wq;		/* I: the owning workqueue */
165 166 167 168
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
169
	int			nr_active;	/* L: nr of active works */
170
	int			max_active;	/* L: max active works */
171
	struct list_head	delayed_works;	/* L: delayed works */
172
	struct list_head	pwqs_node;	/* I: node on wq->pwqs */
173
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
174

175 176 177 178 179 180 181 182 183
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

184 185 186 187 188 189 190 191 192 193
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
194
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
195 196 197 198 199 200 201 202 203
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
204 205 206 207 208 209

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
210
	unsigned int		flags;		/* W: WQ_* flags */
211
	union {
212 213
		struct pool_workqueue __percpu		*pcpu;
		struct pool_workqueue			*single;
214
		unsigned long				v;
215
	} pool_wq;				/* I: pwq's */
216
	struct list_head	pwqs;		/* I: all pwqs of this wq */
T
Tejun Heo 已提交
217
	struct list_head	list;		/* W: list of all workqueues */
218 219 220 221

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
222
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
223 224 225 226
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

227
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
228 229
	struct worker		*rescuer;	/* I: rescue worker */

230
	int			nr_drainers;	/* W: drain in progress */
231
	int			saved_max_active; /* W: saved pwq max_active */
232
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
233
	struct lockdep_map	lockdep_map;
234
#endif
235
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
236 237
};

238 239
static struct kmem_cache *pwq_cache;

240 241
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
242
struct workqueue_struct *system_highpri_wq __read_mostly;
243
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
244
struct workqueue_struct *system_long_wq __read_mostly;
245
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
246
struct workqueue_struct *system_unbound_wq __read_mostly;
247
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
248
struct workqueue_struct *system_freezable_wq __read_mostly;
249
EXPORT_SYMBOL_GPL(system_freezable_wq);
250

251 252 253
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

254
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
255 256
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
257

258 259
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
260

261 262
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
263 264 265 266 267 268 269 270 271 272
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
273
	return WORK_CPU_END;
274 275
}

276 277 278
/*
 * CPU iterators
 *
279
 * An extra cpu number is defined using an invalid cpu number
280
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
281 282
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
283
 *
284 285
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
286
 */
287 288
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
289
	     (cpu) < WORK_CPU_END;					\
290
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
291

292 293
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
294
	     (cpu) < WORK_CPU_END;					\
295
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
296

297 298 299 300 301 302 303
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
 */
#define for_each_pwq(pwq, wq)						\
	list_for_each_entry((pwq), &(wq)->pwqs, pwqs_node)
304

305 306 307 308
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

309 310 311 312 313
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
349
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
385
	.debug_hint	= work_debug_hint,
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

421 422
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
423
static LIST_HEAD(workqueues);
424
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
425

426
/*
427 428
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
429
 */
430 431
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_std_worker_pools);
T
Tejun Heo 已提交
432
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
433

T
Tejun Heo 已提交
434 435 436 437
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
438
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
439

T
Tejun Heo 已提交
440
static struct worker_pool *std_worker_pools(int cpu)
441
{
442
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
443
		return per_cpu(cpu_std_worker_pools, cpu);
444
	else
T
Tejun Heo 已提交
445
		return unbound_std_worker_pools;
446 447
}

T
Tejun Heo 已提交
448 449
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
450
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
451 452
}

T
Tejun Heo 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

466 467 468 469 470 471 472 473 474
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

475 476
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
477
	struct worker_pool *pools = std_worker_pools(cpu);
478

T
Tejun Heo 已提交
479
	return &pools[highpri];
480 481
}

482 483
static struct pool_workqueue *get_pwq(unsigned int cpu,
				      struct workqueue_struct *wq)
484
{
485
	if (!(wq->flags & WQ_UNBOUND)) {
486
		if (likely(cpu < nr_cpu_ids))
487
			return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
488
	} else if (likely(cpu == WORK_CPU_UNBOUND))
489
		return wq->pool_wq.single;
490
	return NULL;
491 492
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
508

509
/*
510 511
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
512
 * is cleared and the high bits contain OFFQ flags and pool ID.
513
 *
514 515
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
516 517
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
518
 *
519
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
520
 * corresponding to a work.  Pool is available once the work has been
521
 * queued anywhere after initialization until it is sync canceled.  pwq is
522
 * available only while the work item is queued.
523
 *
524 525 526 527
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
528
 */
529 530
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
531
{
532
	WARN_ON_ONCE(!work_pending(work));
533 534
	atomic_long_set(&work->data, data | flags | work_static(work));
}
535

536
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
537 538
			 unsigned long extra_flags)
{
539 540
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
541 542
}

543 544 545 546 547 548 549
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

550 551
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
552
{
553 554 555 556 557 558 559
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
560
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
561
}
562

563
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
564
{
565 566
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
567 568
}

569
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
570
{
571
	unsigned long data = atomic_long_read(&work->data);
572

573
	if (data & WORK_STRUCT_PWQ)
574 575 576
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
577 578
}

579 580 581 582 583 584 585
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
586
{
587
	unsigned long data = atomic_long_read(&work->data);
588 589
	struct worker_pool *pool;
	int pool_id;
590

591 592
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
593
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
594

595 596
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
597 598
		return NULL;

599 600 601 602 603 604 605 606 607 608 609 610 611 612
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
613 614
	unsigned long data = atomic_long_read(&work->data);

615 616
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
617
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
618

619
	return data >> WORK_OFFQ_POOL_SHIFT;
620 621
}

622 623
static void mark_work_canceling(struct work_struct *work)
{
624
	unsigned long pool_id = get_work_pool_id(work);
625

626 627
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
628 629 630 631 632 633
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

634
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
635 636
}

637
/*
638 639
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
640
 * they're being called with pool->lock held.
641 642
 */

643
static bool __need_more_worker(struct worker_pool *pool)
644
{
645
	return !atomic_read(&pool->nr_running);
646 647
}

648
/*
649 650
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
651 652
 *
 * Note that, because unbound workers never contribute to nr_running, this
653
 * function will always return %true for unbound pools as long as the
654
 * worklist isn't empty.
655
 */
656
static bool need_more_worker(struct worker_pool *pool)
657
{
658
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
659
}
660

661
/* Can I start working?  Called from busy but !running workers. */
662
static bool may_start_working(struct worker_pool *pool)
663
{
664
	return pool->nr_idle;
665 666 667
}

/* Do I need to keep working?  Called from currently running workers. */
668
static bool keep_working(struct worker_pool *pool)
669
{
670 671
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
672 673 674
}

/* Do we need a new worker?  Called from manager. */
675
static bool need_to_create_worker(struct worker_pool *pool)
676
{
677
	return need_more_worker(pool) && !may_start_working(pool);
678
}
679

680
/* Do I need to be the manager? */
681
static bool need_to_manage_workers(struct worker_pool *pool)
682
{
683
	return need_to_create_worker(pool) ||
684
		(pool->flags & POOL_MANAGE_WORKERS);
685 686 687
}

/* Do we have too many workers and should some go away? */
688
static bool too_many_workers(struct worker_pool *pool)
689
{
690
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
691 692
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
693

694 695 696 697 698 699 700
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

701
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
702 703
}

704
/*
705 706 707
 * Wake up functions.
 */

708
/* Return the first worker.  Safe with preemption disabled */
709
static struct worker *first_worker(struct worker_pool *pool)
710
{
711
	if (unlikely(list_empty(&pool->idle_list)))
712 713
		return NULL;

714
	return list_first_entry(&pool->idle_list, struct worker, entry);
715 716 717 718
}

/**
 * wake_up_worker - wake up an idle worker
719
 * @pool: worker pool to wake worker from
720
 *
721
 * Wake up the first idle worker of @pool.
722 723
 *
 * CONTEXT:
724
 * spin_lock_irq(pool->lock).
725
 */
726
static void wake_up_worker(struct worker_pool *pool)
727
{
728
	struct worker *worker = first_worker(pool);
729 730 731 732 733

	if (likely(worker))
		wake_up_process(worker->task);
}

734
/**
735 736 737 738 739 740 741 742 743 744 745 746 747 748
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

749
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
750
		WARN_ON_ONCE(worker->pool->cpu != cpu);
751
		atomic_inc(&worker->pool->nr_running);
752
	}
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
774
	struct worker_pool *pool;
775

776 777 778 779 780
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
781
	if (worker->flags & WORKER_NOT_RUNNING)
782 783
		return NULL;

784 785
	pool = worker->pool;

786
	/* this can only happen on the local cpu */
787 788
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
789 790 791 792 793 794

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
795 796 797
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
798
	 * manipulating idle_list, so dereferencing idle_list without pool
799
	 * lock is safe.
800
	 */
801 802
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
803
		to_wakeup = first_worker(pool);
804 805 806 807 808
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
809
 * @worker: self
810 811 812
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
813 814 815
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
816
 *
817
 * CONTEXT:
818
 * spin_lock_irq(pool->lock)
819 820 821 822
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
823
	struct worker_pool *pool = worker->pool;
824

825 826
	WARN_ON_ONCE(worker->task != current);

827 828 829 830 831 832 833 834
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
835
			if (atomic_dec_and_test(&pool->nr_running) &&
836
			    !list_empty(&pool->worklist))
837
				wake_up_worker(pool);
838
		} else
839
			atomic_dec(&pool->nr_running);
840 841
	}

842 843 844 845
	worker->flags |= flags;
}

/**
846
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
847
 * @worker: self
848 849
 * @flags: flags to clear
 *
850
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
851
 *
852
 * CONTEXT:
853
 * spin_lock_irq(pool->lock)
854 855 856
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
857
	struct worker_pool *pool = worker->pool;
858 859
	unsigned int oflags = worker->flags;

860 861
	WARN_ON_ONCE(worker->task != current);

862
	worker->flags &= ~flags;
863

864 865 866 867 868
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
869 870
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
871
			atomic_inc(&pool->nr_running);
872 873
}

874 875
/**
 * find_worker_executing_work - find worker which is executing a work
876
 * @pool: pool of interest
877 878
 * @work: work to find worker for
 *
879 880
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
900 901
 *
 * CONTEXT:
902
 * spin_lock_irq(pool->lock).
903 904 905 906
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
907
 */
908
static struct worker *find_worker_executing_work(struct worker_pool *pool,
909
						 struct work_struct *work)
910
{
911 912
	struct worker *worker;

913
	hash_for_each_possible(pool->busy_hash, worker, hentry,
914 915 916
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
917 918 919
			return worker;

	return NULL;
920 921
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
937
 * spin_lock_irq(pool->lock).
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

963
static void pwq_activate_delayed_work(struct work_struct *work)
964
{
965
	struct pool_workqueue *pwq = get_work_pwq(work);
966 967

	trace_workqueue_activate_work(work);
968
	move_linked_works(work, &pwq->pool->worklist, NULL);
969
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
970
	pwq->nr_active++;
971 972
}

973
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
974
{
975
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
976 977
						    struct work_struct, entry);

978
	pwq_activate_delayed_work(work);
979 980
}

981
/**
982 983
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
984 985 986
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
987
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
988 989
 *
 * CONTEXT:
990
 * spin_lock_irq(pool->lock).
991
 */
992
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
993 994 995 996 997
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

998
	pwq->nr_in_flight[color]--;
999

1000 1001
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1002
		/* one down, submit a delayed one */
1003 1004
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1005 1006 1007
	}

	/* is flush in progress and are we at the flushing tip? */
1008
	if (likely(pwq->flush_color != color))
1009 1010 1011
		return;

	/* are there still in-flight works? */
1012
	if (pwq->nr_in_flight[color])
1013 1014
		return;

1015 1016
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1017 1018

	/*
1019
	 * If this was the last pwq, wake up the first flusher.  It
1020 1021
	 * will handle the rest.
	 */
1022 1023
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
1024 1025
}

1026
/**
1027
 * try_to_grab_pending - steal work item from worklist and disable irq
1028 1029
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1030
 * @flags: place to store irq state
1031 1032 1033 1034 1035 1036 1037
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1038 1039
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1040
 *
1041
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1042 1043 1044
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1045 1046 1047 1048
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1049
 * This function is safe to call from any context including IRQ handler.
1050
 */
1051 1052
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1053
{
1054
	struct worker_pool *pool;
1055
	struct pool_workqueue *pwq;
1056

1057 1058
	local_irq_save(*flags);

1059 1060 1061 1062
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1063 1064 1065 1066 1067
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1068 1069 1070 1071 1072
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1073 1074 1075 1076 1077 1078 1079
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1080 1081
	pool = get_work_pool(work);
	if (!pool)
1082
		goto fail;
1083

1084
	spin_lock(&pool->lock);
1085
	/*
1086 1087 1088 1089 1090
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1091 1092
	 * item is currently queued on that pool.
	 */
1093 1094
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1095 1096 1097 1098 1099
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1100
		 * on the delayed_list, will confuse pwq->nr_active
1101 1102 1103 1104
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1105
			pwq_activate_delayed_work(work);
1106 1107

		list_del_init(&work->entry);
1108
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1109

1110
		/* work->data points to pwq iff queued, point to pool */
1111 1112 1113 1114
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1115
	}
1116
	spin_unlock(&pool->lock);
1117 1118 1119 1120 1121
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1122
	return -EAGAIN;
1123 1124
}

T
Tejun Heo 已提交
1125
/**
1126
 * insert_work - insert a work into a pool
1127
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1128 1129 1130 1131
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1132
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1133
 * work_struct flags.
T
Tejun Heo 已提交
1134 1135
 *
 * CONTEXT:
1136
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1137
 */
1138 1139
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1140
{
1141
	struct worker_pool *pool = pwq->pool;
1142

T
Tejun Heo 已提交
1143
	/* we own @work, set data and link */
1144
	set_work_pwq(work, pwq, extra_flags);
1145
	list_add_tail(&work->entry, head);
1146 1147 1148 1149 1150 1151 1152 1153

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1154 1155
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1156 1157
}

1158 1159
/*
 * Test whether @work is being queued from another work executing on the
1160
 * same workqueue.
1161 1162 1163
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1164 1165 1166 1167 1168 1169 1170
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1171
	return worker && worker->current_pwq->wq == wq;
1172 1173
}

T
Tejun Heo 已提交
1174
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1175 1176
			 struct work_struct *work)
{
1177
	struct pool_workqueue *pwq;
1178
	struct list_head *worklist;
1179
	unsigned int work_flags;
1180
	unsigned int req_cpu = cpu;
1181 1182 1183 1184 1185 1186 1187 1188

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1189

1190
	debug_work_activate(work);
1191

1192
	/* if dying, only works from the same workqueue are allowed */
1193
	if (unlikely(wq->flags & WQ_DRAINING) &&
1194
	    WARN_ON_ONCE(!is_chained_work(wq)))
1195 1196
		return;

1197
	/* determine the pwq to use */
1198
	if (!(wq->flags & WQ_UNBOUND)) {
1199
		struct worker_pool *last_pool;
1200

1201
		if (cpu == WORK_CPU_UNBOUND)
1202 1203
			cpu = raw_smp_processor_id();

1204
		/*
1205 1206 1207 1208
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1209
		 */
1210
		pwq = get_pwq(cpu, wq);
1211
		last_pool = get_work_pool(work);
1212

1213
		if (last_pool && last_pool != pwq->pool) {
1214 1215
			struct worker *worker;

1216
			spin_lock(&last_pool->lock);
1217

1218
			worker = find_worker_executing_work(last_pool, work);
1219

1220 1221
			if (worker && worker->current_pwq->wq == wq) {
				pwq = get_pwq(last_pool->cpu, wq);
1222
			} else {
1223
				/* meh... not running there, queue here */
1224
				spin_unlock(&last_pool->lock);
1225
				spin_lock(&pwq->pool->lock);
1226
			}
1227
		} else {
1228
			spin_lock(&pwq->pool->lock);
1229
		}
1230
	} else {
1231 1232
		pwq = get_pwq(WORK_CPU_UNBOUND, wq);
		spin_lock(&pwq->pool->lock);
1233 1234
	}

1235 1236
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1237

1238
	if (WARN_ON(!list_empty(&work->entry))) {
1239
		spin_unlock(&pwq->pool->lock);
1240 1241
		return;
	}
1242

1243 1244
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1245

1246
	if (likely(pwq->nr_active < pwq->max_active)) {
1247
		trace_workqueue_activate_work(work);
1248 1249
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1250 1251
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1252
		worklist = &pwq->delayed_works;
1253
	}
1254

1255
	insert_work(pwq, work, worklist, work_flags);
1256

1257
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1258 1259
}

1260
/**
1261 1262
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1263 1264 1265
 * @wq: workqueue to use
 * @work: work to queue
 *
1266
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1267
 *
1268 1269
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1270
 */
1271 1272
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1273
{
1274
	bool ret = false;
1275
	unsigned long flags;
1276

1277
	local_irq_save(flags);
1278

1279
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1280
		__queue_work(cpu, wq, work);
1281
		ret = true;
1282
	}
1283

1284
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1285 1286
	return ret;
}
1287
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1288

1289
/**
1290
 * queue_work - queue work on a workqueue
1291 1292 1293
 * @wq: workqueue to use
 * @work: work to queue
 *
1294
 * Returns %false if @work was already on a queue, %true otherwise.
1295
 *
1296 1297
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1298
 */
1299
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1300
{
1301
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1302
}
1303
EXPORT_SYMBOL_GPL(queue_work);
1304

1305
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1306
{
1307
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1308

1309
	/* should have been called from irqsafe timer with irq already off */
1310
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1311
}
1312
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1313

1314 1315
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1316
{
1317 1318 1319 1320 1321
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1322 1323
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1324

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1336
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1337

1338
	dwork->wq = wq;
1339
	dwork->cpu = cpu;
1340 1341 1342 1343 1344 1345
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1346 1347
}

1348 1349 1350 1351
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1352
 * @dwork: work to queue
1353 1354
 * @delay: number of jiffies to wait before queueing
 *
1355 1356 1357
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1358
 */
1359 1360
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1361
{
1362
	struct work_struct *work = &dwork->work;
1363
	bool ret = false;
1364
	unsigned long flags;
1365

1366 1367
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1368

1369
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1370
		__queue_delayed_work(cpu, wq, dwork, delay);
1371
		ret = true;
1372
	}
1373

1374
	local_irq_restore(flags);
1375 1376
	return ret;
}
1377
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1378

1379 1380 1381 1382 1383 1384
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1385
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1386
 */
1387
bool queue_delayed_work(struct workqueue_struct *wq,
1388 1389
			struct delayed_work *dwork, unsigned long delay)
{
1390
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1391 1392
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1393

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1409
 * This function is safe to call from any context including IRQ handler.
1410 1411 1412 1413 1414 1415 1416
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1417

1418 1419 1420
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1421

1422 1423 1424
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1425
	}
1426 1427

	/* -ENOENT from try_to_grab_pending() becomes %true */
1428 1429
	return ret;
}
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1446

T
Tejun Heo 已提交
1447 1448 1449 1450 1451 1452 1453 1454
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1455
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1456 1457
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1458
{
1459
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1460

1461 1462 1463 1464
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1465

1466 1467
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1468
	pool->nr_idle++;
1469
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1470 1471

	/* idle_list is LIFO */
1472
	list_add(&worker->entry, &pool->idle_list);
1473

1474 1475
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1476

1477
	/*
1478
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1479
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1480 1481
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1482
	 */
1483
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1484
		     pool->nr_workers == pool->nr_idle &&
1485
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1495
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1496 1497 1498
 */
static void worker_leave_idle(struct worker *worker)
{
1499
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1500

1501 1502
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1503
	worker_clr_flags(worker, WORKER_IDLE);
1504
	pool->nr_idle--;
T
Tejun Heo 已提交
1505 1506 1507
	list_del_init(&worker->entry);
}

1508
/**
1509 1510 1511 1512
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1513 1514 1515 1516 1517 1518
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1519
 * This function is to be used by unbound workers and rescuers to bind
1520 1521 1522
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1523
 * verbatim as it's best effort and blocking and pool may be
1524 1525
 * [dis]associated in the meantime.
 *
1526
 * This function tries set_cpus_allowed() and locks pool and verifies the
1527
 * binding against %POOL_DISASSOCIATED which is set during
1528 1529 1530
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1531 1532
 *
 * CONTEXT:
1533
 * Might sleep.  Called without any lock but returns with pool->lock
1534 1535 1536
 * held.
 *
 * RETURNS:
1537
 * %true if the associated pool is online (@worker is successfully
1538 1539
 * bound), %false if offline.
 */
1540
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1541
__acquires(&pool->lock)
1542 1543
{
	while (true) {
1544
		/*
1545 1546 1547
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1548
		 * against POOL_DISASSOCIATED.
1549
		 */
1550
		if (!(pool->flags & POOL_DISASSOCIATED))
1551
			set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
1552

1553
		spin_lock_irq(&pool->lock);
1554
		if (pool->flags & POOL_DISASSOCIATED)
1555
			return false;
1556
		if (task_cpu(current) == pool->cpu &&
1557
		    cpumask_equal(&current->cpus_allowed,
1558
				  get_cpu_mask(pool->cpu)))
1559
			return true;
1560
		spin_unlock_irq(&pool->lock);
1561

1562 1563 1564 1565 1566 1567
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1568
		cpu_relax();
1569
		cond_resched();
1570 1571 1572
	}
}

1573
/*
1574
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1575
 * list_empty(@worker->entry) before leaving idle and call this function.
1576 1577 1578
 */
static void idle_worker_rebind(struct worker *worker)
{
1579
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1580
	if (worker_maybe_bind_and_lock(worker->pool))
1581
		worker_clr_flags(worker, WORKER_UNBOUND);
1582

1583 1584
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1585
	spin_unlock_irq(&worker->pool->lock);
1586 1587
}

1588
/*
1589
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1590 1591 1592
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1593
 */
1594
static void busy_worker_rebind_fn(struct work_struct *work)
1595 1596 1597
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1598
	if (worker_maybe_bind_and_lock(worker->pool))
1599
		worker_clr_flags(worker, WORKER_UNBOUND);
1600

1601
	spin_unlock_irq(&worker->pool->lock);
1602 1603
}

1604
/**
1605 1606
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1607
 *
1608
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1609 1610
 * is different for idle and busy ones.
 *
1611 1612 1613 1614
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1615
 *
1616 1617 1618 1619
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1620
 *
1621 1622 1623 1624
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1625
 */
1626
static void rebind_workers(struct worker_pool *pool)
1627
{
1628
	struct worker *worker, *n;
1629 1630
	int i;

1631 1632
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1633

1634
	/* dequeue and kick idle ones */
1635 1636 1637 1638 1639 1640
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1641

1642 1643 1644 1645 1646 1647
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1648

1649
	/* rebind busy workers */
1650
	for_each_busy_worker(worker, i, pool) {
1651 1652
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1653

1654 1655 1656
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1657

1658
		debug_work_activate(rebind_work);
1659

1660 1661
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1662
		 * and @pwq->pool consistent for sanity.
1663 1664 1665 1666 1667 1668
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

1669
		insert_work(get_pwq(pool->cpu, wq), rebind_work,
1670 1671
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1672
	}
1673 1674
}

T
Tejun Heo 已提交
1675 1676 1677 1678 1679
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1680 1681
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1682
		INIT_LIST_HEAD(&worker->scheduled);
1683
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1684 1685
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1686
	}
T
Tejun Heo 已提交
1687 1688 1689 1690 1691
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1692
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1693
 *
1694
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1704
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1705
{
1706
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1707
	struct worker *worker = NULL;
1708
	int id = -1;
T
Tejun Heo 已提交
1709

1710
	spin_lock_irq(&pool->lock);
1711
	while (ida_get_new(&pool->worker_ida, &id)) {
1712
		spin_unlock_irq(&pool->lock);
1713
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1714
			goto fail;
1715
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1716
	}
1717
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1718 1719 1720 1721 1722

	worker = alloc_worker();
	if (!worker)
		goto fail;

1723
	worker->pool = pool;
T
Tejun Heo 已提交
1724 1725
	worker->id = id;

1726
	if (pool->cpu != WORK_CPU_UNBOUND)
1727
		worker->task = kthread_create_on_node(worker_thread,
1728 1729
					worker, cpu_to_node(pool->cpu),
					"kworker/%u:%d%s", pool->cpu, id, pri);
1730 1731
	else
		worker->task = kthread_create(worker_thread, worker,
1732
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1733 1734 1735
	if (IS_ERR(worker->task))
		goto fail;

1736
	if (std_worker_pool_pri(pool))
1737 1738
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1739
	/*
1740
	 * Determine CPU binding of the new worker depending on
1741
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1742 1743 1744 1745 1746
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1747
	 */
1748
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1749
		kthread_bind(worker->task, pool->cpu);
1750
	} else {
1751
		worker->task->flags |= PF_THREAD_BOUND;
1752
		worker->flags |= WORKER_UNBOUND;
1753
	}
T
Tejun Heo 已提交
1754 1755 1756 1757

	return worker;
fail:
	if (id >= 0) {
1758
		spin_lock_irq(&pool->lock);
1759
		ida_remove(&pool->worker_ida, id);
1760
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1770
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1771 1772
 *
 * CONTEXT:
1773
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1774 1775 1776
 */
static void start_worker(struct worker *worker)
{
1777
	worker->flags |= WORKER_STARTED;
1778
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1779
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1780 1781 1782 1783 1784 1785 1786
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1787
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1788 1789
 *
 * CONTEXT:
1790
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1791 1792 1793
 */
static void destroy_worker(struct worker *worker)
{
1794
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1795 1796 1797
	int id = worker->id;

	/* sanity check frenzy */
1798 1799 1800
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1801

T
Tejun Heo 已提交
1802
	if (worker->flags & WORKER_STARTED)
1803
		pool->nr_workers--;
T
Tejun Heo 已提交
1804
	if (worker->flags & WORKER_IDLE)
1805
		pool->nr_idle--;
T
Tejun Heo 已提交
1806 1807

	list_del_init(&worker->entry);
1808
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1809

1810
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1811

T
Tejun Heo 已提交
1812 1813 1814
	kthread_stop(worker->task);
	kfree(worker);

1815
	spin_lock_irq(&pool->lock);
1816
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1817 1818
}

1819
static void idle_worker_timeout(unsigned long __pool)
1820
{
1821
	struct worker_pool *pool = (void *)__pool;
1822

1823
	spin_lock_irq(&pool->lock);
1824

1825
	if (too_many_workers(pool)) {
1826 1827 1828 1829
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1830
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1831 1832 1833
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1834
			mod_timer(&pool->idle_timer, expires);
1835 1836
		else {
			/* it's been idle for too long, wake up manager */
1837
			pool->flags |= POOL_MANAGE_WORKERS;
1838
			wake_up_worker(pool);
1839
		}
1840 1841
	}

1842
	spin_unlock_irq(&pool->lock);
1843
}
1844

1845 1846
static bool send_mayday(struct work_struct *work)
{
1847 1848
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1849
	unsigned int cpu;
1850 1851 1852 1853 1854

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1855
	cpu = pwq->pool->cpu;
1856 1857 1858
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1859
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1860 1861 1862 1863
		wake_up_process(wq->rescuer->task);
	return true;
}

1864
static void pool_mayday_timeout(unsigned long __pool)
1865
{
1866
	struct worker_pool *pool = (void *)__pool;
1867 1868
	struct work_struct *work;

1869
	spin_lock_irq(&pool->lock);
1870

1871
	if (need_to_create_worker(pool)) {
1872 1873 1874 1875 1876 1877
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1878
		list_for_each_entry(work, &pool->worklist, entry)
1879
			send_mayday(work);
L
Linus Torvalds 已提交
1880
	}
1881

1882
	spin_unlock_irq(&pool->lock);
1883

1884
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1885 1886
}

1887 1888
/**
 * maybe_create_worker - create a new worker if necessary
1889
 * @pool: pool to create a new worker for
1890
 *
1891
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1892 1893
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1894
 * sent to all rescuers with works scheduled on @pool to resolve
1895 1896 1897 1898 1899 1900
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1901
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1902 1903 1904 1905
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1906
 * false if no action was taken and pool->lock stayed locked, true
1907 1908
 * otherwise.
 */
1909
static bool maybe_create_worker(struct worker_pool *pool)
1910 1911
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1912
{
1913
	if (!need_to_create_worker(pool))
1914 1915
		return false;
restart:
1916
	spin_unlock_irq(&pool->lock);
1917

1918
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1919
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1920 1921 1922 1923

	while (true) {
		struct worker *worker;

1924
		worker = create_worker(pool);
1925
		if (worker) {
1926
			del_timer_sync(&pool->mayday_timer);
1927
			spin_lock_irq(&pool->lock);
1928
			start_worker(worker);
1929 1930
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1931 1932 1933
			return true;
		}

1934
		if (!need_to_create_worker(pool))
1935
			break;
L
Linus Torvalds 已提交
1936

1937 1938
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1939

1940
		if (!need_to_create_worker(pool))
1941 1942 1943
			break;
	}

1944
	del_timer_sync(&pool->mayday_timer);
1945
	spin_lock_irq(&pool->lock);
1946
	if (need_to_create_worker(pool))
1947 1948 1949 1950 1951 1952
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1953
 * @pool: pool to destroy workers for
1954
 *
1955
 * Destroy @pool workers which have been idle for longer than
1956 1957 1958
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1959
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1960 1961 1962
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1963
 * false if no action was taken and pool->lock stayed locked, true
1964 1965
 * otherwise.
 */
1966
static bool maybe_destroy_workers(struct worker_pool *pool)
1967 1968
{
	bool ret = false;
L
Linus Torvalds 已提交
1969

1970
	while (too_many_workers(pool)) {
1971 1972
		struct worker *worker;
		unsigned long expires;
1973

1974
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1975
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1976

1977
		if (time_before(jiffies, expires)) {
1978
			mod_timer(&pool->idle_timer, expires);
1979
			break;
1980
		}
L
Linus Torvalds 已提交
1981

1982 1983
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1984
	}
1985

1986
	return ret;
1987 1988
}

1989
/**
1990 1991
 * manage_workers - manage worker pool
 * @worker: self
1992
 *
1993
 * Assume the manager role and manage the worker pool @worker belongs
1994
 * to.  At any given time, there can be only zero or one manager per
1995
 * pool.  The exclusion is handled automatically by this function.
1996 1997 1998 1999
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2000 2001
 *
 * CONTEXT:
2002
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2003 2004 2005
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2006 2007
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2008
 */
2009
static bool manage_workers(struct worker *worker)
2010
{
2011
	struct worker_pool *pool = worker->pool;
2012
	bool ret = false;
2013

2014
	if (pool->flags & POOL_MANAGING_WORKERS)
2015
		return ret;
2016

2017
	pool->flags |= POOL_MANAGING_WORKERS;
2018

2019 2020 2021 2022 2023 2024
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2025
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2026 2027
	 * manager against CPU hotplug.
	 *
2028
	 * assoc_mutex would always be free unless CPU hotplug is in
2029
	 * progress.  trylock first without dropping @pool->lock.
2030
	 */
2031
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2032
		spin_unlock_irq(&pool->lock);
2033
		mutex_lock(&pool->assoc_mutex);
2034 2035
		/*
		 * CPU hotplug could have happened while we were waiting
2036
		 * for assoc_mutex.  Hotplug itself can't handle us
2037
		 * because manager isn't either on idle or busy list, and
2038
		 * @pool's state and ours could have deviated.
2039
		 *
2040
		 * As hotplug is now excluded via assoc_mutex, we can
2041
		 * simply try to bind.  It will succeed or fail depending
2042
		 * on @pool's current state.  Try it and adjust
2043 2044
		 * %WORKER_UNBOUND accordingly.
		 */
2045
		if (worker_maybe_bind_and_lock(pool))
2046 2047 2048
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2049

2050 2051
		ret = true;
	}
2052

2053
	pool->flags &= ~POOL_MANAGE_WORKERS;
2054 2055

	/*
2056 2057
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2058
	 */
2059 2060
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2061

2062
	pool->flags &= ~POOL_MANAGING_WORKERS;
2063
	mutex_unlock(&pool->assoc_mutex);
2064
	return ret;
2065 2066
}

2067 2068
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2069
 * @worker: self
2070 2071 2072 2073 2074 2075 2076 2077 2078
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2079
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2080
 */
T
Tejun Heo 已提交
2081
static void process_one_work(struct worker *worker, struct work_struct *work)
2082 2083
__releases(&pool->lock)
__acquires(&pool->lock)
2084
{
2085
	struct pool_workqueue *pwq = get_work_pwq(work);
2086
	struct worker_pool *pool = worker->pool;
2087
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2088
	int work_color;
2089
	struct worker *collision;
2090 2091 2092 2093 2094 2095 2096 2097
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2098 2099 2100
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2101
#endif
2102 2103 2104
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2105
	 * unbound or a disassociated pool.
2106
	 */
2107
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2108
		     !(pool->flags & POOL_DISASSOCIATED) &&
2109
		     raw_smp_processor_id() != pool->cpu);
2110

2111 2112 2113 2114 2115 2116
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2117
	collision = find_worker_executing_work(pool, work);
2118 2119 2120 2121 2122
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2123
	/* claim and dequeue */
2124
	debug_work_deactivate(work);
2125
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2126
	worker->current_work = work;
2127
	worker->current_func = work->func;
2128
	worker->current_pwq = pwq;
2129
	work_color = get_work_color(work);
2130

2131 2132
	list_del_init(&work->entry);

2133 2134 2135 2136 2137 2138 2139
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2140
	/*
2141
	 * Unbound pool isn't concurrency managed and work items should be
2142 2143
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2144 2145
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2146

2147
	/*
2148
	 * Record the last pool and clear PENDING which should be the last
2149
	 * update to @work.  Also, do this inside @pool->lock so that
2150 2151
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2152
	 */
2153
	set_work_pool_and_clear_pending(work, pool->id);
2154

2155
	spin_unlock_irq(&pool->lock);
2156

2157
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2158
	lock_map_acquire(&lockdep_map);
2159
	trace_workqueue_execute_start(work);
2160
	worker->current_func(work);
2161 2162 2163 2164 2165
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2166
	lock_map_release(&lockdep_map);
2167
	lock_map_release(&pwq->wq->lockdep_map);
2168 2169

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2170 2171
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2172 2173
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2174 2175 2176 2177
		debug_show_held_locks(current);
		dump_stack();
	}

2178
	spin_lock_irq(&pool->lock);
2179

2180 2181 2182 2183
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2184
	/* we're done with it, release */
2185
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2186
	worker->current_work = NULL;
2187
	worker->current_func = NULL;
2188 2189
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2190 2191
}

2192 2193 2194 2195 2196 2197 2198 2199 2200
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2201
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2202 2203 2204
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2205
{
2206 2207
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2208
						struct work_struct, entry);
T
Tejun Heo 已提交
2209
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2210 2211 2212
	}
}

T
Tejun Heo 已提交
2213 2214
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2215
 * @__worker: self
T
Tejun Heo 已提交
2216
 *
2217 2218
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2219 2220 2221
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2222
 */
T
Tejun Heo 已提交
2223
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2224
{
T
Tejun Heo 已提交
2225
	struct worker *worker = __worker;
2226
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2227

2228 2229
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2230
woke_up:
2231
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2232

2233 2234
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2235
		spin_unlock_irq(&pool->lock);
2236

2237
		/* if DIE is set, destruction is requested */
2238 2239 2240 2241 2242
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2243
		/* otherwise, rebind */
2244 2245
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2246
	}
2247

T
Tejun Heo 已提交
2248
	worker_leave_idle(worker);
2249
recheck:
2250
	/* no more worker necessary? */
2251
	if (!need_more_worker(pool))
2252 2253 2254
		goto sleep;

	/* do we need to manage? */
2255
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2256 2257
		goto recheck;

T
Tejun Heo 已提交
2258 2259 2260 2261 2262
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2263
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2264

2265 2266 2267 2268 2269 2270 2271 2272
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2273
		struct work_struct *work =
2274
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2275 2276 2277 2278 2279 2280
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2281
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2282 2283 2284
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2285
		}
2286
	} while (keep_working(pool));
2287 2288

	worker_set_flags(worker, WORKER_PREP, false);
2289
sleep:
2290
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2291
		goto recheck;
2292

T
Tejun Heo 已提交
2293
	/*
2294 2295 2296 2297 2298
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2299 2300 2301
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2302
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2303 2304
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2305 2306
}

2307 2308
/**
 * rescuer_thread - the rescuer thread function
2309
 * @__rescuer: self
2310 2311 2312 2313
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2314
 * Regular work processing on a pool may block trying to create a new
2315 2316 2317 2318 2319
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2320 2321
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2322 2323 2324 2325
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2326
static int rescuer_thread(void *__rescuer)
2327
{
2328 2329
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2330
	struct list_head *scheduled = &rescuer->scheduled;
2331
	bool is_unbound = wq->flags & WQ_UNBOUND;
2332 2333 2334
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2335 2336 2337 2338 2339 2340

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2341 2342 2343
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2344 2345
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2346
		rescuer->task->flags &= ~PF_WQ_WORKER;
2347
		return 0;
2348
	}
2349

2350 2351 2352 2353
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2354
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2355
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2356 2357
		struct pool_workqueue *pwq = get_pwq(tcpu, wq);
		struct worker_pool *pool = pwq->pool;
2358 2359 2360
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2361
		mayday_clear_cpu(cpu, wq->mayday_mask);
2362 2363

		/* migrate to the target cpu if possible */
2364
		worker_maybe_bind_and_lock(pool);
2365
		rescuer->pool = pool;
2366 2367 2368 2369 2370

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2371
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2372
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2373
			if (get_work_pwq(work) == pwq)
2374 2375 2376
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2377 2378

		/*
2379
		 * Leave this pool.  If keep_working() is %true, notify a
2380 2381 2382
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2383 2384
		if (keep_working(pool))
			wake_up_worker(pool);
2385

2386
		rescuer->pool = NULL;
2387
		spin_unlock_irq(&pool->lock);
2388 2389
	}

2390 2391
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2392 2393
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2394 2395
}

O
Oleg Nesterov 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2407 2408
/**
 * insert_wq_barrier - insert a barrier work
2409
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2410
 * @barr: wq_barrier to insert
2411 2412
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2413
 *
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2426
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2427 2428
 *
 * CONTEXT:
2429
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2430
 */
2431
static void insert_wq_barrier(struct pool_workqueue *pwq,
2432 2433
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2434
{
2435 2436 2437
	struct list_head *head;
	unsigned int linked = 0;

2438
	/*
2439
	 * debugobject calls are safe here even with pool->lock locked
2440 2441 2442 2443
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2444
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2445
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2446
	init_completion(&barr->done);
2447

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2463
	debug_work_activate(&barr->work);
2464
	insert_work(pwq, &barr->work, head,
2465
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2466 2467
}

2468
/**
2469
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2470 2471 2472 2473
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2474
 * Prepare pwqs for workqueue flushing.
2475
 *
2476 2477 2478 2479 2480
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2481 2482 2483 2484 2485 2486 2487
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2488
 * If @work_color is non-negative, all pwqs should have the same
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2499
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2500
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2501
{
2502
	bool wait = false;
2503
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2504

2505
	if (flush_color >= 0) {
2506
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2507
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2508
	}
2509

2510
	for_each_pwq(pwq, wq) {
2511
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2512

2513
		spin_lock_irq(&pool->lock);
2514

2515
		if (flush_color >= 0) {
2516
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2517

2518 2519 2520
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2521 2522 2523
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2524

2525
		if (work_color >= 0) {
2526
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2527
			pwq->work_color = work_color;
2528
		}
L
Linus Torvalds 已提交
2529

2530
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2531
	}
2532

2533
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2534
		complete(&wq->first_flusher->done);
2535

2536
	return wait;
L
Linus Torvalds 已提交
2537 2538
}

2539
/**
L
Linus Torvalds 已提交
2540
 * flush_workqueue - ensure that any scheduled work has run to completion.
2541
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2542 2543 2544 2545
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2546 2547
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2548
 */
2549
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2550
{
2551 2552 2553 2554 2555 2556
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2557

2558 2559
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2574
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2575 2576 2577 2578 2579
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2580
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2581 2582 2583

			wq->first_flusher = &this_flusher;

2584
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2585 2586 2587 2588 2589 2590 2591 2592
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2593
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2594
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2595
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2621 2622 2623 2624
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2625 2626
	wq->first_flusher = NULL;

2627 2628
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2641 2642
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2662
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2663 2664 2665
		}

		if (list_empty(&wq->flusher_queue)) {
2666
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2667 2668 2669 2670 2671
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2672
		 * the new first flusher and arm pwqs.
2673
		 */
2674 2675
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2676 2677 2678 2679

		list_del_init(&next->list);
		wq->first_flusher = next;

2680
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2692
}
2693
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2694

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2709
	struct pool_workqueue *pwq;
2710 2711 2712 2713 2714 2715

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
2716
	spin_lock_irq(&workqueue_lock);
2717 2718
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
2719
	spin_unlock_irq(&workqueue_lock);
2720 2721 2722
reflush:
	flush_workqueue(wq);

2723
	for_each_pwq(pwq, wq) {
2724
		bool drained;
2725

2726 2727 2728
		spin_lock_irq(&pwq->pool->lock);
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
		spin_unlock_irq(&pwq->pool->lock);
2729 2730

		if (drained)
2731 2732 2733 2734
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2735 2736
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2737 2738 2739
		goto reflush;
	}

2740
	spin_lock_irq(&workqueue_lock);
2741 2742
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
2743
	spin_unlock_irq(&workqueue_lock);
2744 2745 2746
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2747
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2748
{
2749
	struct worker *worker = NULL;
2750
	struct worker_pool *pool;
2751
	struct pool_workqueue *pwq;
2752 2753

	might_sleep();
2754 2755
	pool = get_work_pool(work);
	if (!pool)
2756
		return false;
2757

2758
	spin_lock_irq(&pool->lock);
2759
	/* see the comment in try_to_grab_pending() with the same code */
2760 2761 2762
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2763
			goto already_gone;
2764
	} else {
2765
		worker = find_worker_executing_work(pool, work);
2766
		if (!worker)
T
Tejun Heo 已提交
2767
			goto already_gone;
2768
		pwq = worker->current_pwq;
2769
	}
2770

2771
	insert_wq_barrier(pwq, barr, work, worker);
2772
	spin_unlock_irq(&pool->lock);
2773

2774 2775 2776 2777 2778 2779
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2780 2781
	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&pwq->wq->lockdep_map);
2782
	else
2783 2784
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2785

2786
	return true;
T
Tejun Heo 已提交
2787
already_gone:
2788
	spin_unlock_irq(&pool->lock);
2789
	return false;
2790
}
2791 2792 2793 2794 2795

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2796 2797
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2798 2799 2800 2801 2802 2803 2804 2805 2806
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2807 2808 2809
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2810
	if (start_flush_work(work, &barr)) {
2811 2812 2813
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2814
	} else {
2815
		return false;
2816 2817
	}
}
2818
EXPORT_SYMBOL_GPL(flush_work);
2819

2820
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2821
{
2822
	unsigned long flags;
2823 2824 2825
	int ret;

	do {
2826 2827 2828 2829 2830 2831
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2832
			flush_work(work);
2833 2834
	} while (unlikely(ret < 0));

2835 2836 2837 2838
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2839
	flush_work(work);
2840
	clear_work_data(work);
2841 2842 2843
	return ret;
}

2844
/**
2845 2846
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2847
 *
2848 2849 2850 2851
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2852
 *
2853 2854
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2855
 *
2856
 * The caller must ensure that the workqueue on which @work was last
2857
 * queued can't be destroyed before this function returns.
2858 2859 2860
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2861
 */
2862
bool cancel_work_sync(struct work_struct *work)
2863
{
2864
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2865
}
2866
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2867

2868
/**
2869 2870
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2871
 *
2872 2873 2874
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2875
 *
2876 2877 2878
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2879
 */
2880 2881
bool flush_delayed_work(struct delayed_work *dwork)
{
2882
	local_irq_disable();
2883
	if (del_timer_sync(&dwork->timer))
2884
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2885
	local_irq_enable();
2886 2887 2888 2889
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2890
/**
2891 2892
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2893
 *
2894 2895 2896 2897 2898
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2899
 *
2900
 * This function is safe to call from any context including IRQ handler.
2901
 */
2902
bool cancel_delayed_work(struct delayed_work *dwork)
2903
{
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2914 2915
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2916
	local_irq_restore(flags);
2917
	return ret;
2918
}
2919
EXPORT_SYMBOL(cancel_delayed_work);
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2931
{
2932
	return __cancel_work_timer(&dwork->work, true);
2933
}
2934
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2935

2936
/**
2937 2938 2939 2940 2941 2942
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2943
bool schedule_work_on(int cpu, struct work_struct *work)
2944
{
2945
	return queue_work_on(cpu, system_wq, work);
2946 2947 2948
}
EXPORT_SYMBOL(schedule_work_on);

2949 2950 2951 2952
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2953 2954
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2955 2956 2957 2958
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2959
 */
2960
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2961
{
2962
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2963
}
2964
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2965

2966 2967 2968
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2969
 * @dwork: job to be done
2970 2971 2972 2973 2974
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
2975 2976
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
2977
{
2978
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2979
}
2980
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2981

2982 2983
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2984 2985
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2986 2987 2988 2989
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2990
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2991
{
2992
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2993
}
2994
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2995

2996
/**
2997
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2998 2999
 * @func: the function to call
 *
3000 3001
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3002
 * schedule_on_each_cpu() is very slow.
3003 3004 3005
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3006
 */
3007
int schedule_on_each_cpu(work_func_t func)
3008 3009
{
	int cpu;
3010
	struct work_struct __percpu *works;
3011

3012 3013
	works = alloc_percpu(struct work_struct);
	if (!works)
3014
		return -ENOMEM;
3015

3016 3017
	get_online_cpus();

3018
	for_each_online_cpu(cpu) {
3019 3020 3021
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3022
		schedule_work_on(cpu, work);
3023
	}
3024 3025 3026 3027

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3028
	put_online_cpus();
3029
	free_percpu(works);
3030 3031 3032
	return 0;
}

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3057 3058
void flush_scheduled_work(void)
{
3059
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3060
}
3061
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3062

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3075
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3076 3077
{
	if (!in_interrupt()) {
3078
		fn(&ew->work);
3079 3080 3081
		return 0;
	}

3082
	INIT_WORK(&ew->work, fn);
3083 3084 3085 3086 3087 3088
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3089 3090
int keventd_up(void)
{
3091
	return system_wq != NULL;
L
Linus Torvalds 已提交
3092 3093
}

3094
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3095
{
3096
	bool highpri = wq->flags & WQ_HIGHPRI;
3097 3098 3099
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3100
		wq->pool_wq.pcpu = alloc_percpu(struct pool_workqueue);
3101 3102 3103 3104 3105
		if (!wq->pool_wq.pcpu)
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
			struct pool_workqueue *pwq = get_pwq(cpu, wq);
3106

3107
			pwq->pool = get_std_worker_pool(cpu, highpri);
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
			list_add_tail(&pwq->pwqs_node, &wq->pwqs);
		}
	} else {
		struct pool_workqueue *pwq;

		pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
		if (!pwq)
			return -ENOMEM;

		wq->pool_wq.single = pwq;
3118
		pwq->pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
3119 3120 3121 3122
		list_add_tail(&pwq->pwqs_node, &wq->pwqs);
	}

	return 0;
T
Tejun Heo 已提交
3123 3124
}

3125
static void free_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3126
{
3127
	if (!(wq->flags & WQ_UNBOUND))
3128
		free_percpu(wq->pool_wq.pcpu);
3129 3130
	else
		kmem_cache_free(pwq_cache, wq->pool_wq.single);
T
Tejun Heo 已提交
3131 3132
}

3133 3134
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3135
{
3136 3137 3138
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3139 3140
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3141

3142
	return clamp_val(max_active, 1, lim);
3143 3144
}

3145
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3146 3147 3148
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3149
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3150
{
3151
	va_list args, args1;
L
Linus Torvalds 已提交
3152
	struct workqueue_struct *wq;
3153
	struct pool_workqueue *pwq;
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3168

3169 3170 3171 3172 3173 3174 3175
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3176
	max_active = max_active ?: WQ_DFL_ACTIVE;
3177
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3178

3179
	/* init wq */
3180
	wq->flags = flags;
3181
	wq->saved_max_active = max_active;
3182
	mutex_init(&wq->flush_mutex);
3183
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3184
	INIT_LIST_HEAD(&wq->pwqs);
3185 3186
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3187

3188
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3189
	INIT_LIST_HEAD(&wq->list);
3190

3191
	if (alloc_and_link_pwqs(wq) < 0)
3192 3193
		goto err;

3194
	for_each_pwq(pwq, wq) {
3195 3196 3197 3198 3199
		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
		pwq->wq = wq;
		pwq->flush_color = -1;
		pwq->max_active = max_active;
		INIT_LIST_HEAD(&pwq->delayed_works);
3200
	}
T
Tejun Heo 已提交
3201

3202 3203 3204
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3205
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3206 3207 3208 3209 3210 3211
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3212 3213
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3214
					       wq->name);
3215 3216 3217 3218 3219
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3220 3221
	}

3222 3223 3224 3225 3226
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
3227
	spin_lock_irq(&workqueue_lock);
3228

3229
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3230 3231
		for_each_pwq(pwq, wq)
			pwq->max_active = 0;
3232

T
Tejun Heo 已提交
3233
	list_add(&wq->list, &workqueues);
3234

3235
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3236

3237
	return wq;
T
Tejun Heo 已提交
3238 3239
err:
	if (wq) {
3240
		free_pwqs(wq);
3241
		free_mayday_mask(wq->mayday_mask);
3242
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3243 3244 3245
		kfree(wq);
	}
	return NULL;
3246
}
3247
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3248

3249 3250 3251 3252 3253 3254 3255 3256
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3257
	struct pool_workqueue *pwq;
3258

3259 3260
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3261

3262
	/* sanity checks */
3263
	for_each_pwq(pwq, wq) {
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			if (WARN_ON(pwq->nr_in_flight[i]))
				return;
		if (WARN_ON(pwq->nr_active) ||
		    WARN_ON(!list_empty(&pwq->delayed_works)))
			return;
	}

3274 3275 3276 3277
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3278
	spin_lock_irq(&workqueue_lock);
3279
	list_del(&wq->list);
3280
	spin_unlock_irq(&workqueue_lock);
3281

3282 3283
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3284
		free_mayday_mask(wq->mayday_mask);
3285
		kfree(wq->rescuer);
3286 3287
	}

3288
	free_pwqs(wq);
3289 3290 3291 3292
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3293
/**
3294 3295
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3296 3297
 * @max_active: new max_active value.
 *
3298
 * Set @pwq->max_active to @max_active and activate delayed works if
3299 3300 3301
 * increased.
 *
 * CONTEXT:
3302
 * spin_lock_irq(pool->lock).
3303
 */
3304
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3305
{
3306
	pwq->max_active = max_active;
3307

3308 3309 3310
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3311 3312
}

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3325
	struct pool_workqueue *pwq;
3326

3327
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3328

3329
	spin_lock_irq(&workqueue_lock);
3330 3331 3332

	wq->saved_max_active = max_active;

3333
	for_each_pwq(pwq, wq) {
3334
		struct worker_pool *pool = pwq->pool;
3335

3336
		spin_lock(&pool->lock);
3337

3338
		if (!(wq->flags & WQ_FREEZABLE) ||
3339
		    !(pool->flags & POOL_FREEZING))
3340
			pwq_set_max_active(pwq, max_active);
3341

3342
		spin_unlock(&pool->lock);
3343
	}
3344

3345
	spin_unlock_irq(&workqueue_lock);
3346
}
3347
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3348

3349
/**
3350 3351 3352
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3353
 *
3354 3355 3356
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3357
 *
3358 3359
 * RETURNS:
 * %true if congested, %false otherwise.
3360
 */
3361
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3362
{
3363
	struct pool_workqueue *pwq = get_pwq(cpu, wq);
3364

3365
	return !list_empty(&pwq->delayed_works);
L
Linus Torvalds 已提交
3366
}
3367
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3368

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3381
{
3382
	struct worker_pool *pool = get_work_pool(work);
3383 3384
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3385

3386 3387
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3388

3389 3390 3391 3392 3393 3394
	if (pool) {
		spin_lock_irqsave(&pool->lock, flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		spin_unlock_irqrestore(&pool->lock, flags);
	}
L
Linus Torvalds 已提交
3395

3396
	return ret;
L
Linus Torvalds 已提交
3397
}
3398
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3399

3400 3401 3402
/*
 * CPU hotplug.
 *
3403
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3404
 * are a lot of assumptions on strong associations among work, pwq and
3405
 * pool which make migrating pending and scheduled works very
3406
 * difficult to implement without impacting hot paths.  Secondly,
3407
 * worker pools serve mix of short, long and very long running works making
3408 3409
 * blocked draining impractical.
 *
3410
 * This is solved by allowing the pools to be disassociated from the CPU
3411 3412
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3413
 */
L
Linus Torvalds 已提交
3414

3415
static void wq_unbind_fn(struct work_struct *work)
3416
{
3417
	int cpu = smp_processor_id();
3418
	struct worker_pool *pool;
3419 3420
	struct worker *worker;
	int i;
3421

3422
	for_each_std_worker_pool(pool, cpu) {
3423
		WARN_ON_ONCE(cpu != smp_processor_id());
3424

3425 3426
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3427

3428 3429 3430 3431 3432 3433 3434
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3435
		list_for_each_entry(worker, &pool->idle_list, entry)
3436
			worker->flags |= WORKER_UNBOUND;
3437

3438
		for_each_busy_worker(worker, i, pool)
3439
			worker->flags |= WORKER_UNBOUND;
3440

3441
		pool->flags |= POOL_DISASSOCIATED;
3442

3443 3444 3445
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3446

3447
	/*
3448
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3449 3450
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3451 3452
	 */
	schedule();
3453

3454
	/*
3455 3456
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3457 3458 3459
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3460 3461 3462 3463
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3464
	 */
3465
	for_each_std_worker_pool(pool, cpu)
3466
		atomic_set(&pool->nr_running, 0);
3467 3468
}

T
Tejun Heo 已提交
3469 3470 3471 3472
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3473
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3474 3475
					       unsigned long action,
					       void *hcpu)
3476 3477
{
	unsigned int cpu = (unsigned long)hcpu;
3478
	struct worker_pool *pool;
3479

T
Tejun Heo 已提交
3480
	switch (action & ~CPU_TASKS_FROZEN) {
3481
	case CPU_UP_PREPARE:
3482
		for_each_std_worker_pool(pool, cpu) {
3483 3484 3485 3486 3487 3488 3489 3490 3491
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3492
			spin_lock_irq(&pool->lock);
3493
			start_worker(worker);
3494
			spin_unlock_irq(&pool->lock);
3495
		}
T
Tejun Heo 已提交
3496
		break;
3497

3498 3499
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3500
		for_each_std_worker_pool(pool, cpu) {
3501 3502 3503
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3504
			pool->flags &= ~POOL_DISASSOCIATED;
3505 3506 3507 3508 3509
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3510
		break;
3511
	}
3512 3513 3514 3515 3516 3517 3518
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3519
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3520 3521 3522
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3523 3524 3525
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3526 3527
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3528
		/* unbinding should happen on the local CPU */
3529
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3530
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3531 3532
		flush_work(&unbind_work);
		break;
3533 3534 3535 3536
	}
	return NOTIFY_OK;
}

3537
#ifdef CONFIG_SMP
3538

3539
struct work_for_cpu {
3540
	struct work_struct work;
3541 3542 3543 3544 3545
	long (*fn)(void *);
	void *arg;
	long ret;
};

3546
static void work_for_cpu_fn(struct work_struct *work)
3547
{
3548 3549
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3550 3551 3552 3553 3554 3555 3556 3557 3558
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3559 3560
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3561
 * The caller must not hold any locks which would prevent @fn from completing.
3562 3563 3564
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3565
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3566

3567 3568 3569
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3570 3571 3572 3573 3574
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3575 3576 3577 3578 3579
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3580 3581
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3582
 * pool->worklist.
3583 3584
 *
 * CONTEXT:
3585
 * Grabs and releases workqueue_lock and pool->lock's.
3586 3587 3588 3589 3590
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

3591
	spin_lock_irq(&workqueue_lock);
3592

3593
	WARN_ON_ONCE(workqueue_freezing);
3594 3595
	workqueue_freezing = true;

3596
	for_each_wq_cpu(cpu) {
3597
		struct worker_pool *pool;
3598
		struct workqueue_struct *wq;
3599

3600
		for_each_std_worker_pool(pool, cpu) {
3601
			spin_lock(&pool->lock);
3602

3603 3604
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
3605

3606
			list_for_each_entry(wq, &workqueues, list) {
3607
				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3608

3609
				if (pwq && pwq->pool == pool &&
3610
				    (wq->flags & WQ_FREEZABLE))
3611
					pwq->max_active = 0;
3612
			}
3613

3614
			spin_unlock(&pool->lock);
3615
		}
3616 3617
	}

3618
	spin_unlock_irq(&workqueue_lock);
3619 3620 3621
}

/**
3622
 * freeze_workqueues_busy - are freezable workqueues still busy?
3623 3624 3625 3626 3627 3628 3629 3630
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3631 3632
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3633 3634 3635 3636 3637 3638
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

3639
	spin_lock_irq(&workqueue_lock);
3640

3641
	WARN_ON_ONCE(!workqueue_freezing);
3642

3643
	for_each_wq_cpu(cpu) {
3644
		struct workqueue_struct *wq;
3645 3646 3647 3648 3649
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
3650
			struct pool_workqueue *pwq = get_pwq(cpu, wq);
3651

3652
			if (!pwq || !(wq->flags & WQ_FREEZABLE))
3653 3654
				continue;

3655
			WARN_ON_ONCE(pwq->nr_active < 0);
3656
			if (pwq->nr_active) {
3657 3658 3659 3660 3661 3662
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
3663
	spin_unlock_irq(&workqueue_lock);
3664 3665 3666 3667 3668 3669 3670
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3671
 * frozen works are transferred to their respective pool worklists.
3672 3673
 *
 * CONTEXT:
3674
 * Grabs and releases workqueue_lock and pool->lock's.
3675 3676 3677 3678 3679
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

3680
	spin_lock_irq(&workqueue_lock);
3681 3682 3683 3684

	if (!workqueue_freezing)
		goto out_unlock;

3685
	for_each_wq_cpu(cpu) {
3686
		struct worker_pool *pool;
3687
		struct workqueue_struct *wq;
3688

3689
		for_each_std_worker_pool(pool, cpu) {
3690
			spin_lock(&pool->lock);
3691

3692 3693
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
3694

3695
			list_for_each_entry(wq, &workqueues, list) {
3696
				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3697

3698
				if (!pwq || pwq->pool != pool ||
3699 3700
				    !(wq->flags & WQ_FREEZABLE))
					continue;
3701

3702
				/* restore max_active and repopulate worklist */
3703
				pwq_set_max_active(pwq, wq->saved_max_active);
3704
			}
3705

3706
			wake_up_worker(pool);
3707

3708
			spin_unlock(&pool->lock);
3709
		}
3710 3711 3712 3713
	}

	workqueue_freezing = false;
out_unlock:
3714
	spin_unlock_irq(&workqueue_lock);
3715 3716 3717
}
#endif /* CONFIG_FREEZER */

3718
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3719
{
T
Tejun Heo 已提交
3720 3721
	unsigned int cpu;

3722 3723
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3724
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3725

3726 3727 3728 3729
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

3730
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3731
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3732

3733 3734
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3735
		struct worker_pool *pool;
3736

3737
		for_each_std_worker_pool(pool, cpu) {
3738
			spin_lock_init(&pool->lock);
3739
			pool->cpu = cpu;
3740
			pool->flags |= POOL_DISASSOCIATED;
3741 3742
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3743
			hash_init(pool->busy_hash);
3744

3745 3746 3747
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3748

3749
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3750 3751
				    (unsigned long)pool);

3752
			mutex_init(&pool->assoc_mutex);
3753
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3754 3755 3756

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3757
		}
3758 3759
	}

3760
	/* create the initial worker */
3761
	for_each_online_wq_cpu(cpu) {
3762
		struct worker_pool *pool;
3763

3764
		for_each_std_worker_pool(pool, cpu) {
3765 3766
			struct worker *worker;

3767 3768 3769
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3770
			worker = create_worker(pool);
3771
			BUG_ON(!worker);
3772
			spin_lock_irq(&pool->lock);
3773
			start_worker(worker);
3774
			spin_unlock_irq(&pool->lock);
3775
		}
3776 3777
	}

3778
	system_wq = alloc_workqueue("events", 0, 0);
3779
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3780
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3781 3782
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3783 3784
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3785
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3786
	       !system_unbound_wq || !system_freezable_wq);
3787
	return 0;
L
Linus Torvalds 已提交
3788
}
3789
early_initcall(init_workqueues);