workqueue.c 113.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47

48
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
49

T
Tejun Heo 已提交
50
enum {
51 52
	/*
	 * worker_pool flags
53
	 *
54
	 * A bound pool is either associated or disassociated with its CPU.
55 56 57 58 59 60
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
61
	 * be executing on any CPU.  The pool behaves as an unbound one.
62 63
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
64 65
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
66
	 */
67
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
83

84
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
85
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86

87 88 89
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

90 91 92
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
93 94 95 96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
101
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
102
};
L
Linus Torvalds 已提交
103 104

/*
T
Tejun Heo 已提交
105 106
 * Structure fields follow one of the following exclusion rules.
 *
107 108
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
109
 *
110 111 112
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
113
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
114
 *
115 116 117 118
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
119
 *
120 121
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
122
 * W: workqueue_lock protected.
123 124
 *
 * R: workqueue_lock protected for writes.  Sched-RCU protected for reads.
L
Linus Torvalds 已提交
125 126
 */

127
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
128

129
struct worker_pool {
130
	spinlock_t		lock;		/* the pool lock */
131
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
132
	int			id;		/* I: pool ID */
133
	unsigned int		flags;		/* X: flags */
134 135 136

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
137 138

	/* nr_idle includes the ones off idle_list for rebinding */
139 140 141 142 143 144
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

145 146 147 148
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

149
	struct mutex		manager_arb;	/* manager arbitration */
150
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
151
	struct ida		worker_ida;	/* L: for worker IDs */
152

T
Tejun Heo 已提交
153
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
154 155
	struct hlist_node	hash_node;	/* R: unbound_pool_hash node */
	int			refcnt;		/* refcnt for unbound pools */
T
Tejun Heo 已提交
156

157 158 159 160 161 162
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
163 164 165 166 167 168

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
169 170
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
171
/*
172 173 174 175
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
176
 */
177
struct pool_workqueue {
178
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
179
	struct workqueue_struct *wq;		/* I: the owning workqueue */
180 181
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
182
	int			refcnt;		/* L: reference count */
183 184
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
185
	int			nr_active;	/* L: nr of active works */
186
	int			max_active;	/* L: max active works */
187
	struct list_head	delayed_works;	/* L: delayed works */
188
	struct list_head	pwqs_node;	/* R: node on wq->pwqs */
189
	struct list_head	mayday_node;	/* W: node on wq->maydays */
T
Tejun Heo 已提交
190 191 192 193 194 195 196 197 198

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
	 * determined without grabbing workqueue_lock.
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
199
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
200

201 202 203 204 205 206 207 208 209
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

L
Linus Torvalds 已提交
210 211 212 213 214
/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
215
	unsigned int		flags;		/* W: WQ_* flags */
216
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
217
	struct list_head	pwqs;		/* R: all pwqs of this wq */
T
Tejun Heo 已提交
218
	struct list_head	list;		/* W: list of all workqueues */
219 220 221 222

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
223
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
224 225 226 227
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

228
	struct list_head	maydays;	/* W: pwqs requesting rescue */
229 230
	struct worker		*rescuer;	/* I: rescue worker */

231
	int			nr_drainers;	/* W: drain in progress */
232
	int			saved_max_active; /* W: saved pwq max_active */
233
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
234
	struct lockdep_map	lockdep_map;
235
#endif
236
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
237 238
};

239 240
static struct kmem_cache *pwq_cache;

241 242 243 244 245
/* hash of all unbound pools keyed by pool->attrs */
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

246 247
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
248
struct workqueue_struct *system_highpri_wq __read_mostly;
249
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
250
struct workqueue_struct *system_long_wq __read_mostly;
251
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
252
struct workqueue_struct *system_unbound_wq __read_mostly;
253
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
254
struct workqueue_struct *system_freezable_wq __read_mostly;
255
EXPORT_SYMBOL_GPL(system_freezable_wq);
256

257 258 259
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

260 261 262 263 264
#define assert_rcu_or_wq_lock()						\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&workqueue_lock),		\
			   "sched RCU or workqueue lock should be held")

265 266 267
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
268
	     (pool)++)
269

270 271
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
272

T
Tejun Heo 已提交
273 274 275 276
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
 * @id: integer used for iteration
277 278 279 280 281 282 283
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
284 285
 */
#define for_each_pool(pool, id)						\
286 287 288
	idr_for_each_entry(&worker_pool_idr, pool, id)			\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
T
Tejun Heo 已提交
289

290 291 292 293
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
294 295 296 297 298 299 300
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
301 302
 */
#define for_each_pwq(pwq, wq)						\
303 304 305
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
306

307 308 309 310
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

311 312 313 314 315
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
351
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
387
	.debug_hint	= work_debug_hint,
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

423 424
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
425
static LIST_HEAD(workqueues);
426
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
427

428
/*
429 430
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
431
 */
432
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
433
				     cpu_worker_pools);
434

435 436 437 438
/*
 * idr of all pools.  Modifications are protected by workqueue_lock.  Read
 * accesses are protected by sched-RCU protected.
 */
T
Tejun Heo 已提交
439 440
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
441
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
442

T
Tejun Heo 已提交
443 444 445 446 447
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

448 449 450
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
T
Tejun Heo 已提交
451

452 453 454 455
		spin_lock_irq(&workqueue_lock);
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
		spin_unlock_irq(&workqueue_lock);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
456

457
	return ret;
458 459
}

460 461 462 463 464 465 466 467
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 */
468
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
469
{
470 471 472
	assert_rcu_or_wq_lock();
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
473 474
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
490

491
/*
492 493
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
494
 * is cleared and the high bits contain OFFQ flags and pool ID.
495
 *
496 497
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
498 499
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
500
 *
501
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
502
 * corresponding to a work.  Pool is available once the work has been
503
 * queued anywhere after initialization until it is sync canceled.  pwq is
504
 * available only while the work item is queued.
505
 *
506 507 508 509
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
510
 */
511 512
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
513
{
514
	WARN_ON_ONCE(!work_pending(work));
515 516
	atomic_long_set(&work->data, data | flags | work_static(work));
}
517

518
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
519 520
			 unsigned long extra_flags)
{
521 522
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
523 524
}

525 526 527 528 529 530 531
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

532 533
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
534
{
535 536 537 538 539 540 541
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
542
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
543
}
544

545
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
546
{
547 548
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
549 550
}

551
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
552
{
553
	unsigned long data = atomic_long_read(&work->data);
554

555
	if (data & WORK_STRUCT_PWQ)
556 557 558
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
559 560
}

561 562 563 564 565
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
566 567 568 569 570 571 572 573 574
 *
 * Pools are created and destroyed under workqueue_lock, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under workqueue_lock or with preemption disabled.
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
575 576
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
577
{
578
	unsigned long data = atomic_long_read(&work->data);
579
	int pool_id;
580

581 582
	assert_rcu_or_wq_lock();

583 584
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
585
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
586

587 588
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
589 590
		return NULL;

591
	return idr_find(&worker_pool_idr, pool_id);
592 593 594 595 596 597 598 599 600 601 602
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
603 604
	unsigned long data = atomic_long_read(&work->data);

605 606
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
607
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
608

609
	return data >> WORK_OFFQ_POOL_SHIFT;
610 611
}

612 613
static void mark_work_canceling(struct work_struct *work)
{
614
	unsigned long pool_id = get_work_pool_id(work);
615

616 617
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
618 619 620 621 622 623
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

624
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
625 626
}

627
/*
628 629
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
630
 * they're being called with pool->lock held.
631 632
 */

633
static bool __need_more_worker(struct worker_pool *pool)
634
{
635
	return !atomic_read(&pool->nr_running);
636 637
}

638
/*
639 640
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
641 642
 *
 * Note that, because unbound workers never contribute to nr_running, this
643
 * function will always return %true for unbound pools as long as the
644
 * worklist isn't empty.
645
 */
646
static bool need_more_worker(struct worker_pool *pool)
647
{
648
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
649
}
650

651
/* Can I start working?  Called from busy but !running workers. */
652
static bool may_start_working(struct worker_pool *pool)
653
{
654
	return pool->nr_idle;
655 656 657
}

/* Do I need to keep working?  Called from currently running workers. */
658
static bool keep_working(struct worker_pool *pool)
659
{
660 661
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
662 663 664
}

/* Do we need a new worker?  Called from manager. */
665
static bool need_to_create_worker(struct worker_pool *pool)
666
{
667
	return need_more_worker(pool) && !may_start_working(pool);
668
}
669

670
/* Do I need to be the manager? */
671
static bool need_to_manage_workers(struct worker_pool *pool)
672
{
673
	return need_to_create_worker(pool) ||
674
		(pool->flags & POOL_MANAGE_WORKERS);
675 676 677
}

/* Do we have too many workers and should some go away? */
678
static bool too_many_workers(struct worker_pool *pool)
679
{
680
	bool managing = mutex_is_locked(&pool->manager_arb);
681 682
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
683

684 685 686 687 688 689 690
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

691
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
692 693
}

694
/*
695 696 697
 * Wake up functions.
 */

698
/* Return the first worker.  Safe with preemption disabled */
699
static struct worker *first_worker(struct worker_pool *pool)
700
{
701
	if (unlikely(list_empty(&pool->idle_list)))
702 703
		return NULL;

704
	return list_first_entry(&pool->idle_list, struct worker, entry);
705 706 707 708
}

/**
 * wake_up_worker - wake up an idle worker
709
 * @pool: worker pool to wake worker from
710
 *
711
 * Wake up the first idle worker of @pool.
712 713
 *
 * CONTEXT:
714
 * spin_lock_irq(pool->lock).
715
 */
716
static void wake_up_worker(struct worker_pool *pool)
717
{
718
	struct worker *worker = first_worker(pool);
719 720 721 722 723

	if (likely(worker))
		wake_up_process(worker->task);
}

724
/**
725 726 727 728 729 730 731 732 733 734
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
735
void wq_worker_waking_up(struct task_struct *task, int cpu)
736 737 738
{
	struct worker *worker = kthread_data(task);

739
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
740
		WARN_ON_ONCE(worker->pool->cpu != cpu);
741
		atomic_inc(&worker->pool->nr_running);
742
	}
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
760
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
761 762
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
763
	struct worker_pool *pool;
764

765 766 767 768 769
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
770
	if (worker->flags & WORKER_NOT_RUNNING)
771 772
		return NULL;

773 774
	pool = worker->pool;

775
	/* this can only happen on the local cpu */
776 777
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
778 779 780 781 782 783

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
784 785 786
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
787
	 * manipulating idle_list, so dereferencing idle_list without pool
788
	 * lock is safe.
789
	 */
790 791
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
792
		to_wakeup = first_worker(pool);
793 794 795 796 797
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
798
 * @worker: self
799 800 801
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
802 803 804
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
805
 *
806
 * CONTEXT:
807
 * spin_lock_irq(pool->lock)
808 809 810 811
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
812
	struct worker_pool *pool = worker->pool;
813

814 815
	WARN_ON_ONCE(worker->task != current);

816 817 818 819 820 821 822 823
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
824
			if (atomic_dec_and_test(&pool->nr_running) &&
825
			    !list_empty(&pool->worklist))
826
				wake_up_worker(pool);
827
		} else
828
			atomic_dec(&pool->nr_running);
829 830
	}

831 832 833 834
	worker->flags |= flags;
}

/**
835
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
836
 * @worker: self
837 838
 * @flags: flags to clear
 *
839
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
840
 *
841
 * CONTEXT:
842
 * spin_lock_irq(pool->lock)
843 844 845
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
846
	struct worker_pool *pool = worker->pool;
847 848
	unsigned int oflags = worker->flags;

849 850
	WARN_ON_ONCE(worker->task != current);

851
	worker->flags &= ~flags;
852

853 854 855 856 857
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
858 859
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
860
			atomic_inc(&pool->nr_running);
861 862
}

863 864
/**
 * find_worker_executing_work - find worker which is executing a work
865
 * @pool: pool of interest
866 867
 * @work: work to find worker for
 *
868 869
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
889 890
 *
 * CONTEXT:
891
 * spin_lock_irq(pool->lock).
892 893 894 895
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
896
 */
897
static struct worker *find_worker_executing_work(struct worker_pool *pool,
898
						 struct work_struct *work)
899
{
900 901
	struct worker *worker;

902
	hash_for_each_possible(pool->busy_hash, worker, hentry,
903 904 905
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
906 907 908
			return worker;

	return NULL;
909 910
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
926
 * spin_lock_irq(pool->lock).
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

991
static void pwq_activate_delayed_work(struct work_struct *work)
992
{
993
	struct pool_workqueue *pwq = get_work_pwq(work);
994 995

	trace_workqueue_activate_work(work);
996
	move_linked_works(work, &pwq->pool->worklist, NULL);
997
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
998
	pwq->nr_active++;
999 1000
}

1001
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1002
{
1003
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1004 1005
						    struct work_struct, entry);

1006
	pwq_activate_delayed_work(work);
1007 1008
}

1009
/**
1010 1011
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1012 1013 1014
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1015
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1016 1017
 *
 * CONTEXT:
1018
 * spin_lock_irq(pool->lock).
1019
 */
1020
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1021
{
T
Tejun Heo 已提交
1022
	/* uncolored work items don't participate in flushing or nr_active */
1023
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1024
		goto out_put;
1025

1026
	pwq->nr_in_flight[color]--;
1027

1028 1029
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1030
		/* one down, submit a delayed one */
1031 1032
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1033 1034 1035
	}

	/* is flush in progress and are we at the flushing tip? */
1036
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1037
		goto out_put;
1038 1039

	/* are there still in-flight works? */
1040
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1041
		goto out_put;
1042

1043 1044
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1045 1046

	/*
1047
	 * If this was the last pwq, wake up the first flusher.  It
1048 1049
	 * will handle the rest.
	 */
1050 1051
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1052 1053
out_put:
	put_pwq(pwq);
1054 1055
}

1056
/**
1057
 * try_to_grab_pending - steal work item from worklist and disable irq
1058 1059
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1060
 * @flags: place to store irq state
1061 1062 1063 1064 1065 1066 1067
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1068 1069
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1070
 *
1071
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1072 1073 1074
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1075 1076 1077 1078
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1079
 * This function is safe to call from any context including IRQ handler.
1080
 */
1081 1082
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1083
{
1084
	struct worker_pool *pool;
1085
	struct pool_workqueue *pwq;
1086

1087 1088
	local_irq_save(*flags);

1089 1090 1091 1092
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1093 1094 1095 1096 1097
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1098 1099 1100 1101 1102
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1103 1104 1105 1106 1107 1108 1109
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1110 1111
	pool = get_work_pool(work);
	if (!pool)
1112
		goto fail;
1113

1114
	spin_lock(&pool->lock);
1115
	/*
1116 1117 1118 1119 1120
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1121 1122
	 * item is currently queued on that pool.
	 */
1123 1124
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1125 1126 1127 1128 1129
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1130
		 * on the delayed_list, will confuse pwq->nr_active
1131 1132 1133 1134
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1135
			pwq_activate_delayed_work(work);
1136 1137

		list_del_init(&work->entry);
1138
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1139

1140
		/* work->data points to pwq iff queued, point to pool */
1141 1142 1143 1144
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1145
	}
1146
	spin_unlock(&pool->lock);
1147 1148 1149 1150 1151
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1152
	return -EAGAIN;
1153 1154
}

T
Tejun Heo 已提交
1155
/**
1156
 * insert_work - insert a work into a pool
1157
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1158 1159 1160 1161
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1162
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1163
 * work_struct flags.
T
Tejun Heo 已提交
1164 1165
 *
 * CONTEXT:
1166
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1167
 */
1168 1169
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1170
{
1171
	struct worker_pool *pool = pwq->pool;
1172

T
Tejun Heo 已提交
1173
	/* we own @work, set data and link */
1174
	set_work_pwq(work, pwq, extra_flags);
1175
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1176
	get_pwq(pwq);
1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1185 1186
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1187 1188
}

1189 1190
/*
 * Test whether @work is being queued from another work executing on the
1191
 * same workqueue.
1192 1193 1194
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1195 1196 1197 1198 1199 1200 1201
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1202
	return worker && worker->current_pwq->wq == wq;
1203 1204
}

1205
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1206 1207
			 struct work_struct *work)
{
1208
	struct pool_workqueue *pwq;
1209
	struct list_head *worklist;
1210
	unsigned int work_flags;
1211
	unsigned int req_cpu = cpu;
1212 1213 1214 1215 1216 1217 1218 1219

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1220

1221
	debug_work_activate(work);
1222

1223
	/* if dying, only works from the same workqueue are allowed */
1224
	if (unlikely(wq->flags & WQ_DRAINING) &&
1225
	    WARN_ON_ONCE(!is_chained_work(wq)))
1226 1227
		return;

1228
	/* determine the pwq to use */
1229
	if (!(wq->flags & WQ_UNBOUND)) {
1230
		struct worker_pool *last_pool;
1231

1232
		if (cpu == WORK_CPU_UNBOUND)
1233 1234
			cpu = raw_smp_processor_id();

1235
		/*
1236 1237 1238 1239
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1240
		 */
1241
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1242
		last_pool = get_work_pool(work);
1243

1244
		if (last_pool && last_pool != pwq->pool) {
1245 1246
			struct worker *worker;

1247
			spin_lock(&last_pool->lock);
1248

1249
			worker = find_worker_executing_work(last_pool, work);
1250

1251
			if (worker && worker->current_pwq->wq == wq) {
1252
				pwq = per_cpu_ptr(wq->cpu_pwqs, last_pool->cpu);
1253
			} else {
1254
				/* meh... not running there, queue here */
1255
				spin_unlock(&last_pool->lock);
1256
				spin_lock(&pwq->pool->lock);
1257
			}
1258
		} else {
1259
			spin_lock(&pwq->pool->lock);
1260
		}
1261
	} else {
1262
		pwq = first_pwq(wq);
1263
		spin_lock(&pwq->pool->lock);
1264 1265
	}

1266 1267
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1268

1269
	if (WARN_ON(!list_empty(&work->entry))) {
1270
		spin_unlock(&pwq->pool->lock);
1271 1272
		return;
	}
1273

1274 1275
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1276

1277
	if (likely(pwq->nr_active < pwq->max_active)) {
1278
		trace_workqueue_activate_work(work);
1279 1280
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1281 1282
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1283
		worklist = &pwq->delayed_works;
1284
	}
1285

1286
	insert_work(pwq, work, worklist, work_flags);
1287

1288
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1289 1290
}

1291
/**
1292 1293
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1294 1295 1296
 * @wq: workqueue to use
 * @work: work to queue
 *
1297
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1298
 *
1299 1300
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1301
 */
1302 1303
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1304
{
1305
	bool ret = false;
1306
	unsigned long flags;
1307

1308
	local_irq_save(flags);
1309

1310
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1311
		__queue_work(cpu, wq, work);
1312
		ret = true;
1313
	}
1314

1315
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1316 1317
	return ret;
}
1318
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1319

1320
/**
1321
 * queue_work - queue work on a workqueue
1322 1323 1324
 * @wq: workqueue to use
 * @work: work to queue
 *
1325
 * Returns %false if @work was already on a queue, %true otherwise.
1326
 *
1327 1328
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1329
 */
1330
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1331
{
1332
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1333
}
1334
EXPORT_SYMBOL_GPL(queue_work);
1335

1336
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1337
{
1338
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1339

1340
	/* should have been called from irqsafe timer with irq already off */
1341
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1342
}
1343
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1344

1345 1346
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1347
{
1348 1349 1350 1351 1352
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1353 1354
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1367
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1368

1369
	dwork->wq = wq;
1370
	dwork->cpu = cpu;
1371 1372 1373 1374 1375 1376
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1377 1378
}

1379 1380 1381 1382
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1383
 * @dwork: work to queue
1384 1385
 * @delay: number of jiffies to wait before queueing
 *
1386 1387 1388
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1389
 */
1390 1391
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1392
{
1393
	struct work_struct *work = &dwork->work;
1394
	bool ret = false;
1395
	unsigned long flags;
1396

1397 1398
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1399

1400
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1401
		__queue_delayed_work(cpu, wq, dwork, delay);
1402
		ret = true;
1403
	}
1404

1405
	local_irq_restore(flags);
1406 1407
	return ret;
}
1408
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1409

1410 1411 1412 1413 1414 1415
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1416
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1417
 */
1418
bool queue_delayed_work(struct workqueue_struct *wq,
1419 1420
			struct delayed_work *dwork, unsigned long delay)
{
1421
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1422 1423
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1440
 * This function is safe to call from any context including IRQ handler.
1441 1442 1443 1444 1445 1446 1447
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1448

1449 1450 1451
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1452

1453 1454 1455
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1456
	}
1457 1458

	/* -ENOENT from try_to_grab_pending() becomes %true */
1459 1460
	return ret;
}
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1477

T
Tejun Heo 已提交
1478 1479 1480 1481 1482 1483 1484 1485
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1486
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1487 1488
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1489
{
1490
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1491

1492 1493 1494 1495
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1496

1497 1498
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1499
	pool->nr_idle++;
1500
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1501 1502

	/* idle_list is LIFO */
1503
	list_add(&worker->entry, &pool->idle_list);
1504

1505 1506
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1507

1508
	/*
1509
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1510
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1511 1512
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1513
	 */
1514
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1515
		     pool->nr_workers == pool->nr_idle &&
1516
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1526
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1527 1528 1529
 */
static void worker_leave_idle(struct worker *worker)
{
1530
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1531

1532 1533
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1534
	worker_clr_flags(worker, WORKER_IDLE);
1535
	pool->nr_idle--;
T
Tejun Heo 已提交
1536 1537 1538
	list_del_init(&worker->entry);
}

1539
/**
1540 1541 1542 1543
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1544 1545 1546 1547 1548 1549
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1550
 * This function is to be used by unbound workers and rescuers to bind
1551 1552 1553
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1554
 * verbatim as it's best effort and blocking and pool may be
1555 1556
 * [dis]associated in the meantime.
 *
1557
 * This function tries set_cpus_allowed() and locks pool and verifies the
1558
 * binding against %POOL_DISASSOCIATED which is set during
1559 1560 1561
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1562 1563
 *
 * CONTEXT:
1564
 * Might sleep.  Called without any lock but returns with pool->lock
1565 1566 1567
 * held.
 *
 * RETURNS:
1568
 * %true if the associated pool is online (@worker is successfully
1569 1570
 * bound), %false if offline.
 */
1571
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1572
__acquires(&pool->lock)
1573 1574
{
	while (true) {
1575
		/*
1576 1577 1578
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1579
		 * against POOL_DISASSOCIATED.
1580
		 */
1581
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1582
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1583

1584
		spin_lock_irq(&pool->lock);
1585
		if (pool->flags & POOL_DISASSOCIATED)
1586
			return false;
1587
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1588
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1589
			return true;
1590
		spin_unlock_irq(&pool->lock);
1591

1592 1593 1594 1595 1596 1597
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1598
		cpu_relax();
1599
		cond_resched();
1600 1601 1602
	}
}

1603
/*
1604
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1605
 * list_empty(@worker->entry) before leaving idle and call this function.
1606 1607 1608
 */
static void idle_worker_rebind(struct worker *worker)
{
1609
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1610
	if (worker_maybe_bind_and_lock(worker->pool))
1611
		worker_clr_flags(worker, WORKER_UNBOUND);
1612

1613 1614
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1615
	spin_unlock_irq(&worker->pool->lock);
1616 1617
}

1618
/*
1619
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1620 1621 1622
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1623
 */
1624
static void busy_worker_rebind_fn(struct work_struct *work)
1625 1626 1627
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1628
	if (worker_maybe_bind_and_lock(worker->pool))
1629
		worker_clr_flags(worker, WORKER_UNBOUND);
1630

1631
	spin_unlock_irq(&worker->pool->lock);
1632 1633
}

1634
/**
1635 1636
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1637
 *
1638
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1639 1640
 * is different for idle and busy ones.
 *
1641 1642 1643 1644
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1645
 *
1646 1647 1648 1649
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1650
 *
1651 1652 1653 1654
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1655
 */
1656
static void rebind_workers(struct worker_pool *pool)
1657
{
1658
	struct worker *worker, *n;
1659 1660
	int i;

1661 1662
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1663

1664
	/* dequeue and kick idle ones */
1665 1666 1667 1668 1669 1670
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1671

1672 1673 1674 1675 1676 1677
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1678

1679
	/* rebind busy workers */
1680
	for_each_busy_worker(worker, i, pool) {
1681 1682
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1683

1684 1685 1686
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1687

1688
		debug_work_activate(rebind_work);
1689

1690 1691
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1692
		 * and @pwq->pool consistent for sanity.
1693
		 */
T
Tejun Heo 已提交
1694
		if (worker->pool->attrs->nice < 0)
1695 1696 1697 1698
			wq = system_highpri_wq;
		else
			wq = system_wq;

1699
		insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1700 1701
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1702
	}
1703 1704
}

T
Tejun Heo 已提交
1705 1706 1707 1708 1709
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1710 1711
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1712
		INIT_LIST_HEAD(&worker->scheduled);
1713
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1714 1715
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1716
	}
T
Tejun Heo 已提交
1717 1718 1719 1720 1721
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1722
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1723
 *
1724
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1734
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1735
{
T
Tejun Heo 已提交
1736
	const char *pri = pool->attrs->nice < 0  ? "H" : "";
T
Tejun Heo 已提交
1737
	struct worker *worker = NULL;
1738
	int id = -1;
T
Tejun Heo 已提交
1739

1740
	spin_lock_irq(&pool->lock);
1741
	while (ida_get_new(&pool->worker_ida, &id)) {
1742
		spin_unlock_irq(&pool->lock);
1743
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1744
			goto fail;
1745
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1746
	}
1747
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1748 1749 1750 1751 1752

	worker = alloc_worker();
	if (!worker)
		goto fail;

1753
	worker->pool = pool;
T
Tejun Heo 已提交
1754 1755
	worker->id = id;

1756
	if (pool->cpu >= 0)
1757
		worker->task = kthread_create_on_node(worker_thread,
1758
					worker, cpu_to_node(pool->cpu),
1759
					"kworker/%d:%d%s", pool->cpu, id, pri);
1760 1761
	else
		worker->task = kthread_create(worker_thread, worker,
1762 1763
					      "kworker/u%d:%d%s",
					      pool->id, id, pri);
T
Tejun Heo 已提交
1764 1765 1766
	if (IS_ERR(worker->task))
		goto fail;

T
Tejun Heo 已提交
1767 1768
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1769

1770
	/*
T
Tejun Heo 已提交
1771 1772 1773
	 * %PF_THREAD_BOUND is used to prevent userland from meddling with
	 * cpumask of workqueue workers.  This is an abuse.  We need
	 * %PF_NO_SETAFFINITY.
1774
	 */
T
Tejun Heo 已提交
1775 1776 1777 1778 1779 1780 1781 1782
	worker->task->flags |= PF_THREAD_BOUND;

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1783
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1784 1785 1786 1787

	return worker;
fail:
	if (id >= 0) {
1788
		spin_lock_irq(&pool->lock);
1789
		ida_remove(&pool->worker_ida, id);
1790
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1800
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1801 1802
 *
 * CONTEXT:
1803
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1804 1805 1806
 */
static void start_worker(struct worker *worker)
{
1807
	worker->flags |= WORKER_STARTED;
1808
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1809
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1810 1811 1812 1813 1814 1815 1816
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1817
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1818 1819
 *
 * CONTEXT:
1820
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1821 1822 1823
 */
static void destroy_worker(struct worker *worker)
{
1824
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1825 1826 1827
	int id = worker->id;

	/* sanity check frenzy */
1828 1829 1830
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1831

T
Tejun Heo 已提交
1832
	if (worker->flags & WORKER_STARTED)
1833
		pool->nr_workers--;
T
Tejun Heo 已提交
1834
	if (worker->flags & WORKER_IDLE)
1835
		pool->nr_idle--;
T
Tejun Heo 已提交
1836 1837

	list_del_init(&worker->entry);
1838
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1839

1840
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1841

T
Tejun Heo 已提交
1842 1843 1844
	kthread_stop(worker->task);
	kfree(worker);

1845
	spin_lock_irq(&pool->lock);
1846
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1847 1848
}

1849
static void idle_worker_timeout(unsigned long __pool)
1850
{
1851
	struct worker_pool *pool = (void *)__pool;
1852

1853
	spin_lock_irq(&pool->lock);
1854

1855
	if (too_many_workers(pool)) {
1856 1857 1858 1859
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1860
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1861 1862 1863
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1864
			mod_timer(&pool->idle_timer, expires);
1865 1866
		else {
			/* it's been idle for too long, wake up manager */
1867
			pool->flags |= POOL_MANAGE_WORKERS;
1868
			wake_up_worker(pool);
1869
		}
1870 1871
	}

1872
	spin_unlock_irq(&pool->lock);
1873
}
1874

1875
static void send_mayday(struct work_struct *work)
1876
{
1877 1878
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1879 1880

	lockdep_assert_held(&workqueue_lock);
1881

1882
	if (!wq->rescuer)
1883
		return;
1884 1885

	/* mayday mayday mayday */
1886 1887
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1888
		wake_up_process(wq->rescuer->task);
1889
	}
1890 1891
}

1892
static void pool_mayday_timeout(unsigned long __pool)
1893
{
1894
	struct worker_pool *pool = (void *)__pool;
1895 1896
	struct work_struct *work;

1897 1898
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1899

1900
	if (need_to_create_worker(pool)) {
1901 1902 1903 1904 1905 1906
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1907
		list_for_each_entry(work, &pool->worklist, entry)
1908
			send_mayday(work);
L
Linus Torvalds 已提交
1909
	}
1910

1911 1912
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1913

1914
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1915 1916
}

1917 1918
/**
 * maybe_create_worker - create a new worker if necessary
1919
 * @pool: pool to create a new worker for
1920
 *
1921
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1922 1923
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1924
 * sent to all rescuers with works scheduled on @pool to resolve
1925 1926 1927 1928 1929 1930
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1931
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1932 1933 1934 1935
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1936
 * false if no action was taken and pool->lock stayed locked, true
1937 1938
 * otherwise.
 */
1939
static bool maybe_create_worker(struct worker_pool *pool)
1940 1941
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1942
{
1943
	if (!need_to_create_worker(pool))
1944 1945
		return false;
restart:
1946
	spin_unlock_irq(&pool->lock);
1947

1948
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1949
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1950 1951 1952 1953

	while (true) {
		struct worker *worker;

1954
		worker = create_worker(pool);
1955
		if (worker) {
1956
			del_timer_sync(&pool->mayday_timer);
1957
			spin_lock_irq(&pool->lock);
1958
			start_worker(worker);
1959 1960
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1961 1962 1963
			return true;
		}

1964
		if (!need_to_create_worker(pool))
1965
			break;
L
Linus Torvalds 已提交
1966

1967 1968
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1969

1970
		if (!need_to_create_worker(pool))
1971 1972 1973
			break;
	}

1974
	del_timer_sync(&pool->mayday_timer);
1975
	spin_lock_irq(&pool->lock);
1976
	if (need_to_create_worker(pool))
1977 1978 1979 1980 1981 1982
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1983
 * @pool: pool to destroy workers for
1984
 *
1985
 * Destroy @pool workers which have been idle for longer than
1986 1987 1988
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1989
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1990 1991 1992
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1993
 * false if no action was taken and pool->lock stayed locked, true
1994 1995
 * otherwise.
 */
1996
static bool maybe_destroy_workers(struct worker_pool *pool)
1997 1998
{
	bool ret = false;
L
Linus Torvalds 已提交
1999

2000
	while (too_many_workers(pool)) {
2001 2002
		struct worker *worker;
		unsigned long expires;
2003

2004
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2005
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2006

2007
		if (time_before(jiffies, expires)) {
2008
			mod_timer(&pool->idle_timer, expires);
2009
			break;
2010
		}
L
Linus Torvalds 已提交
2011

2012 2013
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2014
	}
2015

2016
	return ret;
2017 2018
}

2019
/**
2020 2021
 * manage_workers - manage worker pool
 * @worker: self
2022
 *
2023
 * Assume the manager role and manage the worker pool @worker belongs
2024
 * to.  At any given time, there can be only zero or one manager per
2025
 * pool.  The exclusion is handled automatically by this function.
2026 2027 2028 2029
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2030 2031
 *
 * CONTEXT:
2032
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2033 2034 2035
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2036 2037
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2038
 */
2039
static bool manage_workers(struct worker *worker)
2040
{
2041
	struct worker_pool *pool = worker->pool;
2042
	bool ret = false;
2043

2044
	if (!mutex_trylock(&pool->manager_arb))
2045
		return ret;
2046

2047 2048 2049
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
2050 2051 2052 2053 2054
	 * grab @pool->manager_arb to achieve this because that can lead to
	 * idle worker depletion (all become busy thinking someone else is
	 * managing) which in turn can result in deadlock under extreme
	 * circumstances.  Use @pool->assoc_mutex to synchronize manager
	 * against CPU hotplug.
2055
	 *
2056
	 * assoc_mutex would always be free unless CPU hotplug is in
2057
	 * progress.  trylock first without dropping @pool->lock.
2058
	 */
2059
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2060
		spin_unlock_irq(&pool->lock);
2061
		mutex_lock(&pool->assoc_mutex);
2062 2063
		/*
		 * CPU hotplug could have happened while we were waiting
2064
		 * for assoc_mutex.  Hotplug itself can't handle us
2065
		 * because manager isn't either on idle or busy list, and
2066
		 * @pool's state and ours could have deviated.
2067
		 *
2068
		 * As hotplug is now excluded via assoc_mutex, we can
2069
		 * simply try to bind.  It will succeed or fail depending
2070
		 * on @pool's current state.  Try it and adjust
2071 2072
		 * %WORKER_UNBOUND accordingly.
		 */
2073
		if (worker_maybe_bind_and_lock(pool))
2074 2075 2076
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2077

2078 2079
		ret = true;
	}
2080

2081
	pool->flags &= ~POOL_MANAGE_WORKERS;
2082 2083

	/*
2084 2085
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2086
	 */
2087 2088
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2089

2090
	mutex_unlock(&pool->assoc_mutex);
2091
	mutex_unlock(&pool->manager_arb);
2092
	return ret;
2093 2094
}

2095 2096
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2097
 * @worker: self
2098 2099 2100 2101 2102 2103 2104 2105 2106
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2107
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2108
 */
T
Tejun Heo 已提交
2109
static void process_one_work(struct worker *worker, struct work_struct *work)
2110 2111
__releases(&pool->lock)
__acquires(&pool->lock)
2112
{
2113
	struct pool_workqueue *pwq = get_work_pwq(work);
2114
	struct worker_pool *pool = worker->pool;
2115
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2116
	int work_color;
2117
	struct worker *collision;
2118 2119 2120 2121 2122 2123 2124 2125
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2126 2127 2128
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2129
#endif
2130 2131 2132
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2133
	 * unbound or a disassociated pool.
2134
	 */
2135
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2136
		     !(pool->flags & POOL_DISASSOCIATED) &&
2137
		     raw_smp_processor_id() != pool->cpu);
2138

2139 2140 2141 2142 2143 2144
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2145
	collision = find_worker_executing_work(pool, work);
2146 2147 2148 2149 2150
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2151
	/* claim and dequeue */
2152
	debug_work_deactivate(work);
2153
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2154
	worker->current_work = work;
2155
	worker->current_func = work->func;
2156
	worker->current_pwq = pwq;
2157
	work_color = get_work_color(work);
2158

2159 2160
	list_del_init(&work->entry);

2161 2162 2163 2164 2165 2166 2167
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2168
	/*
2169
	 * Unbound pool isn't concurrency managed and work items should be
2170 2171
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2172 2173
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2174

2175
	/*
2176
	 * Record the last pool and clear PENDING which should be the last
2177
	 * update to @work.  Also, do this inside @pool->lock so that
2178 2179
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2180
	 */
2181
	set_work_pool_and_clear_pending(work, pool->id);
2182

2183
	spin_unlock_irq(&pool->lock);
2184

2185
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2186
	lock_map_acquire(&lockdep_map);
2187
	trace_workqueue_execute_start(work);
2188
	worker->current_func(work);
2189 2190 2191 2192 2193
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2194
	lock_map_release(&lockdep_map);
2195
	lock_map_release(&pwq->wq->lockdep_map);
2196 2197

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2198 2199
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2200 2201
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2202 2203 2204 2205
		debug_show_held_locks(current);
		dump_stack();
	}

2206
	spin_lock_irq(&pool->lock);
2207

2208 2209 2210 2211
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2212
	/* we're done with it, release */
2213
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2214
	worker->current_work = NULL;
2215
	worker->current_func = NULL;
2216 2217
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2229
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2230 2231 2232
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2233
{
2234 2235
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2236
						struct work_struct, entry);
T
Tejun Heo 已提交
2237
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2238 2239 2240
	}
}

T
Tejun Heo 已提交
2241 2242
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2243
 * @__worker: self
T
Tejun Heo 已提交
2244
 *
2245 2246
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2247 2248 2249
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2250
 */
T
Tejun Heo 已提交
2251
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2252
{
T
Tejun Heo 已提交
2253
	struct worker *worker = __worker;
2254
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2255

2256 2257
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2258
woke_up:
2259
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2260

2261 2262
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2263
		spin_unlock_irq(&pool->lock);
2264

2265
		/* if DIE is set, destruction is requested */
2266 2267 2268 2269 2270
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2271
		/* otherwise, rebind */
2272 2273
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2274
	}
2275

T
Tejun Heo 已提交
2276
	worker_leave_idle(worker);
2277
recheck:
2278
	/* no more worker necessary? */
2279
	if (!need_more_worker(pool))
2280 2281 2282
		goto sleep;

	/* do we need to manage? */
2283
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2284 2285
		goto recheck;

T
Tejun Heo 已提交
2286 2287 2288 2289 2290
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2291
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2292

2293 2294 2295 2296 2297 2298 2299 2300
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2301
		struct work_struct *work =
2302
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2303 2304 2305 2306 2307 2308
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2309
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2310 2311 2312
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2313
		}
2314
	} while (keep_working(pool));
2315 2316

	worker_set_flags(worker, WORKER_PREP, false);
2317
sleep:
2318
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2319
		goto recheck;
2320

T
Tejun Heo 已提交
2321
	/*
2322 2323 2324 2325 2326
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2327 2328 2329
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2330
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2331 2332
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2333 2334
}

2335 2336
/**
 * rescuer_thread - the rescuer thread function
2337
 * @__rescuer: self
2338 2339
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2340
 * workqueue which has WQ_MEM_RECLAIM set.
2341
 *
2342
 * Regular work processing on a pool may block trying to create a new
2343 2344 2345 2346 2347
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2348 2349
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2350 2351 2352 2353
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2354
static int rescuer_thread(void *__rescuer)
2355
{
2356 2357
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2358 2359 2360
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2361 2362 2363 2364 2365 2366

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2367 2368 2369
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2370 2371
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2372
		rescuer->task->flags &= ~PF_WQ_WORKER;
2373
		return 0;
2374
	}
2375

2376 2377 2378 2379 2380 2381
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2382
		struct worker_pool *pool = pwq->pool;
2383 2384 2385
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2386 2387 2388
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2389 2390

		/* migrate to the target cpu if possible */
2391
		worker_maybe_bind_and_lock(pool);
2392
		rescuer->pool = pool;
2393 2394 2395 2396 2397

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2398
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2399
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2400
			if (get_work_pwq(work) == pwq)
2401 2402 2403
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2404 2405

		/*
2406
		 * Leave this pool.  If keep_working() is %true, notify a
2407 2408 2409
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2410 2411
		if (keep_working(pool))
			wake_up_worker(pool);
2412

2413
		rescuer->pool = NULL;
2414 2415
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2416 2417
	}

2418 2419
	spin_unlock_irq(&workqueue_lock);

2420 2421
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2422 2423
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2424 2425
}

O
Oleg Nesterov 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2437 2438
/**
 * insert_wq_barrier - insert a barrier work
2439
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2440
 * @barr: wq_barrier to insert
2441 2442
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2443
 *
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2456
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2457 2458
 *
 * CONTEXT:
2459
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2460
 */
2461
static void insert_wq_barrier(struct pool_workqueue *pwq,
2462 2463
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2464
{
2465 2466 2467
	struct list_head *head;
	unsigned int linked = 0;

2468
	/*
2469
	 * debugobject calls are safe here even with pool->lock locked
2470 2471 2472 2473
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2474
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2475
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2476
	init_completion(&barr->done);
2477

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2493
	debug_work_activate(&barr->work);
2494
	insert_work(pwq, &barr->work, head,
2495
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2496 2497
}

2498
/**
2499
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2500 2501 2502 2503
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2504
 * Prepare pwqs for workqueue flushing.
2505
 *
2506 2507 2508 2509 2510
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2511 2512 2513 2514 2515 2516 2517
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2518
 * If @work_color is non-negative, all pwqs should have the same
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2529
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2530
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2531
{
2532
	bool wait = false;
2533
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2534

2535
	if (flush_color >= 0) {
2536
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2537
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2538
	}
2539

2540 2541
	local_irq_disable();

2542
	for_each_pwq(pwq, wq) {
2543
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2544

2545
		spin_lock(&pool->lock);
2546

2547
		if (flush_color >= 0) {
2548
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2549

2550 2551 2552
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2553 2554 2555
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2556

2557
		if (work_color >= 0) {
2558
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2559
			pwq->work_color = work_color;
2560
		}
L
Linus Torvalds 已提交
2561

2562
		spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
2563
	}
2564

2565 2566
	local_irq_enable();

2567
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2568
		complete(&wq->first_flusher->done);
2569

2570
	return wait;
L
Linus Torvalds 已提交
2571 2572
}

2573
/**
L
Linus Torvalds 已提交
2574
 * flush_workqueue - ensure that any scheduled work has run to completion.
2575
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2576 2577 2578 2579
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2580 2581
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2582
 */
2583
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2584
{
2585 2586 2587 2588 2589 2590
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2591

2592 2593
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2608
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2609 2610 2611 2612 2613
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2614
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2615 2616 2617

			wq->first_flusher = &this_flusher;

2618
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2619 2620 2621 2622 2623 2624 2625 2626
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2627
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2628
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2629
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2655 2656 2657 2658
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2659 2660
	wq->first_flusher = NULL;

2661 2662
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2675 2676
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2696
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2697 2698 2699
		}

		if (list_empty(&wq->flusher_queue)) {
2700
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2701 2702 2703 2704 2705
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2706
		 * the new first flusher and arm pwqs.
2707
		 */
2708 2709
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2710 2711 2712 2713

		list_del_init(&next->list);
		wq->first_flusher = next;

2714
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2726
}
2727
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2728

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2743
	struct pool_workqueue *pwq;
2744 2745 2746 2747 2748 2749

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
2750
	spin_lock_irq(&workqueue_lock);
2751 2752
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
2753
	spin_unlock_irq(&workqueue_lock);
2754 2755 2756
reflush:
	flush_workqueue(wq);

2757 2758
	local_irq_disable();

2759
	for_each_pwq(pwq, wq) {
2760
		bool drained;
2761

2762
		spin_lock(&pwq->pool->lock);
2763
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2764
		spin_unlock(&pwq->pool->lock);
2765 2766

		if (drained)
2767 2768 2769 2770
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2771 2772
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2773 2774

		local_irq_enable();
2775 2776 2777
		goto reflush;
	}

2778
	spin_lock(&workqueue_lock);
2779 2780
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
2781 2782 2783
	spin_unlock(&workqueue_lock);

	local_irq_enable();
2784 2785 2786
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2787
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2788
{
2789
	struct worker *worker = NULL;
2790
	struct worker_pool *pool;
2791
	struct pool_workqueue *pwq;
2792 2793

	might_sleep();
2794 2795

	local_irq_disable();
2796
	pool = get_work_pool(work);
2797 2798
	if (!pool) {
		local_irq_enable();
2799
		return false;
2800
	}
2801

2802
	spin_lock(&pool->lock);
2803
	/* see the comment in try_to_grab_pending() with the same code */
2804 2805 2806
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2807
			goto already_gone;
2808
	} else {
2809
		worker = find_worker_executing_work(pool, work);
2810
		if (!worker)
T
Tejun Heo 已提交
2811
			goto already_gone;
2812
		pwq = worker->current_pwq;
2813
	}
2814

2815
	insert_wq_barrier(pwq, barr, work, worker);
2816
	spin_unlock_irq(&pool->lock);
2817

2818 2819 2820 2821 2822 2823
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2824
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2825
		lock_map_acquire(&pwq->wq->lockdep_map);
2826
	else
2827 2828
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2829

2830
	return true;
T
Tejun Heo 已提交
2831
already_gone:
2832
	spin_unlock_irq(&pool->lock);
2833
	return false;
2834
}
2835 2836 2837 2838 2839

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2840 2841
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2842 2843 2844 2845 2846 2847 2848 2849 2850
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2851 2852 2853
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2854
	if (start_flush_work(work, &barr)) {
2855 2856 2857
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2858
	} else {
2859
		return false;
2860 2861
	}
}
2862
EXPORT_SYMBOL_GPL(flush_work);
2863

2864
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2865
{
2866
	unsigned long flags;
2867 2868 2869
	int ret;

	do {
2870 2871 2872 2873 2874 2875
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2876
			flush_work(work);
2877 2878
	} while (unlikely(ret < 0));

2879 2880 2881 2882
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2883
	flush_work(work);
2884
	clear_work_data(work);
2885 2886 2887
	return ret;
}

2888
/**
2889 2890
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2891
 *
2892 2893 2894 2895
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2896
 *
2897 2898
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2899
 *
2900
 * The caller must ensure that the workqueue on which @work was last
2901
 * queued can't be destroyed before this function returns.
2902 2903 2904
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2905
 */
2906
bool cancel_work_sync(struct work_struct *work)
2907
{
2908
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2909
}
2910
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2911

2912
/**
2913 2914
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2915
 *
2916 2917 2918
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2919
 *
2920 2921 2922
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2923
 */
2924 2925
bool flush_delayed_work(struct delayed_work *dwork)
{
2926
	local_irq_disable();
2927
	if (del_timer_sync(&dwork->timer))
2928
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2929
	local_irq_enable();
2930 2931 2932 2933
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2934
/**
2935 2936
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2937
 *
2938 2939 2940 2941 2942
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2943
 *
2944
 * This function is safe to call from any context including IRQ handler.
2945
 */
2946
bool cancel_delayed_work(struct delayed_work *dwork)
2947
{
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2958 2959
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2960
	local_irq_restore(flags);
2961
	return ret;
2962
}
2963
EXPORT_SYMBOL(cancel_delayed_work);
2964

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2975
{
2976
	return __cancel_work_timer(&dwork->work, true);
2977
}
2978
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2979

2980
/**
2981 2982 2983 2984 2985 2986
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2987
bool schedule_work_on(int cpu, struct work_struct *work)
2988
{
2989
	return queue_work_on(cpu, system_wq, work);
2990 2991 2992
}
EXPORT_SYMBOL(schedule_work_on);

2993 2994 2995 2996
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2997 2998
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2999 3000 3001 3002
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3003
 */
3004
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3005
{
3006
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3007
}
3008
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3009

3010 3011 3012
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3013
 * @dwork: job to be done
3014 3015 3016 3017 3018
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3019 3020
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3021
{
3022
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3023
}
3024
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3025

3026 3027
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3028 3029
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3030 3031 3032 3033
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3034
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3035
{
3036
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3037
}
3038
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3039

3040
/**
3041
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3042 3043
 * @func: the function to call
 *
3044 3045
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3046
 * schedule_on_each_cpu() is very slow.
3047 3048 3049
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3050
 */
3051
int schedule_on_each_cpu(work_func_t func)
3052 3053
{
	int cpu;
3054
	struct work_struct __percpu *works;
3055

3056 3057
	works = alloc_percpu(struct work_struct);
	if (!works)
3058
		return -ENOMEM;
3059

3060 3061
	get_online_cpus();

3062
	for_each_online_cpu(cpu) {
3063 3064 3065
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3066
		schedule_work_on(cpu, work);
3067
	}
3068 3069 3070 3071

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3072
	put_online_cpus();
3073
	free_percpu(works);
3074 3075 3076
	return 0;
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3101 3102
void flush_scheduled_work(void)
{
3103
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3104
}
3105
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3106

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3119
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3120 3121
{
	if (!in_interrupt()) {
3122
		fn(&ew->work);
3123 3124 3125
		return 0;
	}

3126
	INIT_WORK(&ew->work, fn);
3127 3128 3129 3130 3131 3132
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3133 3134
int keventd_up(void)
{
3135
	return system_wq != NULL;
L
Linus Torvalds 已提交
3136 3137
}

T
Tejun Heo 已提交
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_setall(attrs->cpumask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/*
 * Hacky implementation of jhash of bitmaps which only considers the
 * specified number of bits.  We probably want a proper implementation in
 * include/linux/jhash.h.
 */
static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
{
	int nr_longs = bits / BITS_PER_LONG;
	int nr_leftover = bits % BITS_PER_LONG;
	unsigned long leftover = 0;

	if (nr_longs)
		hash = jhash(bitmap, nr_longs * sizeof(long), hash);
	if (nr_leftover) {
		bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
		hash = jhash(&leftover, sizeof(long), hash);
	}
	return hash;
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
	hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3224 3225 3226 3227 3228
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3229 3230 3231
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3232 3233
 */
static int init_worker_pool(struct worker_pool *pool)
3234 3235
{
	spin_lock_init(&pool->lock);
3236 3237
	pool->id = -1;
	pool->cpu = -1;
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
	mutex_init(&pool->assoc_mutex);
	ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3253

3254 3255 3256 3257
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3258 3259 3260 3261
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3262 3263
}

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

	spin_lock_irq(&workqueue_lock);
	if (--pool->refcnt) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
	    WARN_ON(!list_empty(&pool->worklist))) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

	spin_unlock_irq(&workqueue_lock);

	/* lock out manager and destroy all workers */
	mutex_lock(&pool->manager_arb);
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	static DEFINE_MUTEX(create_mutex);
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	struct worker *worker;

	mutex_lock(&create_mutex);

	/* do we already have a matching pool? */
	spin_lock_irq(&workqueue_lock);
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}
	spin_unlock_irq(&workqueue_lock);

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3356
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	copy_workqueue_attrs(pool->attrs, attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
	worker = create_worker(pool);
	if (!worker)
		goto fail;

	spin_lock_irq(&pool->lock);
	start_worker(worker);
	spin_unlock_irq(&pool->lock);

	/* install */
	spin_lock_irq(&workqueue_lock);
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	spin_unlock_irq(&workqueue_lock);
	mutex_unlock(&create_mutex);
	return pool;
fail:
	mutex_unlock(&create_mutex);
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

	spin_lock_irq(&workqueue_lock);
	list_del_rcu(&pwq->pwqs_node);
	spin_unlock_irq(&workqueue_lock);

	put_unbound_pool(pool);
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
	if (list_empty(&wq->pwqs))
		kfree(wq);
}

3420 3421 3422 3423 3424 3425 3426 3427 3428
static void init_and_link_pwq(struct pool_workqueue *pwq,
			      struct workqueue_struct *wq,
			      struct worker_pool *pool)
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3429
	pwq->refcnt = 1;
3430 3431 3432
	pwq->max_active = wq->saved_max_active;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3433
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3434 3435 3436 3437

	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
}

3438
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3439
{
3440
	bool highpri = wq->flags & WQ_HIGHPRI;
3441 3442 3443
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3444 3445
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3446 3447 3448
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3449 3450
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3451
			struct worker_pool *cpu_pools =
3452
				per_cpu(cpu_worker_pools, cpu);
3453

3454
			init_and_link_pwq(pwq, wq, &cpu_pools[highpri]);
3455 3456 3457
		}
	} else {
		struct pool_workqueue *pwq;
3458
		struct worker_pool *pool;
3459 3460 3461 3462 3463

		pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
		if (!pwq)
			return -ENOMEM;

3464 3465
		pool = get_unbound_pool(unbound_std_wq_attrs[highpri]);
		if (!pool) {
3466 3467 3468 3469
			kmem_cache_free(pwq_cache, pwq);
			return -ENOMEM;
		}

3470
		init_and_link_pwq(pwq, wq, pool);
3471 3472 3473
	}

	return 0;
T
Tejun Heo 已提交
3474 3475
}

3476 3477
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3478
{
3479 3480 3481
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3482 3483
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3484

3485
	return clamp_val(max_active, 1, lim);
3486 3487
}

3488
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3489 3490 3491
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3492
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3493
{
3494
	va_list args, args1;
L
Linus Torvalds 已提交
3495
	struct workqueue_struct *wq;
3496
	struct pool_workqueue *pwq;
3497 3498 3499 3500 3501 3502 3503 3504 3505
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
3506
		return NULL;
3507 3508 3509 3510

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3511

3512
	max_active = max_active ?: WQ_DFL_ACTIVE;
3513
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3514

3515
	/* init wq */
3516
	wq->flags = flags;
3517
	wq->saved_max_active = max_active;
3518
	mutex_init(&wq->flush_mutex);
3519
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3520
	INIT_LIST_HEAD(&wq->pwqs);
3521 3522
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3523
	INIT_LIST_HEAD(&wq->maydays);
3524

3525
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3526
	INIT_LIST_HEAD(&wq->list);
3527

3528
	if (alloc_and_link_pwqs(wq) < 0)
3529
		goto err_free_wq;
T
Tejun Heo 已提交
3530

3531 3532 3533 3534 3535
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3536 3537
		struct worker *rescuer;

3538
		rescuer = alloc_worker();
3539
		if (!rescuer)
3540
			goto err_destroy;
3541

3542 3543
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3544
					       wq->name);
3545 3546 3547 3548
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3549

3550
		wq->rescuer = rescuer;
3551 3552
		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3553 3554
	}

3555 3556 3557 3558 3559
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
3560
	spin_lock_irq(&workqueue_lock);
3561

3562
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3563 3564
		for_each_pwq(pwq, wq)
			pwq->max_active = 0;
3565

T
Tejun Heo 已提交
3566
	list_add(&wq->list, &workqueues);
3567

3568
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3569

3570
	return wq;
3571 3572 3573 3574 3575 3576

err_free_wq:
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3577
	return NULL;
3578
}
3579
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3580

3581 3582 3583 3584 3585 3586 3587 3588
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3589
	struct pool_workqueue *pwq;
3590

3591 3592
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3593

3594 3595
	spin_lock_irq(&workqueue_lock);

3596
	/* sanity checks */
3597
	for_each_pwq(pwq, wq) {
3598 3599
		int i;

3600 3601 3602
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
				spin_unlock_irq(&workqueue_lock);
3603
				return;
3604 3605 3606
			}
		}

T
Tejun Heo 已提交
3607 3608
		if (WARN_ON(pwq->refcnt > 1) ||
		    WARN_ON(pwq->nr_active) ||
3609 3610
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
			spin_unlock_irq(&workqueue_lock);
3611
			return;
3612
		}
3613 3614
	}

3615 3616 3617 3618
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3619
	list_del_init(&wq->list);
3620

3621
	spin_unlock_irq(&workqueue_lock);
3622

3623
	if (wq->rescuer) {
3624
		kthread_stop(wq->rescuer->task);
3625
		kfree(wq->rescuer);
3626
		wq->rescuer = NULL;
3627 3628
	}

T
Tejun Heo 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
		 * access the first pwq and put the base ref.  As both pwqs
		 * and pools are sched-RCU protected, the lock operations
		 * are safe.  @wq will be freed when the last pwq is
		 * released.
		 */
3644 3645
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
T
Tejun Heo 已提交
3646 3647 3648
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
3649
	}
3650 3651 3652
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3653
/**
3654 3655
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3656 3657
 * @max_active: new max_active value.
 *
3658
 * Set @pwq->max_active to @max_active and activate delayed works if
3659 3660 3661
 * increased.
 *
 * CONTEXT:
3662
 * spin_lock_irq(pool->lock).
3663
 */
3664
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3665
{
3666
	pwq->max_active = max_active;
3667

3668 3669 3670
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3671 3672
}

3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3685
	struct pool_workqueue *pwq;
3686

3687
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3688

3689
	spin_lock_irq(&workqueue_lock);
3690 3691 3692

	wq->saved_max_active = max_active;

3693
	for_each_pwq(pwq, wq) {
3694
		struct worker_pool *pool = pwq->pool;
3695

3696
		spin_lock(&pool->lock);
3697

3698
		if (!(wq->flags & WQ_FREEZABLE) ||
3699
		    !(pool->flags & POOL_FREEZING))
3700
			pwq_set_max_active(pwq, max_active);
3701

3702
		spin_unlock(&pool->lock);
3703
	}
3704

3705
	spin_unlock_irq(&workqueue_lock);
3706
}
3707
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3708

3709
/**
3710 3711 3712
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3713
 *
3714 3715 3716
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3717
 *
3718 3719
 * RETURNS:
 * %true if congested, %false otherwise.
3720
 */
3721
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3722
{
3723
	struct pool_workqueue *pwq;
3724 3725 3726
	bool ret;

	preempt_disable();
3727 3728 3729 3730 3731

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
3732

3733 3734 3735 3736
	ret = !list_empty(&pwq->delayed_works);
	preempt_enable();

	return ret;
L
Linus Torvalds 已提交
3737
}
3738
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3739

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3752
{
3753
	struct worker_pool *pool;
3754 3755
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3756

3757 3758
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3759

3760 3761
	local_irq_save(flags);
	pool = get_work_pool(work);
3762
	if (pool) {
3763
		spin_lock(&pool->lock);
3764 3765
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
3766
		spin_unlock(&pool->lock);
3767
	}
3768
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3769

3770
	return ret;
L
Linus Torvalds 已提交
3771
}
3772
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3773

3774 3775 3776
/*
 * CPU hotplug.
 *
3777
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3778
 * are a lot of assumptions on strong associations among work, pwq and
3779
 * pool which make migrating pending and scheduled works very
3780
 * difficult to implement without impacting hot paths.  Secondly,
3781
 * worker pools serve mix of short, long and very long running works making
3782 3783
 * blocked draining impractical.
 *
3784
 * This is solved by allowing the pools to be disassociated from the CPU
3785 3786
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3787
 */
L
Linus Torvalds 已提交
3788

3789
static void wq_unbind_fn(struct work_struct *work)
3790
{
3791
	int cpu = smp_processor_id();
3792
	struct worker_pool *pool;
3793 3794
	struct worker *worker;
	int i;
3795

3796
	for_each_cpu_worker_pool(pool, cpu) {
3797
		WARN_ON_ONCE(cpu != smp_processor_id());
3798

3799 3800
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3801

3802 3803 3804 3805 3806 3807 3808
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3809
		list_for_each_entry(worker, &pool->idle_list, entry)
3810
			worker->flags |= WORKER_UNBOUND;
3811

3812
		for_each_busy_worker(worker, i, pool)
3813
			worker->flags |= WORKER_UNBOUND;
3814

3815
		pool->flags |= POOL_DISASSOCIATED;
3816

3817 3818 3819
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3820

3821
	/*
3822
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3823 3824
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3825 3826
	 */
	schedule();
3827

3828
	/*
3829 3830
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3831 3832 3833
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3834 3835 3836 3837
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3838
	 */
3839
	for_each_cpu_worker_pool(pool, cpu)
3840
		atomic_set(&pool->nr_running, 0);
3841 3842
}

T
Tejun Heo 已提交
3843 3844 3845 3846
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3847
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3848 3849
					       unsigned long action,
					       void *hcpu)
3850
{
3851
	int cpu = (unsigned long)hcpu;
3852
	struct worker_pool *pool;
3853

T
Tejun Heo 已提交
3854
	switch (action & ~CPU_TASKS_FROZEN) {
3855
	case CPU_UP_PREPARE:
3856
		for_each_cpu_worker_pool(pool, cpu) {
3857 3858 3859 3860 3861 3862 3863 3864 3865
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3866
			spin_lock_irq(&pool->lock);
3867
			start_worker(worker);
3868
			spin_unlock_irq(&pool->lock);
3869
		}
T
Tejun Heo 已提交
3870
		break;
3871

3872 3873
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3874
		for_each_cpu_worker_pool(pool, cpu) {
3875 3876 3877
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3878
			pool->flags &= ~POOL_DISASSOCIATED;
3879 3880 3881 3882 3883
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3884
		break;
3885
	}
3886 3887 3888 3889 3890 3891 3892
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3893
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3894 3895 3896
						 unsigned long action,
						 void *hcpu)
{
3897
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
3898 3899
	struct work_struct unbind_work;

3900 3901
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3902
		/* unbinding should happen on the local CPU */
3903
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3904
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3905 3906
		flush_work(&unbind_work);
		break;
3907 3908 3909 3910
	}
	return NOTIFY_OK;
}

3911
#ifdef CONFIG_SMP
3912

3913
struct work_for_cpu {
3914
	struct work_struct work;
3915 3916 3917 3918 3919
	long (*fn)(void *);
	void *arg;
	long ret;
};

3920
static void work_for_cpu_fn(struct work_struct *work)
3921
{
3922 3923
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3924 3925 3926 3927 3928 3929 3930 3931 3932
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3933 3934
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3935
 * The caller must not hold any locks which would prevent @fn from completing.
3936
 */
3937
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
3938
{
3939
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3940

3941 3942 3943
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3944 3945 3946 3947 3948
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3949 3950 3951 3952 3953
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3954 3955
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3956
 * pool->worklist.
3957 3958
 *
 * CONTEXT:
3959
 * Grabs and releases workqueue_lock and pool->lock's.
3960 3961 3962
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
3963
	struct worker_pool *pool;
3964 3965
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
T
Tejun Heo 已提交
3966
	int id;
3967

3968
	spin_lock_irq(&workqueue_lock);
3969

3970
	WARN_ON_ONCE(workqueue_freezing);
3971 3972
	workqueue_freezing = true;

3973
	/* set FREEZING */
T
Tejun Heo 已提交
3974 3975 3976 3977
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
3978 3979
		spin_unlock(&pool->lock);
	}
3980

3981 3982 3983 3984
	/* suppress further executions by setting max_active to zero */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3985

3986 3987 3988 3989
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq->max_active = 0;
			spin_unlock(&pwq->pool->lock);
3990
		}
3991 3992
	}

3993
	spin_unlock_irq(&workqueue_lock);
3994 3995 3996
}

/**
3997
 * freeze_workqueues_busy - are freezable workqueues still busy?
3998 3999 4000 4001 4002 4003 4004 4005
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
4006 4007
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4008 4009 4010 4011
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4012 4013
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4014

4015
	spin_lock_irq(&workqueue_lock);
4016

4017
	WARN_ON_ONCE(!workqueue_freezing);
4018

4019 4020 4021
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4022 4023 4024 4025
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4026
		for_each_pwq(pwq, wq) {
4027
			WARN_ON_ONCE(pwq->nr_active < 0);
4028
			if (pwq->nr_active) {
4029 4030 4031 4032 4033 4034
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
4035
	spin_unlock_irq(&workqueue_lock);
4036 4037 4038 4039 4040 4041 4042
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4043
 * frozen works are transferred to their respective pool worklists.
4044 4045
 *
 * CONTEXT:
4046
 * Grabs and releases workqueue_lock and pool->lock's.
4047 4048 4049
 */
void thaw_workqueues(void)
{
4050 4051 4052 4053
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
	int id;
4054

4055
	spin_lock_irq(&workqueue_lock);
4056 4057 4058 4059

	if (!workqueue_freezing)
		goto out_unlock;

4060 4061 4062 4063 4064 4065 4066
	/* clear FREEZING */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
		spin_unlock(&pool->lock);
	}
4067

4068 4069 4070 4071
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4072

4073 4074 4075 4076
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq_set_max_active(pwq, wq->saved_max_active);
			spin_unlock(&pwq->pool->lock);
4077
		}
4078 4079
	}

4080 4081 4082 4083 4084 4085 4086
	/* kick workers */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		wake_up_worker(pool);
		spin_unlock(&pool->lock);
	}

4087 4088
	workqueue_freezing = false;
out_unlock:
4089
	spin_unlock_irq(&workqueue_lock);
4090 4091 4092
}
#endif /* CONFIG_FREEZER */

4093
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4094
{
T
Tejun Heo 已提交
4095 4096
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4097

4098 4099
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4100
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4101

4102 4103 4104 4105
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4106
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4107
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4108

4109
	/* initialize CPU pools */
4110
	for_each_possible_cpu(cpu) {
4111
		struct worker_pool *pool;
4112

T
Tejun Heo 已提交
4113
		i = 0;
4114
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4115
			BUG_ON(init_worker_pool(pool));
4116
			pool->cpu = cpu;
4117
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4118 4119
			pool->attrs->nice = std_nice[i++];

T
Tejun Heo 已提交
4120 4121
			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
4122
		}
4123 4124
	}

4125
	/* create the initial worker */
4126
	for_each_online_cpu(cpu) {
4127
		struct worker_pool *pool;
4128

4129
		for_each_cpu_worker_pool(pool, cpu) {
4130 4131
			struct worker *worker;

4132
			pool->flags &= ~POOL_DISASSOCIATED;
4133

4134
			worker = create_worker(pool);
4135
			BUG_ON(!worker);
4136
			spin_lock_irq(&pool->lock);
4137
			start_worker(worker);
4138
			spin_unlock_irq(&pool->lock);
4139
		}
4140 4141
	}

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

		attrs->nice = std_nice[i];
		cpumask_setall(attrs->cpumask);

		unbound_std_wq_attrs[i] = attrs;
	}

4154
	system_wq = alloc_workqueue("events", 0, 0);
4155
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4156
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4157 4158
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4159 4160
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4161
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4162
	       !system_unbound_wq || !system_freezable_wq);
4163
	return 0;
L
Linus Torvalds 已提交
4164
}
4165
early_initcall(init_workqueues);