workqueue.c 103.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125
struct worker_pool {
126
	spinlock_t		lock;		/* the pool lock */
127
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
128
	int			id;		/* I: pool ID */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141 142 143 144
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

145
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146
	struct ida		worker_ida;	/* L: for worker IDs */
147 148 149 150 151 152 153

	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
154 155
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
156
/*
157 158 159 160
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
161
 */
162
struct pool_workqueue {
163
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
164
	struct workqueue_struct *wq;		/* I: the owning workqueue */
165 166 167 168
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
169
	int			nr_active;	/* L: nr of active works */
170
	int			max_active;	/* L: max active works */
171
	struct list_head	delayed_works;	/* L: delayed works */
172
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
173

174 175 176 177 178 179 180 181 182
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

183 184 185 186 187 188 189 190 191 192
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
193
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
194 195 196 197 198 199 200 201 202
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
203 204 205 206 207 208

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
209
	unsigned int		flags;		/* W: WQ_* flags */
210
	union {
211 212
		struct pool_workqueue __percpu		*pcpu;
		struct pool_workqueue			*single;
213
		unsigned long				v;
214
	} pool_wq;				/* I: pwq's */
T
Tejun Heo 已提交
215
	struct list_head	list;		/* W: list of all workqueues */
216 217 218 219

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
220
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
221 222 223 224
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

225
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
226 227
	struct worker		*rescuer;	/* I: rescue worker */

228
	int			nr_drainers;	/* W: drain in progress */
229
	int			saved_max_active; /* W: saved pwq max_active */
230
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
231
	struct lockdep_map	lockdep_map;
232
#endif
233
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
234 235
};

236 237
static struct kmem_cache *pwq_cache;

238 239
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
240
struct workqueue_struct *system_highpri_wq __read_mostly;
241
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
242
struct workqueue_struct *system_long_wq __read_mostly;
243
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
244
struct workqueue_struct *system_unbound_wq __read_mostly;
245
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
246
struct workqueue_struct *system_freezable_wq __read_mostly;
247
EXPORT_SYMBOL_GPL(system_freezable_wq);
248

249 250 251
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

252
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
253 254
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
255

256 257
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
258

259 260
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
261 262 263 264 265 266 267 268 269 270
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
271
	return WORK_CPU_END;
272 273
}

274
static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
275
				 struct workqueue_struct *wq)
276
{
277
	return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
278 279
}

280 281 282
/*
 * CPU iterators
 *
283
 * An extra cpu number is defined using an invalid cpu number
284
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
285 286
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
287
 *
288 289
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
290
 * for_each_pwq_cpu()		: possible CPUs for bound workqueues,
291 292
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
293 294
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
295
	     (cpu) < WORK_CPU_END;					\
296
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
297

298 299
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
300
	     (cpu) < WORK_CPU_END;					\
301
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
302

303 304
#define for_each_pwq_cpu(cpu, wq)					\
	for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq));	\
305
	     (cpu) < WORK_CPU_END;					\
306
	     (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
307

308 309 310 311
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

312 313 314 315 316
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
352
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
388
	.debug_hint	= work_debug_hint,
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

424 425
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
426
static LIST_HEAD(workqueues);
427
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
428

429
/*
430 431
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
432
 */
433 434
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_std_worker_pools);
T
Tejun Heo 已提交
435
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
436

T
Tejun Heo 已提交
437 438 439 440
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
441
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
442

T
Tejun Heo 已提交
443
static struct worker_pool *std_worker_pools(int cpu)
444
{
445
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
446
		return per_cpu(cpu_std_worker_pools, cpu);
447
	else
T
Tejun Heo 已提交
448
		return unbound_std_worker_pools;
449 450
}

T
Tejun Heo 已提交
451 452
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
453
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
454 455
}

T
Tejun Heo 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

469 470 471 472 473 474 475 476 477
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

478 479
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
480
	struct worker_pool *pools = std_worker_pools(cpu);
481

T
Tejun Heo 已提交
482
	return &pools[highpri];
483 484
}

485 486
static struct pool_workqueue *get_pwq(unsigned int cpu,
				      struct workqueue_struct *wq)
487
{
488
	if (!(wq->flags & WQ_UNBOUND)) {
489
		if (likely(cpu < nr_cpu_ids))
490
			return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
491
	} else if (likely(cpu == WORK_CPU_UNBOUND))
492
		return wq->pool_wq.single;
493
	return NULL;
494 495
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
511

512
/*
513 514
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
515
 * is cleared and the high bits contain OFFQ flags and pool ID.
516
 *
517 518
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
519 520
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
521
 *
522
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
523
 * corresponding to a work.  Pool is available once the work has been
524
 * queued anywhere after initialization until it is sync canceled.  pwq is
525
 * available only while the work item is queued.
526
 *
527 528 529 530
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
531
 */
532 533
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
534
{
535
	WARN_ON_ONCE(!work_pending(work));
536 537
	atomic_long_set(&work->data, data | flags | work_static(work));
}
538

539
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
540 541
			 unsigned long extra_flags)
{
542 543
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
544 545
}

546 547 548 549 550 551 552
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

553 554
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
555
{
556 557 558 559 560 561 562
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
563
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
564
}
565

566
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
567
{
568 569
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
570 571
}

572
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
573
{
574
	unsigned long data = atomic_long_read(&work->data);
575

576
	if (data & WORK_STRUCT_PWQ)
577 578 579
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
580 581
}

582 583 584 585 586 587 588
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
589
{
590
	unsigned long data = atomic_long_read(&work->data);
591 592
	struct worker_pool *pool;
	int pool_id;
593

594 595
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
596
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
597

598 599
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
600 601
		return NULL;

602 603 604 605 606 607 608 609 610 611 612 613 614 615
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
616 617
	unsigned long data = atomic_long_read(&work->data);

618 619
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
620
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
621

622
	return data >> WORK_OFFQ_POOL_SHIFT;
623 624
}

625 626
static void mark_work_canceling(struct work_struct *work)
{
627
	unsigned long pool_id = get_work_pool_id(work);
628

629 630
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
631 632 633 634 635 636
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

637
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
638 639
}

640
/*
641 642
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
643
 * they're being called with pool->lock held.
644 645
 */

646
static bool __need_more_worker(struct worker_pool *pool)
647
{
648
	return !atomic_read(&pool->nr_running);
649 650
}

651
/*
652 653
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
654 655
 *
 * Note that, because unbound workers never contribute to nr_running, this
656
 * function will always return %true for unbound pools as long as the
657
 * worklist isn't empty.
658
 */
659
static bool need_more_worker(struct worker_pool *pool)
660
{
661
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
662
}
663

664
/* Can I start working?  Called from busy but !running workers. */
665
static bool may_start_working(struct worker_pool *pool)
666
{
667
	return pool->nr_idle;
668 669 670
}

/* Do I need to keep working?  Called from currently running workers. */
671
static bool keep_working(struct worker_pool *pool)
672
{
673 674
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
675 676 677
}

/* Do we need a new worker?  Called from manager. */
678
static bool need_to_create_worker(struct worker_pool *pool)
679
{
680
	return need_more_worker(pool) && !may_start_working(pool);
681
}
682

683
/* Do I need to be the manager? */
684
static bool need_to_manage_workers(struct worker_pool *pool)
685
{
686
	return need_to_create_worker(pool) ||
687
		(pool->flags & POOL_MANAGE_WORKERS);
688 689 690
}

/* Do we have too many workers and should some go away? */
691
static bool too_many_workers(struct worker_pool *pool)
692
{
693
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
694 695
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
696

697 698 699 700 701 702 703
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

704
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
705 706
}

707
/*
708 709 710
 * Wake up functions.
 */

711
/* Return the first worker.  Safe with preemption disabled */
712
static struct worker *first_worker(struct worker_pool *pool)
713
{
714
	if (unlikely(list_empty(&pool->idle_list)))
715 716
		return NULL;

717
	return list_first_entry(&pool->idle_list, struct worker, entry);
718 719 720 721
}

/**
 * wake_up_worker - wake up an idle worker
722
 * @pool: worker pool to wake worker from
723
 *
724
 * Wake up the first idle worker of @pool.
725 726
 *
 * CONTEXT:
727
 * spin_lock_irq(pool->lock).
728
 */
729
static void wake_up_worker(struct worker_pool *pool)
730
{
731
	struct worker *worker = first_worker(pool);
732 733 734 735 736

	if (likely(worker))
		wake_up_process(worker->task);
}

737
/**
738 739 740 741 742 743 744 745 746 747 748 749 750 751
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

752
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
753
		WARN_ON_ONCE(worker->pool->cpu != cpu);
754
		atomic_inc(&worker->pool->nr_running);
755
	}
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
777
	struct worker_pool *pool;
778

779 780 781 782 783
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
784
	if (worker->flags & WORKER_NOT_RUNNING)
785 786
		return NULL;

787 788
	pool = worker->pool;

789
	/* this can only happen on the local cpu */
790 791
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
792 793 794 795 796 797

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
798 799 800
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
801
	 * manipulating idle_list, so dereferencing idle_list without pool
802
	 * lock is safe.
803
	 */
804 805
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
806
		to_wakeup = first_worker(pool);
807 808 809 810 811
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
812
 * @worker: self
813 814 815
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
816 817 818
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
819
 *
820
 * CONTEXT:
821
 * spin_lock_irq(pool->lock)
822 823 824 825
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
826
	struct worker_pool *pool = worker->pool;
827

828 829
	WARN_ON_ONCE(worker->task != current);

830 831 832 833 834 835 836 837
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
838
			if (atomic_dec_and_test(&pool->nr_running) &&
839
			    !list_empty(&pool->worklist))
840
				wake_up_worker(pool);
841
		} else
842
			atomic_dec(&pool->nr_running);
843 844
	}

845 846 847 848
	worker->flags |= flags;
}

/**
849
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
850
 * @worker: self
851 852
 * @flags: flags to clear
 *
853
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
854
 *
855
 * CONTEXT:
856
 * spin_lock_irq(pool->lock)
857 858 859
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
860
	struct worker_pool *pool = worker->pool;
861 862
	unsigned int oflags = worker->flags;

863 864
	WARN_ON_ONCE(worker->task != current);

865
	worker->flags &= ~flags;
866

867 868 869 870 871
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
872 873
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
874
			atomic_inc(&pool->nr_running);
875 876
}

877 878
/**
 * find_worker_executing_work - find worker which is executing a work
879
 * @pool: pool of interest
880 881
 * @work: work to find worker for
 *
882 883
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
903 904
 *
 * CONTEXT:
905
 * spin_lock_irq(pool->lock).
906 907 908 909
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
910
 */
911
static struct worker *find_worker_executing_work(struct worker_pool *pool,
912
						 struct work_struct *work)
913
{
914 915
	struct worker *worker;

916
	hash_for_each_possible(pool->busy_hash, worker, hentry,
917 918 919
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
920 921 922
			return worker;

	return NULL;
923 924
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
940
 * spin_lock_irq(pool->lock).
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

966
static void pwq_activate_delayed_work(struct work_struct *work)
967
{
968
	struct pool_workqueue *pwq = get_work_pwq(work);
969 970

	trace_workqueue_activate_work(work);
971
	move_linked_works(work, &pwq->pool->worklist, NULL);
972
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
973
	pwq->nr_active++;
974 975
}

976
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
977
{
978
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
979 980
						    struct work_struct, entry);

981
	pwq_activate_delayed_work(work);
982 983
}

984
/**
985 986
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
987 988 989
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
990
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
991 992
 *
 * CONTEXT:
993
 * spin_lock_irq(pool->lock).
994
 */
995
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
996 997 998 999 1000
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

1001
	pwq->nr_in_flight[color]--;
1002

1003 1004
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1005
		/* one down, submit a delayed one */
1006 1007
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1008 1009 1010
	}

	/* is flush in progress and are we at the flushing tip? */
1011
	if (likely(pwq->flush_color != color))
1012 1013 1014
		return;

	/* are there still in-flight works? */
1015
	if (pwq->nr_in_flight[color])
1016 1017
		return;

1018 1019
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1020 1021

	/*
1022
	 * If this was the last pwq, wake up the first flusher.  It
1023 1024
	 * will handle the rest.
	 */
1025 1026
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
1027 1028
}

1029
/**
1030
 * try_to_grab_pending - steal work item from worklist and disable irq
1031 1032
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1033
 * @flags: place to store irq state
1034 1035 1036 1037 1038 1039 1040
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1041 1042
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1043
 *
1044
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1045 1046 1047
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1048 1049 1050 1051
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1052
 * This function is safe to call from any context including IRQ handler.
1053
 */
1054 1055
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1056
{
1057
	struct worker_pool *pool;
1058
	struct pool_workqueue *pwq;
1059

1060 1061
	local_irq_save(*flags);

1062 1063 1064 1065
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1066 1067 1068 1069 1070
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1071 1072 1073 1074 1075
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1076 1077 1078 1079 1080 1081 1082
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1083 1084
	pool = get_work_pool(work);
	if (!pool)
1085
		goto fail;
1086

1087
	spin_lock(&pool->lock);
1088
	/*
1089 1090 1091 1092 1093
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1094 1095
	 * item is currently queued on that pool.
	 */
1096 1097
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1098 1099 1100 1101 1102
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1103
		 * on the delayed_list, will confuse pwq->nr_active
1104 1105 1106 1107
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1108
			pwq_activate_delayed_work(work);
1109 1110

		list_del_init(&work->entry);
1111
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1112

1113
		/* work->data points to pwq iff queued, point to pool */
1114 1115 1116 1117
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1118
	}
1119
	spin_unlock(&pool->lock);
1120 1121 1122 1123 1124
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1125
	return -EAGAIN;
1126 1127
}

T
Tejun Heo 已提交
1128
/**
1129
 * insert_work - insert a work into a pool
1130
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1131 1132 1133 1134
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1135
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1136
 * work_struct flags.
T
Tejun Heo 已提交
1137 1138
 *
 * CONTEXT:
1139
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1140
 */
1141 1142
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1143
{
1144
	struct worker_pool *pool = pwq->pool;
1145

T
Tejun Heo 已提交
1146
	/* we own @work, set data and link */
1147
	set_work_pwq(work, pwq, extra_flags);
1148
	list_add_tail(&work->entry, head);
1149 1150 1151 1152 1153 1154 1155 1156

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1157 1158
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1159 1160
}

1161 1162
/*
 * Test whether @work is being queued from another work executing on the
1163
 * same workqueue.
1164 1165 1166
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1167 1168 1169 1170 1171 1172 1173
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1174
	return worker && worker->current_pwq->wq == wq;
1175 1176
}

T
Tejun Heo 已提交
1177
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1178 1179
			 struct work_struct *work)
{
1180
	struct pool_workqueue *pwq;
1181
	struct list_head *worklist;
1182
	unsigned int work_flags;
1183
	unsigned int req_cpu = cpu;
1184 1185 1186 1187 1188 1189 1190 1191

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1192

1193
	debug_work_activate(work);
1194

1195
	/* if dying, only works from the same workqueue are allowed */
1196
	if (unlikely(wq->flags & WQ_DRAINING) &&
1197
	    WARN_ON_ONCE(!is_chained_work(wq)))
1198 1199
		return;

1200
	/* determine the pwq to use */
1201
	if (!(wq->flags & WQ_UNBOUND)) {
1202
		struct worker_pool *last_pool;
1203

1204
		if (cpu == WORK_CPU_UNBOUND)
1205 1206
			cpu = raw_smp_processor_id();

1207
		/*
1208 1209 1210 1211
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1212
		 */
1213
		pwq = get_pwq(cpu, wq);
1214
		last_pool = get_work_pool(work);
1215

1216
		if (last_pool && last_pool != pwq->pool) {
1217 1218
			struct worker *worker;

1219
			spin_lock(&last_pool->lock);
1220

1221
			worker = find_worker_executing_work(last_pool, work);
1222

1223 1224
			if (worker && worker->current_pwq->wq == wq) {
				pwq = get_pwq(last_pool->cpu, wq);
1225
			} else {
1226
				/* meh... not running there, queue here */
1227
				spin_unlock(&last_pool->lock);
1228
				spin_lock(&pwq->pool->lock);
1229
			}
1230
		} else {
1231
			spin_lock(&pwq->pool->lock);
1232
		}
1233
	} else {
1234 1235
		pwq = get_pwq(WORK_CPU_UNBOUND, wq);
		spin_lock(&pwq->pool->lock);
1236 1237
	}

1238 1239
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1240

1241
	if (WARN_ON(!list_empty(&work->entry))) {
1242
		spin_unlock(&pwq->pool->lock);
1243 1244
		return;
	}
1245

1246 1247
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1248

1249
	if (likely(pwq->nr_active < pwq->max_active)) {
1250
		trace_workqueue_activate_work(work);
1251 1252
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1253 1254
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1255
		worklist = &pwq->delayed_works;
1256
	}
1257

1258
	insert_work(pwq, work, worklist, work_flags);
1259

1260
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1261 1262
}

1263
/**
1264 1265
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1266 1267 1268
 * @wq: workqueue to use
 * @work: work to queue
 *
1269
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1270
 *
1271 1272
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1273
 */
1274 1275
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1276
{
1277
	bool ret = false;
1278
	unsigned long flags;
1279

1280
	local_irq_save(flags);
1281

1282
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1283
		__queue_work(cpu, wq, work);
1284
		ret = true;
1285
	}
1286

1287
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1288 1289
	return ret;
}
1290
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1291

1292
/**
1293
 * queue_work - queue work on a workqueue
1294 1295 1296
 * @wq: workqueue to use
 * @work: work to queue
 *
1297
 * Returns %false if @work was already on a queue, %true otherwise.
1298
 *
1299 1300
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1301
 */
1302
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1303
{
1304
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1305
}
1306
EXPORT_SYMBOL_GPL(queue_work);
1307

1308
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1309
{
1310
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1311

1312
	/* should have been called from irqsafe timer with irq already off */
1313
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1314
}
1315
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1316

1317 1318
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1319
{
1320 1321 1322 1323 1324
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1325 1326
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1339
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1340

1341
	dwork->wq = wq;
1342
	dwork->cpu = cpu;
1343 1344 1345 1346 1347 1348
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1349 1350
}

1351 1352 1353 1354
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1355
 * @dwork: work to queue
1356 1357
 * @delay: number of jiffies to wait before queueing
 *
1358 1359 1360
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1361
 */
1362 1363
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1364
{
1365
	struct work_struct *work = &dwork->work;
1366
	bool ret = false;
1367
	unsigned long flags;
1368

1369 1370
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1371

1372
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1373
		__queue_delayed_work(cpu, wq, dwork, delay);
1374
		ret = true;
1375
	}
1376

1377
	local_irq_restore(flags);
1378 1379
	return ret;
}
1380
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1381

1382 1383 1384 1385 1386 1387
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1388
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1389
 */
1390
bool queue_delayed_work(struct workqueue_struct *wq,
1391 1392
			struct delayed_work *dwork, unsigned long delay)
{
1393
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1394 1395
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1412
 * This function is safe to call from any context including IRQ handler.
1413 1414 1415 1416 1417 1418 1419
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1420

1421 1422 1423
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1424

1425 1426 1427
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1428
	}
1429 1430

	/* -ENOENT from try_to_grab_pending() becomes %true */
1431 1432
	return ret;
}
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1449

T
Tejun Heo 已提交
1450 1451 1452 1453 1454 1455 1456 1457
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1458
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1459 1460
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1461
{
1462
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1463

1464 1465 1466 1467
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1468

1469 1470
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1471
	pool->nr_idle++;
1472
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1473 1474

	/* idle_list is LIFO */
1475
	list_add(&worker->entry, &pool->idle_list);
1476

1477 1478
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1479

1480
	/*
1481
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1482
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1483 1484
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1485
	 */
1486
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1487
		     pool->nr_workers == pool->nr_idle &&
1488
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1498
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1499 1500 1501
 */
static void worker_leave_idle(struct worker *worker)
{
1502
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1503

1504 1505
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1506
	worker_clr_flags(worker, WORKER_IDLE);
1507
	pool->nr_idle--;
T
Tejun Heo 已提交
1508 1509 1510
	list_del_init(&worker->entry);
}

1511
/**
1512 1513 1514 1515
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1516 1517 1518 1519 1520 1521
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1522
 * This function is to be used by unbound workers and rescuers to bind
1523 1524 1525
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1526
 * verbatim as it's best effort and blocking and pool may be
1527 1528
 * [dis]associated in the meantime.
 *
1529
 * This function tries set_cpus_allowed() and locks pool and verifies the
1530
 * binding against %POOL_DISASSOCIATED which is set during
1531 1532 1533
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1534 1535
 *
 * CONTEXT:
1536
 * Might sleep.  Called without any lock but returns with pool->lock
1537 1538 1539
 * held.
 *
 * RETURNS:
1540
 * %true if the associated pool is online (@worker is successfully
1541 1542
 * bound), %false if offline.
 */
1543
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1544
__acquires(&pool->lock)
1545 1546
{
	while (true) {
1547
		/*
1548 1549 1550
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1551
		 * against POOL_DISASSOCIATED.
1552
		 */
1553
		if (!(pool->flags & POOL_DISASSOCIATED))
1554
			set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
1555

1556
		spin_lock_irq(&pool->lock);
1557
		if (pool->flags & POOL_DISASSOCIATED)
1558
			return false;
1559
		if (task_cpu(current) == pool->cpu &&
1560
		    cpumask_equal(&current->cpus_allowed,
1561
				  get_cpu_mask(pool->cpu)))
1562
			return true;
1563
		spin_unlock_irq(&pool->lock);
1564

1565 1566 1567 1568 1569 1570
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1571
		cpu_relax();
1572
		cond_resched();
1573 1574 1575
	}
}

1576
/*
1577
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1578
 * list_empty(@worker->entry) before leaving idle and call this function.
1579 1580 1581
 */
static void idle_worker_rebind(struct worker *worker)
{
1582
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1583
	if (worker_maybe_bind_and_lock(worker->pool))
1584
		worker_clr_flags(worker, WORKER_UNBOUND);
1585

1586 1587
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1588
	spin_unlock_irq(&worker->pool->lock);
1589 1590
}

1591
/*
1592
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1593 1594 1595
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1596
 */
1597
static void busy_worker_rebind_fn(struct work_struct *work)
1598 1599 1600
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1601
	if (worker_maybe_bind_and_lock(worker->pool))
1602
		worker_clr_flags(worker, WORKER_UNBOUND);
1603

1604
	spin_unlock_irq(&worker->pool->lock);
1605 1606
}

1607
/**
1608 1609
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1610
 *
1611
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1612 1613
 * is different for idle and busy ones.
 *
1614 1615 1616 1617
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1618
 *
1619 1620 1621 1622
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1623
 *
1624 1625 1626 1627
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1628
 */
1629
static void rebind_workers(struct worker_pool *pool)
1630
{
1631
	struct worker *worker, *n;
1632 1633
	int i;

1634 1635
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1636

1637
	/* dequeue and kick idle ones */
1638 1639 1640 1641 1642 1643
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1644

1645 1646 1647 1648 1649 1650
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1651

1652
	/* rebind busy workers */
1653
	for_each_busy_worker(worker, i, pool) {
1654 1655
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1656

1657 1658 1659
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1660

1661
		debug_work_activate(rebind_work);
1662

1663 1664
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1665
		 * and @pwq->pool consistent for sanity.
1666 1667 1668 1669 1670 1671
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

1672
		insert_work(get_pwq(pool->cpu, wq), rebind_work,
1673 1674
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1675
	}
1676 1677
}

T
Tejun Heo 已提交
1678 1679 1680 1681 1682
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1683 1684
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1685
		INIT_LIST_HEAD(&worker->scheduled);
1686
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1687 1688
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1689
	}
T
Tejun Heo 已提交
1690 1691 1692 1693 1694
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1695
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1696
 *
1697
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1707
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1708
{
1709
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1710
	struct worker *worker = NULL;
1711
	int id = -1;
T
Tejun Heo 已提交
1712

1713
	spin_lock_irq(&pool->lock);
1714
	while (ida_get_new(&pool->worker_ida, &id)) {
1715
		spin_unlock_irq(&pool->lock);
1716
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1717
			goto fail;
1718
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1719
	}
1720
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1721 1722 1723 1724 1725

	worker = alloc_worker();
	if (!worker)
		goto fail;

1726
	worker->pool = pool;
T
Tejun Heo 已提交
1727 1728
	worker->id = id;

1729
	if (pool->cpu != WORK_CPU_UNBOUND)
1730
		worker->task = kthread_create_on_node(worker_thread,
1731 1732
					worker, cpu_to_node(pool->cpu),
					"kworker/%u:%d%s", pool->cpu, id, pri);
1733 1734
	else
		worker->task = kthread_create(worker_thread, worker,
1735
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1736 1737 1738
	if (IS_ERR(worker->task))
		goto fail;

1739
	if (std_worker_pool_pri(pool))
1740 1741
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1742
	/*
1743
	 * Determine CPU binding of the new worker depending on
1744
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1745 1746 1747 1748 1749
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1750
	 */
1751
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1752
		kthread_bind(worker->task, pool->cpu);
1753
	} else {
1754
		worker->task->flags |= PF_THREAD_BOUND;
1755
		worker->flags |= WORKER_UNBOUND;
1756
	}
T
Tejun Heo 已提交
1757 1758 1759 1760

	return worker;
fail:
	if (id >= 0) {
1761
		spin_lock_irq(&pool->lock);
1762
		ida_remove(&pool->worker_ida, id);
1763
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1773
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1774 1775
 *
 * CONTEXT:
1776
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1777 1778 1779
 */
static void start_worker(struct worker *worker)
{
1780
	worker->flags |= WORKER_STARTED;
1781
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1782
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1783 1784 1785 1786 1787 1788 1789
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1790
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1791 1792
 *
 * CONTEXT:
1793
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1794 1795 1796
 */
static void destroy_worker(struct worker *worker)
{
1797
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1798 1799 1800
	int id = worker->id;

	/* sanity check frenzy */
1801 1802 1803
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1804

T
Tejun Heo 已提交
1805
	if (worker->flags & WORKER_STARTED)
1806
		pool->nr_workers--;
T
Tejun Heo 已提交
1807
	if (worker->flags & WORKER_IDLE)
1808
		pool->nr_idle--;
T
Tejun Heo 已提交
1809 1810

	list_del_init(&worker->entry);
1811
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1812

1813
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1814

T
Tejun Heo 已提交
1815 1816 1817
	kthread_stop(worker->task);
	kfree(worker);

1818
	spin_lock_irq(&pool->lock);
1819
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1820 1821
}

1822
static void idle_worker_timeout(unsigned long __pool)
1823
{
1824
	struct worker_pool *pool = (void *)__pool;
1825

1826
	spin_lock_irq(&pool->lock);
1827

1828
	if (too_many_workers(pool)) {
1829 1830 1831 1832
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1833
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1834 1835 1836
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1837
			mod_timer(&pool->idle_timer, expires);
1838 1839
		else {
			/* it's been idle for too long, wake up manager */
1840
			pool->flags |= POOL_MANAGE_WORKERS;
1841
			wake_up_worker(pool);
1842
		}
1843 1844
	}

1845
	spin_unlock_irq(&pool->lock);
1846
}
1847

1848 1849
static bool send_mayday(struct work_struct *work)
{
1850 1851
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1852
	unsigned int cpu;
1853 1854 1855 1856 1857

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1858
	cpu = pwq->pool->cpu;
1859 1860 1861
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1862
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1863 1864 1865 1866
		wake_up_process(wq->rescuer->task);
	return true;
}

1867
static void pool_mayday_timeout(unsigned long __pool)
1868
{
1869
	struct worker_pool *pool = (void *)__pool;
1870 1871
	struct work_struct *work;

1872
	spin_lock_irq(&pool->lock);
1873

1874
	if (need_to_create_worker(pool)) {
1875 1876 1877 1878 1879 1880
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1881
		list_for_each_entry(work, &pool->worklist, entry)
1882
			send_mayday(work);
L
Linus Torvalds 已提交
1883
	}
1884

1885
	spin_unlock_irq(&pool->lock);
1886

1887
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1888 1889
}

1890 1891
/**
 * maybe_create_worker - create a new worker if necessary
1892
 * @pool: pool to create a new worker for
1893
 *
1894
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1895 1896
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1897
 * sent to all rescuers with works scheduled on @pool to resolve
1898 1899 1900 1901 1902 1903
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1904
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1905 1906 1907 1908
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1909
 * false if no action was taken and pool->lock stayed locked, true
1910 1911
 * otherwise.
 */
1912
static bool maybe_create_worker(struct worker_pool *pool)
1913 1914
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1915
{
1916
	if (!need_to_create_worker(pool))
1917 1918
		return false;
restart:
1919
	spin_unlock_irq(&pool->lock);
1920

1921
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1922
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1923 1924 1925 1926

	while (true) {
		struct worker *worker;

1927
		worker = create_worker(pool);
1928
		if (worker) {
1929
			del_timer_sync(&pool->mayday_timer);
1930
			spin_lock_irq(&pool->lock);
1931
			start_worker(worker);
1932 1933
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1934 1935 1936
			return true;
		}

1937
		if (!need_to_create_worker(pool))
1938
			break;
L
Linus Torvalds 已提交
1939

1940 1941
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1942

1943
		if (!need_to_create_worker(pool))
1944 1945 1946
			break;
	}

1947
	del_timer_sync(&pool->mayday_timer);
1948
	spin_lock_irq(&pool->lock);
1949
	if (need_to_create_worker(pool))
1950 1951 1952 1953 1954 1955
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1956
 * @pool: pool to destroy workers for
1957
 *
1958
 * Destroy @pool workers which have been idle for longer than
1959 1960 1961
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1962
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1963 1964 1965
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1966
 * false if no action was taken and pool->lock stayed locked, true
1967 1968
 * otherwise.
 */
1969
static bool maybe_destroy_workers(struct worker_pool *pool)
1970 1971
{
	bool ret = false;
L
Linus Torvalds 已提交
1972

1973
	while (too_many_workers(pool)) {
1974 1975
		struct worker *worker;
		unsigned long expires;
1976

1977
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1978
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1979

1980
		if (time_before(jiffies, expires)) {
1981
			mod_timer(&pool->idle_timer, expires);
1982
			break;
1983
		}
L
Linus Torvalds 已提交
1984

1985 1986
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1987
	}
1988

1989
	return ret;
1990 1991
}

1992
/**
1993 1994
 * manage_workers - manage worker pool
 * @worker: self
1995
 *
1996
 * Assume the manager role and manage the worker pool @worker belongs
1997
 * to.  At any given time, there can be only zero or one manager per
1998
 * pool.  The exclusion is handled automatically by this function.
1999 2000 2001 2002
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2003 2004
 *
 * CONTEXT:
2005
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2006 2007 2008
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2009 2010
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2011
 */
2012
static bool manage_workers(struct worker *worker)
2013
{
2014
	struct worker_pool *pool = worker->pool;
2015
	bool ret = false;
2016

2017
	if (pool->flags & POOL_MANAGING_WORKERS)
2018
		return ret;
2019

2020
	pool->flags |= POOL_MANAGING_WORKERS;
2021

2022 2023 2024 2025 2026 2027
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2028
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2029 2030
	 * manager against CPU hotplug.
	 *
2031
	 * assoc_mutex would always be free unless CPU hotplug is in
2032
	 * progress.  trylock first without dropping @pool->lock.
2033
	 */
2034
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2035
		spin_unlock_irq(&pool->lock);
2036
		mutex_lock(&pool->assoc_mutex);
2037 2038
		/*
		 * CPU hotplug could have happened while we were waiting
2039
		 * for assoc_mutex.  Hotplug itself can't handle us
2040
		 * because manager isn't either on idle or busy list, and
2041
		 * @pool's state and ours could have deviated.
2042
		 *
2043
		 * As hotplug is now excluded via assoc_mutex, we can
2044
		 * simply try to bind.  It will succeed or fail depending
2045
		 * on @pool's current state.  Try it and adjust
2046 2047
		 * %WORKER_UNBOUND accordingly.
		 */
2048
		if (worker_maybe_bind_and_lock(pool))
2049 2050 2051
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2052

2053 2054
		ret = true;
	}
2055

2056
	pool->flags &= ~POOL_MANAGE_WORKERS;
2057 2058

	/*
2059 2060
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2061
	 */
2062 2063
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2064

2065
	pool->flags &= ~POOL_MANAGING_WORKERS;
2066
	mutex_unlock(&pool->assoc_mutex);
2067
	return ret;
2068 2069
}

2070 2071
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2072
 * @worker: self
2073 2074 2075 2076 2077 2078 2079 2080 2081
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2082
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2083
 */
T
Tejun Heo 已提交
2084
static void process_one_work(struct worker *worker, struct work_struct *work)
2085 2086
__releases(&pool->lock)
__acquires(&pool->lock)
2087
{
2088
	struct pool_workqueue *pwq = get_work_pwq(work);
2089
	struct worker_pool *pool = worker->pool;
2090
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2091
	int work_color;
2092
	struct worker *collision;
2093 2094 2095 2096 2097 2098 2099 2100
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2101 2102 2103
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2104
#endif
2105 2106 2107
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2108
	 * unbound or a disassociated pool.
2109
	 */
2110
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2111
		     !(pool->flags & POOL_DISASSOCIATED) &&
2112
		     raw_smp_processor_id() != pool->cpu);
2113

2114 2115 2116 2117 2118 2119
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2120
	collision = find_worker_executing_work(pool, work);
2121 2122 2123 2124 2125
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2126
	/* claim and dequeue */
2127
	debug_work_deactivate(work);
2128
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2129
	worker->current_work = work;
2130
	worker->current_func = work->func;
2131
	worker->current_pwq = pwq;
2132
	work_color = get_work_color(work);
2133

2134 2135
	list_del_init(&work->entry);

2136 2137 2138 2139 2140 2141 2142
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2143
	/*
2144
	 * Unbound pool isn't concurrency managed and work items should be
2145 2146
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2147 2148
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2149

2150
	/*
2151
	 * Record the last pool and clear PENDING which should be the last
2152
	 * update to @work.  Also, do this inside @pool->lock so that
2153 2154
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2155
	 */
2156
	set_work_pool_and_clear_pending(work, pool->id);
2157

2158
	spin_unlock_irq(&pool->lock);
2159

2160
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2161
	lock_map_acquire(&lockdep_map);
2162
	trace_workqueue_execute_start(work);
2163
	worker->current_func(work);
2164 2165 2166 2167 2168
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2169
	lock_map_release(&lockdep_map);
2170
	lock_map_release(&pwq->wq->lockdep_map);
2171 2172

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2173 2174
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2175 2176
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2177 2178 2179 2180
		debug_show_held_locks(current);
		dump_stack();
	}

2181
	spin_lock_irq(&pool->lock);
2182

2183 2184 2185 2186
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2187
	/* we're done with it, release */
2188
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2189
	worker->current_work = NULL;
2190
	worker->current_func = NULL;
2191 2192
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2193 2194
}

2195 2196 2197 2198 2199 2200 2201 2202 2203
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2204
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2205 2206 2207
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2208
{
2209 2210
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2211
						struct work_struct, entry);
T
Tejun Heo 已提交
2212
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2213 2214 2215
	}
}

T
Tejun Heo 已提交
2216 2217
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2218
 * @__worker: self
T
Tejun Heo 已提交
2219
 *
2220 2221
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2222 2223 2224
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2225
 */
T
Tejun Heo 已提交
2226
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2227
{
T
Tejun Heo 已提交
2228
	struct worker *worker = __worker;
2229
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2230

2231 2232
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2233
woke_up:
2234
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2235

2236 2237
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2238
		spin_unlock_irq(&pool->lock);
2239

2240
		/* if DIE is set, destruction is requested */
2241 2242 2243 2244 2245
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2246
		/* otherwise, rebind */
2247 2248
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2249
	}
2250

T
Tejun Heo 已提交
2251
	worker_leave_idle(worker);
2252
recheck:
2253
	/* no more worker necessary? */
2254
	if (!need_more_worker(pool))
2255 2256 2257
		goto sleep;

	/* do we need to manage? */
2258
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2259 2260
		goto recheck;

T
Tejun Heo 已提交
2261 2262 2263 2264 2265
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2266
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2267

2268 2269 2270 2271 2272 2273 2274 2275
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2276
		struct work_struct *work =
2277
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2278 2279 2280 2281 2282 2283
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2284
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2285 2286 2287
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2288
		}
2289
	} while (keep_working(pool));
2290 2291

	worker_set_flags(worker, WORKER_PREP, false);
2292
sleep:
2293
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2294
		goto recheck;
2295

T
Tejun Heo 已提交
2296
	/*
2297 2298 2299 2300 2301
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2302 2303 2304
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2305
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2306 2307
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2308 2309
}

2310 2311
/**
 * rescuer_thread - the rescuer thread function
2312
 * @__rescuer: self
2313 2314 2315 2316
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2317
 * Regular work processing on a pool may block trying to create a new
2318 2319 2320 2321 2322
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2323 2324
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2325 2326 2327 2328
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2329
static int rescuer_thread(void *__rescuer)
2330
{
2331 2332
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2333
	struct list_head *scheduled = &rescuer->scheduled;
2334
	bool is_unbound = wq->flags & WQ_UNBOUND;
2335 2336 2337
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2338 2339 2340 2341 2342 2343

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2344 2345 2346
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2347 2348
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2349
		rescuer->task->flags &= ~PF_WQ_WORKER;
2350
		return 0;
2351
	}
2352

2353 2354 2355 2356
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2357
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2358
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2359 2360
		struct pool_workqueue *pwq = get_pwq(tcpu, wq);
		struct worker_pool *pool = pwq->pool;
2361 2362 2363
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2364
		mayday_clear_cpu(cpu, wq->mayday_mask);
2365 2366

		/* migrate to the target cpu if possible */
2367
		worker_maybe_bind_and_lock(pool);
2368
		rescuer->pool = pool;
2369 2370 2371 2372 2373

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2374
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2375
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2376
			if (get_work_pwq(work) == pwq)
2377 2378 2379
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2380 2381

		/*
2382
		 * Leave this pool.  If keep_working() is %true, notify a
2383 2384 2385
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2386 2387
		if (keep_working(pool))
			wake_up_worker(pool);
2388

2389
		rescuer->pool = NULL;
2390
		spin_unlock_irq(&pool->lock);
2391 2392
	}

2393 2394
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2395 2396
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2397 2398
}

O
Oleg Nesterov 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2410 2411
/**
 * insert_wq_barrier - insert a barrier work
2412
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2413
 * @barr: wq_barrier to insert
2414 2415
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2416
 *
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2429
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2430 2431
 *
 * CONTEXT:
2432
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2433
 */
2434
static void insert_wq_barrier(struct pool_workqueue *pwq,
2435 2436
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2437
{
2438 2439 2440
	struct list_head *head;
	unsigned int linked = 0;

2441
	/*
2442
	 * debugobject calls are safe here even with pool->lock locked
2443 2444 2445 2446
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2447
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2448
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2449
	init_completion(&barr->done);
2450

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2466
	debug_work_activate(&barr->work);
2467
	insert_work(pwq, &barr->work, head,
2468
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2469 2470
}

2471
/**
2472
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2473 2474 2475 2476
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2477
 * Prepare pwqs for workqueue flushing.
2478
 *
2479 2480 2481 2482 2483
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2484 2485 2486 2487 2488 2489 2490
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2491
 * If @work_color is non-negative, all pwqs should have the same
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2502
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2503
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2504
{
2505 2506
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2507

2508
	if (flush_color >= 0) {
2509
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2510
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2511
	}
2512

2513 2514 2515
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2516

2517
		spin_lock_irq(&pool->lock);
2518

2519
		if (flush_color >= 0) {
2520
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2521

2522 2523 2524
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2525 2526 2527
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2528

2529
		if (work_color >= 0) {
2530
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2531
			pwq->work_color = work_color;
2532
		}
L
Linus Torvalds 已提交
2533

2534
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2535
	}
2536

2537
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2538
		complete(&wq->first_flusher->done);
2539

2540
	return wait;
L
Linus Torvalds 已提交
2541 2542
}

2543
/**
L
Linus Torvalds 已提交
2544
 * flush_workqueue - ensure that any scheduled work has run to completion.
2545
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2546 2547 2548 2549
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2550 2551
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2552
 */
2553
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2554
{
2555 2556 2557 2558 2559 2560
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2561

2562 2563
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2578
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2579 2580 2581 2582 2583
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2584
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2585 2586 2587

			wq->first_flusher = &this_flusher;

2588
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2589 2590 2591 2592 2593 2594 2595 2596
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2597
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2598
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2599
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2625 2626 2627 2628
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2629 2630
	wq->first_flusher = NULL;

2631 2632
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2645 2646
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2666
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2667 2668 2669
		}

		if (list_empty(&wq->flusher_queue)) {
2670
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2671 2672 2673 2674 2675
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2676
		 * the new first flusher and arm pwqs.
2677
		 */
2678 2679
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2680 2681 2682 2683

		list_del_init(&next->list);
		wq->first_flusher = next;

2684
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2696
}
2697
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2698

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
2720
	spin_lock_irq(&workqueue_lock);
2721 2722
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
2723
	spin_unlock_irq(&workqueue_lock);
2724 2725 2726
reflush:
	flush_workqueue(wq);

2727 2728
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
2729
		bool drained;
2730

2731 2732 2733
		spin_lock_irq(&pwq->pool->lock);
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
		spin_unlock_irq(&pwq->pool->lock);
2734 2735

		if (drained)
2736 2737 2738 2739
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2740 2741
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2742 2743 2744
		goto reflush;
	}

2745
	spin_lock_irq(&workqueue_lock);
2746 2747
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
2748
	spin_unlock_irq(&workqueue_lock);
2749 2750 2751
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2752
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2753
{
2754
	struct worker *worker = NULL;
2755
	struct worker_pool *pool;
2756
	struct pool_workqueue *pwq;
2757 2758

	might_sleep();
2759 2760
	pool = get_work_pool(work);
	if (!pool)
2761
		return false;
2762

2763
	spin_lock_irq(&pool->lock);
2764
	/* see the comment in try_to_grab_pending() with the same code */
2765 2766 2767
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2768
			goto already_gone;
2769
	} else {
2770
		worker = find_worker_executing_work(pool, work);
2771
		if (!worker)
T
Tejun Heo 已提交
2772
			goto already_gone;
2773
		pwq = worker->current_pwq;
2774
	}
2775

2776
	insert_wq_barrier(pwq, barr, work, worker);
2777
	spin_unlock_irq(&pool->lock);
2778

2779 2780 2781 2782 2783 2784
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2785 2786
	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&pwq->wq->lockdep_map);
2787
	else
2788 2789
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2790

2791
	return true;
T
Tejun Heo 已提交
2792
already_gone:
2793
	spin_unlock_irq(&pool->lock);
2794
	return false;
2795
}
2796 2797 2798 2799 2800

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2801 2802
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2803 2804 2805 2806 2807 2808 2809 2810 2811
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2812 2813 2814
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2815
	if (start_flush_work(work, &barr)) {
2816 2817 2818
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2819
	} else {
2820
		return false;
2821 2822
	}
}
2823
EXPORT_SYMBOL_GPL(flush_work);
2824

2825
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2826
{
2827
	unsigned long flags;
2828 2829 2830
	int ret;

	do {
2831 2832 2833 2834 2835 2836
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2837
			flush_work(work);
2838 2839
	} while (unlikely(ret < 0));

2840 2841 2842 2843
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2844
	flush_work(work);
2845
	clear_work_data(work);
2846 2847 2848
	return ret;
}

2849
/**
2850 2851
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2852
 *
2853 2854 2855 2856
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2857
 *
2858 2859
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2860
 *
2861
 * The caller must ensure that the workqueue on which @work was last
2862
 * queued can't be destroyed before this function returns.
2863 2864 2865
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2866
 */
2867
bool cancel_work_sync(struct work_struct *work)
2868
{
2869
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2870
}
2871
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2872

2873
/**
2874 2875
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2876
 *
2877 2878 2879
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2880
 *
2881 2882 2883
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2884
 */
2885 2886
bool flush_delayed_work(struct delayed_work *dwork)
{
2887
	local_irq_disable();
2888
	if (del_timer_sync(&dwork->timer))
2889
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2890
	local_irq_enable();
2891 2892 2893 2894
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2895
/**
2896 2897
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2898
 *
2899 2900 2901 2902 2903
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2904
 *
2905
 * This function is safe to call from any context including IRQ handler.
2906
 */
2907
bool cancel_delayed_work(struct delayed_work *dwork)
2908
{
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2919 2920
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2921
	local_irq_restore(flags);
2922
	return ret;
2923
}
2924
EXPORT_SYMBOL(cancel_delayed_work);
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2936
{
2937
	return __cancel_work_timer(&dwork->work, true);
2938
}
2939
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2940

2941
/**
2942 2943 2944 2945 2946 2947
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2948
bool schedule_work_on(int cpu, struct work_struct *work)
2949
{
2950
	return queue_work_on(cpu, system_wq, work);
2951 2952 2953
}
EXPORT_SYMBOL(schedule_work_on);

2954 2955 2956 2957
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2958 2959
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2960 2961 2962 2963
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2964
 */
2965
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2966
{
2967
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2968
}
2969
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2970

2971 2972 2973
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2974
 * @dwork: job to be done
2975 2976 2977 2978 2979
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
2980 2981
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
2982
{
2983
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2984
}
2985
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2986

2987 2988
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2989 2990
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2991 2992 2993 2994
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2995
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2996
{
2997
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2998
}
2999
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3000

3001
/**
3002
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3003 3004
 * @func: the function to call
 *
3005 3006
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3007
 * schedule_on_each_cpu() is very slow.
3008 3009 3010
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3011
 */
3012
int schedule_on_each_cpu(work_func_t func)
3013 3014
{
	int cpu;
3015
	struct work_struct __percpu *works;
3016

3017 3018
	works = alloc_percpu(struct work_struct);
	if (!works)
3019
		return -ENOMEM;
3020

3021 3022
	get_online_cpus();

3023
	for_each_online_cpu(cpu) {
3024 3025 3026
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3027
		schedule_work_on(cpu, work);
3028
	}
3029 3030 3031 3032

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3033
	put_online_cpus();
3034
	free_percpu(works);
3035 3036 3037
	return 0;
}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3062 3063
void flush_scheduled_work(void)
{
3064
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3065
}
3066
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3067

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3080
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3081 3082
{
	if (!in_interrupt()) {
3083
		fn(&ew->work);
3084 3085 3086
		return 0;
	}

3087
	INIT_WORK(&ew->work, fn);
3088 3089 3090 3091 3092 3093
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3094 3095
int keventd_up(void)
{
3096
	return system_wq != NULL;
L
Linus Torvalds 已提交
3097 3098
}

3099
static int alloc_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3100
{
3101
	if (!(wq->flags & WQ_UNBOUND))
3102 3103 3104
		wq->pool_wq.pcpu = alloc_percpu(struct pool_workqueue);
	else
		wq->pool_wq.single = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3105

3106
	return wq->pool_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3107 3108
}

3109
static void free_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3110
{
3111
	if (!(wq->flags & WQ_UNBOUND))
3112
		free_percpu(wq->pool_wq.pcpu);
3113 3114
	else
		kmem_cache_free(pwq_cache, wq->pool_wq.single);
T
Tejun Heo 已提交
3115 3116
}

3117 3118
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3119
{
3120 3121 3122
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3123 3124
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3125

3126
	return clamp_val(max_active, 1, lim);
3127 3128
}

3129
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3130 3131 3132
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3133
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3134
{
3135
	va_list args, args1;
L
Linus Torvalds 已提交
3136
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3137
	unsigned int cpu;
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3152

3153 3154 3155 3156 3157 3158 3159
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3160
	max_active = max_active ?: WQ_DFL_ACTIVE;
3161
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3162

3163
	/* init wq */
3164
	wq->flags = flags;
3165
	wq->saved_max_active = max_active;
3166
	mutex_init(&wq->flush_mutex);
3167
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3168 3169
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3170

3171
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3172
	INIT_LIST_HEAD(&wq->list);
3173

3174
	if (alloc_pwqs(wq) < 0)
3175 3176
		goto err;

3177 3178
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
T
Tejun Heo 已提交
3179

3180 3181 3182 3183 3184 3185
		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
		pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
		pwq->wq = wq;
		pwq->flush_color = -1;
		pwq->max_active = max_active;
		INIT_LIST_HEAD(&pwq->delayed_works);
3186
	}
T
Tejun Heo 已提交
3187

3188 3189 3190
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3191
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3192 3193 3194 3195 3196 3197
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3198 3199
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3200
					       wq->name);
3201 3202 3203 3204 3205
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3206 3207
	}

3208 3209 3210 3211 3212
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
3213
	spin_lock_irq(&workqueue_lock);
3214

3215
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3216 3217
		for_each_pwq_cpu(cpu, wq)
			get_pwq(cpu, wq)->max_active = 0;
3218

T
Tejun Heo 已提交
3219
	list_add(&wq->list, &workqueues);
3220

3221
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3222

3223
	return wq;
T
Tejun Heo 已提交
3224 3225
err:
	if (wq) {
3226
		free_pwqs(wq);
3227
		free_mayday_mask(wq->mayday_mask);
3228
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3229 3230 3231
		kfree(wq);
	}
	return NULL;
3232
}
3233
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3234

3235 3236 3237 3238 3239 3240 3241 3242
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3243
	unsigned int cpu;
3244

3245 3246
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3247

3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
	/* sanity checks */
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			if (WARN_ON(pwq->nr_in_flight[i]))
				return;
		if (WARN_ON(pwq->nr_active) ||
		    WARN_ON(!list_empty(&pwq->delayed_works)))
			return;
	}

3261 3262 3263 3264
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3265
	spin_lock_irq(&workqueue_lock);
3266
	list_del(&wq->list);
3267
	spin_unlock_irq(&workqueue_lock);
3268

3269 3270
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3271
		free_mayday_mask(wq->mayday_mask);
3272
		kfree(wq->rescuer);
3273 3274
	}

3275
	free_pwqs(wq);
3276 3277 3278 3279
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3280
/**
3281 3282
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3283 3284
 * @max_active: new max_active value.
 *
3285
 * Set @pwq->max_active to @max_active and activate delayed works if
3286 3287 3288
 * increased.
 *
 * CONTEXT:
3289
 * spin_lock_irq(pool->lock).
3290
 */
3291
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3292
{
3293
	pwq->max_active = max_active;
3294

3295 3296 3297
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3298 3299
}

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3314
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3315

3316
	spin_lock_irq(&workqueue_lock);
3317 3318 3319

	wq->saved_max_active = max_active;

3320 3321 3322
	for_each_pwq_cpu(cpu, wq) {
		struct pool_workqueue *pwq = get_pwq(cpu, wq);
		struct worker_pool *pool = pwq->pool;
3323

3324
		spin_lock(&pool->lock);
3325

3326
		if (!(wq->flags & WQ_FREEZABLE) ||
3327
		    !(pool->flags & POOL_FREEZING))
3328
			pwq_set_max_active(pwq, max_active);
3329

3330
		spin_unlock(&pool->lock);
3331
	}
3332

3333
	spin_unlock_irq(&workqueue_lock);
3334
}
3335
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3336

3337
/**
3338 3339 3340
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3341
 *
3342 3343 3344
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3345
 *
3346 3347
 * RETURNS:
 * %true if congested, %false otherwise.
3348
 */
3349
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3350
{
3351
	struct pool_workqueue *pwq = get_pwq(cpu, wq);
3352

3353
	return !list_empty(&pwq->delayed_works);
L
Linus Torvalds 已提交
3354
}
3355
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3356

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3369
{
3370
	struct worker_pool *pool = get_work_pool(work);
3371 3372
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3373

3374 3375
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3376

3377 3378 3379 3380 3381 3382
	if (pool) {
		spin_lock_irqsave(&pool->lock, flags);
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
		spin_unlock_irqrestore(&pool->lock, flags);
	}
L
Linus Torvalds 已提交
3383

3384
	return ret;
L
Linus Torvalds 已提交
3385
}
3386
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3387

3388 3389 3390
/*
 * CPU hotplug.
 *
3391
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3392
 * are a lot of assumptions on strong associations among work, pwq and
3393
 * pool which make migrating pending and scheduled works very
3394
 * difficult to implement without impacting hot paths.  Secondly,
3395
 * worker pools serve mix of short, long and very long running works making
3396 3397
 * blocked draining impractical.
 *
3398
 * This is solved by allowing the pools to be disassociated from the CPU
3399 3400
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3401
 */
L
Linus Torvalds 已提交
3402

3403
static void wq_unbind_fn(struct work_struct *work)
3404
{
3405
	int cpu = smp_processor_id();
3406
	struct worker_pool *pool;
3407 3408
	struct worker *worker;
	int i;
3409

3410
	for_each_std_worker_pool(pool, cpu) {
3411
		WARN_ON_ONCE(cpu != smp_processor_id());
3412

3413 3414
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3415

3416 3417 3418 3419 3420 3421 3422
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3423
		list_for_each_entry(worker, &pool->idle_list, entry)
3424
			worker->flags |= WORKER_UNBOUND;
3425

3426
		for_each_busy_worker(worker, i, pool)
3427
			worker->flags |= WORKER_UNBOUND;
3428

3429
		pool->flags |= POOL_DISASSOCIATED;
3430

3431 3432 3433
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3434

3435
	/*
3436
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3437 3438
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3439 3440
	 */
	schedule();
3441

3442
	/*
3443 3444
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3445 3446 3447
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3448 3449 3450 3451
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3452
	 */
3453
	for_each_std_worker_pool(pool, cpu)
3454
		atomic_set(&pool->nr_running, 0);
3455 3456
}

T
Tejun Heo 已提交
3457 3458 3459 3460
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3461
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3462 3463
					       unsigned long action,
					       void *hcpu)
3464 3465
{
	unsigned int cpu = (unsigned long)hcpu;
3466
	struct worker_pool *pool;
3467

T
Tejun Heo 已提交
3468
	switch (action & ~CPU_TASKS_FROZEN) {
3469
	case CPU_UP_PREPARE:
3470
		for_each_std_worker_pool(pool, cpu) {
3471 3472 3473 3474 3475 3476 3477 3478 3479
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3480
			spin_lock_irq(&pool->lock);
3481
			start_worker(worker);
3482
			spin_unlock_irq(&pool->lock);
3483
		}
T
Tejun Heo 已提交
3484
		break;
3485

3486 3487
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3488
		for_each_std_worker_pool(pool, cpu) {
3489 3490 3491
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3492
			pool->flags &= ~POOL_DISASSOCIATED;
3493 3494 3495 3496 3497
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3498
		break;
3499
	}
3500 3501 3502 3503 3504 3505 3506
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3507
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3508 3509 3510
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3511 3512 3513
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3514 3515
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3516
		/* unbinding should happen on the local CPU */
3517
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3518
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3519 3520
		flush_work(&unbind_work);
		break;
3521 3522 3523 3524
	}
	return NOTIFY_OK;
}

3525
#ifdef CONFIG_SMP
3526

3527
struct work_for_cpu {
3528
	struct work_struct work;
3529 3530 3531 3532 3533
	long (*fn)(void *);
	void *arg;
	long ret;
};

3534
static void work_for_cpu_fn(struct work_struct *work)
3535
{
3536 3537
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3538 3539 3540 3541 3542 3543 3544 3545 3546
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3547 3548
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3549
 * The caller must not hold any locks which would prevent @fn from completing.
3550 3551 3552
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3553
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3554

3555 3556 3557
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3558 3559 3560 3561 3562
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3563 3564 3565 3566 3567
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3568 3569
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3570
 * pool->worklist.
3571 3572
 *
 * CONTEXT:
3573
 * Grabs and releases workqueue_lock and pool->lock's.
3574 3575 3576 3577 3578
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

3579
	spin_lock_irq(&workqueue_lock);
3580

3581
	WARN_ON_ONCE(workqueue_freezing);
3582 3583
	workqueue_freezing = true;

3584
	for_each_wq_cpu(cpu) {
3585
		struct worker_pool *pool;
3586
		struct workqueue_struct *wq;
3587

3588
		for_each_std_worker_pool(pool, cpu) {
3589
			spin_lock(&pool->lock);
3590

3591 3592
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
3593

3594
			list_for_each_entry(wq, &workqueues, list) {
3595
				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3596

3597
				if (pwq && pwq->pool == pool &&
3598
				    (wq->flags & WQ_FREEZABLE))
3599
					pwq->max_active = 0;
3600
			}
3601

3602
			spin_unlock(&pool->lock);
3603
		}
3604 3605
	}

3606
	spin_unlock_irq(&workqueue_lock);
3607 3608 3609
}

/**
3610
 * freeze_workqueues_busy - are freezable workqueues still busy?
3611 3612 3613 3614 3615 3616 3617 3618
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3619 3620
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3621 3622 3623 3624 3625 3626
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

3627
	spin_lock_irq(&workqueue_lock);
3628

3629
	WARN_ON_ONCE(!workqueue_freezing);
3630

3631
	for_each_wq_cpu(cpu) {
3632
		struct workqueue_struct *wq;
3633 3634 3635 3636 3637
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
3638
			struct pool_workqueue *pwq = get_pwq(cpu, wq);
3639

3640
			if (!pwq || !(wq->flags & WQ_FREEZABLE))
3641 3642
				continue;

3643
			WARN_ON_ONCE(pwq->nr_active < 0);
3644
			if (pwq->nr_active) {
3645 3646 3647 3648 3649 3650
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
3651
	spin_unlock_irq(&workqueue_lock);
3652 3653 3654 3655 3656 3657 3658
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3659
 * frozen works are transferred to their respective pool worklists.
3660 3661
 *
 * CONTEXT:
3662
 * Grabs and releases workqueue_lock and pool->lock's.
3663 3664 3665 3666 3667
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

3668
	spin_lock_irq(&workqueue_lock);
3669 3670 3671 3672

	if (!workqueue_freezing)
		goto out_unlock;

3673
	for_each_wq_cpu(cpu) {
3674
		struct worker_pool *pool;
3675
		struct workqueue_struct *wq;
3676

3677
		for_each_std_worker_pool(pool, cpu) {
3678
			spin_lock(&pool->lock);
3679

3680 3681
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
3682

3683
			list_for_each_entry(wq, &workqueues, list) {
3684
				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3685

3686
				if (!pwq || pwq->pool != pool ||
3687 3688
				    !(wq->flags & WQ_FREEZABLE))
					continue;
3689

3690
				/* restore max_active and repopulate worklist */
3691
				pwq_set_max_active(pwq, wq->saved_max_active);
3692
			}
3693

3694
			wake_up_worker(pool);
3695

3696
			spin_unlock(&pool->lock);
3697
		}
3698 3699 3700 3701
	}

	workqueue_freezing = false;
out_unlock:
3702
	spin_unlock_irq(&workqueue_lock);
3703 3704 3705
}
#endif /* CONFIG_FREEZER */

3706
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3707
{
T
Tejun Heo 已提交
3708 3709
	unsigned int cpu;

3710 3711
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3712
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3713

3714 3715 3716 3717
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

3718
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3719
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3720

3721 3722
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3723
		struct worker_pool *pool;
3724

3725
		for_each_std_worker_pool(pool, cpu) {
3726
			spin_lock_init(&pool->lock);
3727
			pool->cpu = cpu;
3728
			pool->flags |= POOL_DISASSOCIATED;
3729 3730
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3731
			hash_init(pool->busy_hash);
3732

3733 3734 3735
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3736

3737
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3738 3739
				    (unsigned long)pool);

3740
			mutex_init(&pool->assoc_mutex);
3741
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3742 3743 3744

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3745
		}
3746 3747
	}

3748
	/* create the initial worker */
3749
	for_each_online_wq_cpu(cpu) {
3750
		struct worker_pool *pool;
3751

3752
		for_each_std_worker_pool(pool, cpu) {
3753 3754
			struct worker *worker;

3755 3756 3757
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3758
			worker = create_worker(pool);
3759
			BUG_ON(!worker);
3760
			spin_lock_irq(&pool->lock);
3761
			start_worker(worker);
3762
			spin_unlock_irq(&pool->lock);
3763
		}
3764 3765
	}

3766
	system_wq = alloc_workqueue("events", 0, 0);
3767
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3768
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3769 3770
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3771 3772
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3773
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3774
	       !system_unbound_wq || !system_freezable_wq);
3775
	return 0;
L
Linus Torvalds 已提交
3776
}
3777
early_initcall(init_workqueues);