workqueue.c 106.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44 45

#include "workqueue_sched.h"
L
Linus Torvalds 已提交
46

T
Tejun Heo 已提交
47
enum {
48 49 50 51 52 53 54 55 56 57 58 59 60
	/*
	 * global_cwq flags
	 *
	 * A bound gcwq is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The gcwq behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
61
	 * assoc_mutex of all pools on the gcwq to avoid changing binding
62 63
	 * state while create_worker() is in progress.
	 */
64 65 66 67 68
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
83

T
Tejun Heo 已提交
84 85 86
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
87

88 89 90
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

91 92 93
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
94 95 96 97 98 99 100 101
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
102
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
103
};
L
Linus Torvalds 已提交
104 105

/*
T
Tejun Heo 已提交
106 107
 * Structure fields follow one of the following exclusion rules.
 *
108 109
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
110
 *
111 112 113
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
114
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
115
 *
116 117 118
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
119
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
120
 *
121 122
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
123
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
124 125
 */

126
struct global_cwq;
127
struct worker_pool;
L
Linus Torvalds 已提交
128

129 130 131 132
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
133
struct worker {
T
Tejun Heo 已提交
134 135 136 137 138
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};
L
Linus Torvalds 已提交
139

T
Tejun Heo 已提交
140
	struct work_struct	*current_work;	/* L: work being processed */
141
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
142
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
143
	struct task_struct	*task;		/* I: worker task */
144
	struct worker_pool	*pool;		/* I: the associated pool */
145 146 147
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
148
	int			id;		/* I: worker id */
149 150 151

	/* for rebinding worker to CPU */
	struct work_struct	rebind_work;	/* L: for busy worker */
T
Tejun Heo 已提交
152 153
};

154 155
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
156
	unsigned int		flags;		/* X: flags */
157 158 159

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
160 161

	/* nr_idle includes the ones off idle_list for rebinding */
162 163 164 165 166 167
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

168
	struct mutex		assoc_mutex;	/* protect GCWQ_DISASSOCIATED */
169 170 171
	struct ida		worker_ida;	/* L: for worker IDs */
};

172
/*
173 174 175
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
176 177 178 179
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
180
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
181

182
	/* workers are chained either in busy_hash or pool idle_list */
T
Tejun Heo 已提交
183 184 185
	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
						/* L: hash of busy workers */

186 187
	struct worker_pool	pools[NR_WORKER_POOLS];
						/* normal and highpri pools */
188 189
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
190
/*
191
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
192 193
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
194 195
 */
struct cpu_workqueue_struct {
196
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
197
	struct workqueue_struct *wq;		/* I: the owning workqueue */
198 199 200 201
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
202
	int			nr_active;	/* L: nr of active works */
203
	int			max_active;	/* L: max active works */
204
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
205
};
L
Linus Torvalds 已提交
206

207 208 209 210 211 212 213 214 215
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

216 217 218 219 220 221 222 223 224 225
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
226
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
227 228 229 230 231 232 233 234 235
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
236 237 238 239 240 241

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
242
	unsigned int		flags;		/* W: WQ_* flags */
243 244 245 246 247
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
248
	struct list_head	list;		/* W: list of all workqueues */
249 250 251 252 253 254 255 256 257

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

258
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
259 260
	struct worker		*rescuer;	/* I: rescue worker */

261
	int			nr_drainers;	/* W: drain in progress */
262
	int			saved_max_active; /* W: saved cwq max_active */
263
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
264
	struct lockdep_map	lockdep_map;
265
#endif
266
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
267 268
};

269 270
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
271
struct workqueue_struct *system_highpri_wq __read_mostly;
272
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
273
struct workqueue_struct *system_long_wq __read_mostly;
274
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
275
struct workqueue_struct *system_unbound_wq __read_mostly;
276
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
277
struct workqueue_struct *system_freezable_wq __read_mostly;
278
EXPORT_SYMBOL_GPL(system_freezable_wq);
279

280 281 282
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

283
#define for_each_worker_pool(pool, gcwq)				\
284 285
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
286

287 288 289 290
#define for_each_busy_worker(worker, i, pos, gcwq)			\
	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

340 341 342 343
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

344 345 346 347 348
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
384
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
420
	.debug_hint	= work_debug_hint,
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

456 457
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
458
static LIST_HEAD(workqueues);
459
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
460

461 462 463 464 465
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
466
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
467
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
468

469 470 471 472 473 474
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
475 476 477
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
478

T
Tejun Heo 已提交
479
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
480

481 482 483 484 485
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

486 487
static struct global_cwq *get_gcwq(unsigned int cpu)
{
488 489 490 491
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
492 493
}

494
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
495
{
496
	int cpu = pool->gcwq->cpu;
497
	int idx = worker_pool_pri(pool);
498

499
	if (cpu != WORK_CPU_UNBOUND)
500
		return &per_cpu(pool_nr_running, cpu)[idx];
501
	else
502
		return &unbound_pool_nr_running[idx];
503 504
}

T
Tejun Heo 已提交
505 506
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
507
{
508
	if (!(wq->flags & WQ_UNBOUND)) {
509
		if (likely(cpu < nr_cpu_ids))
510 511 512 513
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
514 515
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
531

532
/*
533 534 535
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
 * is cleared and the high bits contain OFFQ flags and CPU number.
536
 *
537 538 539 540
 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, cpu or clear
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
541
 *
542 543 544 545
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
 * a work.  gcwq is available once the work has been queued anywhere after
 * initialization until it is sync canceled.  cwq is available only while
 * the work item is queued.
546
 *
547 548 549 550
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
551
 */
552 553
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
554
{
555
	BUG_ON(!work_pending(work));
556 557
	atomic_long_set(&work->data, data | flags | work_static(work));
}
558

559 560 561 562 563
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
564
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
565 566
}

567 568
static void set_work_cpu_and_clear_pending(struct work_struct *work,
					   unsigned int cpu)
569
{
570 571 572 573 574 575 576
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
577
	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
578
}
579

580
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
581
{
582
	smp_wmb();	/* see set_work_cpu_and_clear_pending() */
583
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
584 585
}

586
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
587
{
588
	unsigned long data = atomic_long_read(&work->data);
589

590 591 592 593
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
594 595
}

596
static struct global_cwq *get_work_gcwq(struct work_struct *work)
597
{
598
	unsigned long data = atomic_long_read(&work->data);
599 600
	unsigned int cpu;

601 602
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
603
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
604

605
	cpu = data >> WORK_OFFQ_CPU_SHIFT;
606
	if (cpu == WORK_CPU_NONE)
607 608
		return NULL;

609
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
610
	return get_gcwq(cpu);
611 612
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
static void mark_work_canceling(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;

	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
		      WORK_STRUCT_PENDING);
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

629
/*
630 631 632
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
633 634
 */

635
static bool __need_more_worker(struct worker_pool *pool)
636
{
637
	return !atomic_read(get_pool_nr_running(pool));
638 639
}

640
/*
641 642
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
643 644 645 646
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
647
 */
648
static bool need_more_worker(struct worker_pool *pool)
649
{
650
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
651
}
652

653
/* Can I start working?  Called from busy but !running workers. */
654
static bool may_start_working(struct worker_pool *pool)
655
{
656
	return pool->nr_idle;
657 658 659
}

/* Do I need to keep working?  Called from currently running workers. */
660
static bool keep_working(struct worker_pool *pool)
661
{
662
	atomic_t *nr_running = get_pool_nr_running(pool);
663

664
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
665 666 667
}

/* Do we need a new worker?  Called from manager. */
668
static bool need_to_create_worker(struct worker_pool *pool)
669
{
670
	return need_more_worker(pool) && !may_start_working(pool);
671
}
672

673
/* Do I need to be the manager? */
674
static bool need_to_manage_workers(struct worker_pool *pool)
675
{
676
	return need_to_create_worker(pool) ||
677
		(pool->flags & POOL_MANAGE_WORKERS);
678 679 680
}

/* Do we have too many workers and should some go away? */
681
static bool too_many_workers(struct worker_pool *pool)
682
{
683
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
684 685
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
686

687 688 689 690 691 692 693
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

694
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
695 696
}

697
/*
698 699 700
 * Wake up functions.
 */

701
/* Return the first worker.  Safe with preemption disabled */
702
static struct worker *first_worker(struct worker_pool *pool)
703
{
704
	if (unlikely(list_empty(&pool->idle_list)))
705 706
		return NULL;

707
	return list_first_entry(&pool->idle_list, struct worker, entry);
708 709 710 711
}

/**
 * wake_up_worker - wake up an idle worker
712
 * @pool: worker pool to wake worker from
713
 *
714
 * Wake up the first idle worker of @pool.
715 716 717 718
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
719
static void wake_up_worker(struct worker_pool *pool)
720
{
721
	struct worker *worker = first_worker(pool);
722 723 724 725 726

	if (likely(worker))
		wake_up_process(worker->task);
}

727
/**
728 729 730 731 732 733 734 735 736 737 738 739 740 741
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

742 743
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
		WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
744
		atomic_inc(get_pool_nr_running(worker->pool));
745
	}
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
767
	struct worker_pool *pool = worker->pool;
768
	atomic_t *nr_running = get_pool_nr_running(pool);
769

770
	if (worker->flags & WORKER_NOT_RUNNING)
771 772 773 774 775 776 777 778 779 780
		return NULL;

	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
781 782 783 784 785
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
786
	 */
787
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
788
		to_wakeup = first_worker(pool);
789 790 791 792 793
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
794
 * @worker: self
795 796 797
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
798 799 800
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
801
 *
802 803
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
804 805 806 807
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
808
	struct worker_pool *pool = worker->pool;
809

810 811
	WARN_ON_ONCE(worker->task != current);

812 813 814 815 816 817 818
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
819
		atomic_t *nr_running = get_pool_nr_running(pool);
820 821 822

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
823
			    !list_empty(&pool->worklist))
824
				wake_up_worker(pool);
825 826 827 828
		} else
			atomic_dec(nr_running);
	}

829 830 831 832
	worker->flags |= flags;
}

/**
833
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
834
 * @worker: self
835 836
 * @flags: flags to clear
 *
837
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
838
 *
839 840
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
841 842 843
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
844
	struct worker_pool *pool = worker->pool;
845 846
	unsigned int oflags = worker->flags;

847 848
	WARN_ON_ONCE(worker->task != current);

849
	worker->flags &= ~flags;
850

851 852 853 854 855
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
856 857
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
858
			atomic_inc(get_pool_nr_running(pool));
859 860
}

T
Tejun Heo 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/**
 * busy_worker_head - return the busy hash head for a work
 * @gcwq: gcwq of interest
 * @work: work to be hashed
 *
 * Return hash head of @gcwq for @work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to the hash head.
 */
static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
					   struct work_struct *work)
{
	const int base_shift = ilog2(sizeof(struct work_struct));
	unsigned long v = (unsigned long)work;

	/* simple shift and fold hash, do we need something better? */
	v >>= base_shift;
	v += v >> BUSY_WORKER_HASH_ORDER;
	v &= BUSY_WORKER_HASH_MASK;

	return &gcwq->busy_hash[v];
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
/**
 * __find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @bwh: hash head as returned by busy_worker_head()
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  @bwh should be
 * the hash head obtained by calling busy_worker_head() with the same
 * work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
 */
static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
						   struct hlist_head *bwh,
						   struct work_struct *work)
{
	struct worker *worker;
	struct hlist_node *tmp;

	hlist_for_each_entry(worker, tmp, bwh, hentry)
		if (worker->current_work == work)
			return worker;
	return NULL;
}

/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  This function is
 * identical to __find_worker_executing_work() except that this
 * function calculates @bwh itself.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
933
 */
934 935
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
936
{
937 938
	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
					    work);
939 940
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

982
static void cwq_activate_delayed_work(struct work_struct *work)
983
{
984
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
985 986 987 988 989 990 991

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

992 993 994 995 996 997 998 999
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
1011
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1012 1013 1014 1015 1016 1017 1018
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

1019 1020 1021 1022 1023
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1045
/**
1046
 * try_to_grab_pending - steal work item from worklist and disable irq
1047 1048
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1049
 * @flags: place to store irq state
1050 1051 1052 1053 1054 1055 1056
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1057 1058
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1059
 *
1060
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1061 1062 1063
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1064 1065 1066 1067
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1068
 * This function is safe to call from any context including IRQ handler.
1069
 */
1070 1071
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1072 1073 1074
{
	struct global_cwq *gcwq;

1075 1076
	local_irq_save(*flags);

1077 1078 1079 1080
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1081 1082 1083 1084 1085
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1086 1087 1088 1089 1090
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1091 1092 1093 1094 1095 1096 1097 1098 1099
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	gcwq = get_work_gcwq(work);
	if (!gcwq)
1100
		goto fail;
1101

1102
	spin_lock(&gcwq->lock);
1103 1104 1105 1106 1107 1108 1109 1110 1111
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong gcwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (gcwq == get_work_gcwq(work)) {
			debug_work_deactivate(work);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

			/*
			 * A delayed work item cannot be grabbed directly
			 * because it might have linked NO_COLOR work items
			 * which, if left on the delayed_list, will confuse
			 * cwq->nr_active management later on and cause
			 * stall.  Make sure the work item is activated
			 * before grabbing.
			 */
			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
				cwq_activate_delayed_work(work);

1124 1125
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
1126
				get_work_color(work));
1127

1128
			spin_unlock(&gcwq->lock);
1129
			return 1;
1130 1131
		}
	}
1132 1133 1134 1135 1136 1137
	spin_unlock(&gcwq->lock);
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1138
	return -EAGAIN;
1139 1140
}

T
Tejun Heo 已提交
1141
/**
1142
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1143 1144 1145 1146 1147
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1148 1149
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1150 1151
 *
 * CONTEXT:
1152
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1153
 */
O
Oleg Nesterov 已提交
1154
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1155 1156
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1157
{
1158
	struct worker_pool *pool = cwq->pool;
1159

T
Tejun Heo 已提交
1160
	/* we own @work, set data and link */
1161
	set_work_cwq(work, cwq, extra_flags);
1162

1163 1164 1165 1166 1167
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1168

1169
	list_add_tail(&work->entry, head);
1170 1171 1172 1173 1174 1175 1176 1177

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1178 1179
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1180 1181
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
1214
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1215 1216
			 struct work_struct *work)
{
1217 1218
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
1219
	struct list_head *worklist;
1220
	unsigned int work_flags;
1221
	unsigned int req_cpu = cpu;
1222 1223 1224 1225 1226 1227 1228 1229

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1230

1231
	debug_work_activate(work);
1232

1233
	/* if dying, only works from the same workqueue are allowed */
1234
	if (unlikely(wq->flags & WQ_DRAINING) &&
1235
	    WARN_ON_ONCE(!is_chained_work(wq)))
1236 1237
		return;

1238 1239
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1240 1241
		struct global_cwq *last_gcwq;

1242
		if (cpu == WORK_CPU_UNBOUND)
1243 1244
			cpu = raw_smp_processor_id();

1245
		/*
1246 1247 1248 1249
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1250
		 */
1251
		gcwq = get_gcwq(cpu);
1252 1253 1254
		last_gcwq = get_work_gcwq(work);

		if (last_gcwq && last_gcwq != gcwq) {
1255 1256
			struct worker *worker;

1257
			spin_lock(&last_gcwq->lock);
1258 1259 1260 1261 1262 1263 1264

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1265 1266
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1267
			}
1268 1269 1270
		} else {
			spin_lock(&gcwq->lock);
		}
1271 1272
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1273
		spin_lock(&gcwq->lock);
1274 1275 1276 1277
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1278
	trace_workqueue_queue_work(req_cpu, cwq, work);
1279

1280
	if (WARN_ON(!list_empty(&work->entry))) {
1281
		spin_unlock(&gcwq->lock);
1282 1283
		return;
	}
1284

1285
	cwq->nr_in_flight[cwq->work_color]++;
1286
	work_flags = work_color_to_flags(cwq->work_color);
1287 1288

	if (likely(cwq->nr_active < cwq->max_active)) {
1289
		trace_workqueue_activate_work(work);
1290
		cwq->nr_active++;
1291
		worklist = &cwq->pool->worklist;
1292 1293
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1294
		worklist = &cwq->delayed_works;
1295
	}
1296

1297
	insert_work(cwq, work, worklist, work_flags);
1298

1299
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1300 1301
}

1302
/**
1303 1304
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1305 1306 1307
 * @wq: workqueue to use
 * @work: work to queue
 *
1308
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1309
 *
1310 1311
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1312
 */
1313 1314
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1315
{
1316
	bool ret = false;
1317
	unsigned long flags;
1318

1319
	local_irq_save(flags);
1320

1321
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1322
		__queue_work(cpu, wq, work);
1323
		ret = true;
1324
	}
1325

1326
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1327 1328
	return ret;
}
1329
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1330

1331
/**
1332
 * queue_work - queue work on a workqueue
1333 1334 1335
 * @wq: workqueue to use
 * @work: work to queue
 *
1336
 * Returns %false if @work was already on a queue, %true otherwise.
1337
 *
1338 1339
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1340
 */
1341
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1342
{
1343
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1344
}
1345
EXPORT_SYMBOL_GPL(queue_work);
1346

1347
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1348
{
1349
	struct delayed_work *dwork = (struct delayed_work *)__data;
1350
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1351

1352
	/* should have been called from irqsafe timer with irq already off */
1353
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1354
}
1355
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1356

1357 1358
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1359
{
1360 1361 1362 1363 1364 1365
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1366 1367
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1380
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1381

1382 1383 1384 1385 1386 1387 1388 1389
	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
	 * work's gcwq is preserved to allow reentrance detection for
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
		struct global_cwq *gcwq = get_work_gcwq(work);

1390 1391 1392 1393 1394 1395 1396
		/*
		 * If we cannot get the last gcwq from @work directly,
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
		if (gcwq)
1397
			lcpu = gcwq->cpu;
1398
		if (lcpu == WORK_CPU_UNBOUND)
1399 1400 1401 1402 1403 1404 1405
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1406
	dwork->cpu = cpu;
1407 1408 1409 1410 1411 1412
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1413 1414
}

1415 1416 1417 1418
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1419
 * @dwork: work to queue
1420 1421
 * @delay: number of jiffies to wait before queueing
 *
1422 1423 1424
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1425
 */
1426 1427
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1428
{
1429
	struct work_struct *work = &dwork->work;
1430
	bool ret = false;
1431
	unsigned long flags;
1432

1433 1434
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1435

1436
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1437
		__queue_delayed_work(cpu, wq, dwork, delay);
1438
		ret = true;
1439
	}
1440

1441
	local_irq_restore(flags);
1442 1443
	return ret;
}
1444
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1445

1446 1447 1448 1449 1450 1451
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1452
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1453
 */
1454
bool queue_delayed_work(struct workqueue_struct *wq,
1455 1456
			struct delayed_work *dwork, unsigned long delay)
{
1457
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1458 1459
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1460

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1476
 * This function is safe to call from any context including IRQ handler.
1477 1478 1479 1480 1481 1482 1483
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1484

1485 1486 1487
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1488

1489 1490 1491
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1492
	}
1493 1494

	/* -ENOENT from try_to_grab_pending() becomes %true */
1495 1496
	return ret;
}
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1513

T
Tejun Heo 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1525
{
1526 1527
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1528 1529 1530 1531 1532

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1533 1534
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1535
	pool->nr_idle++;
1536
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1537 1538

	/* idle_list is LIFO */
1539
	list_add(&worker->entry, &pool->idle_list);
1540

1541 1542
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1543

1544
	/*
1545 1546 1547 1548
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1549
	 */
1550
	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1551
		     pool->nr_workers == pool->nr_idle &&
1552
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1566
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1567 1568

	BUG_ON(!(worker->flags & WORKER_IDLE));
1569
	worker_clr_flags(worker, WORKER_IDLE);
1570
	pool->nr_idle--;
T
Tejun Heo 已提交
1571 1572 1573
	list_del_init(&worker->entry);
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1590 1591 1592 1593 1594
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1605
__acquires(&gcwq->lock)
1606
{
1607
	struct global_cwq *gcwq = worker->pool->gcwq;
1608 1609 1610
	struct task_struct *task = worker->task;

	while (true) {
1611
		/*
1612 1613 1614 1615
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1616
		 */
1617 1618
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1629 1630 1631 1632 1633 1634
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1635
		cpu_relax();
1636
		cond_resched();
1637 1638 1639
	}
}

1640
/*
1641
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1642
 * list_empty(@worker->entry) before leaving idle and call this function.
1643 1644 1645 1646 1647
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

1648 1649 1650
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1651

1652 1653 1654
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
	spin_unlock_irq(&gcwq->lock);
1655 1656
}

1657
/*
1658
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1659 1660 1661
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1662
 */
1663
static void busy_worker_rebind_fn(struct work_struct *work)
1664 1665
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1666
	struct global_cwq *gcwq = worker->pool->gcwq;
1667

1668 1669
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1670 1671 1672 1673

	spin_unlock_irq(&gcwq->lock);
}

1674 1675 1676 1677 1678 1679 1680
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
1681 1682 1683 1684
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1685
 *
1686 1687 1688 1689
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1690
 *
1691 1692 1693 1694
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1695 1696 1697 1698
 */
static void rebind_workers(struct global_cwq *gcwq)
{
	struct worker_pool *pool;
1699
	struct worker *worker, *n;
1700 1701 1702 1703 1704 1705
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
1706
		lockdep_assert_held(&pool->assoc_mutex);
1707

1708
	/* dequeue and kick idle ones */
1709
	for_each_worker_pool(pool, gcwq) {
1710 1711 1712 1713 1714 1715 1716
		list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
			/*
			 * idle workers should be off @pool->idle_list
			 * until rebind is complete to avoid receiving
			 * premature local wake-ups.
			 */
			list_del_init(&worker->entry);
1717

1718 1719 1720 1721
			/*
			 * worker_thread() will see the above dequeuing
			 * and call idle_worker_rebind().
			 */
1722 1723 1724 1725
			wake_up_process(worker->task);
		}
	}

1726
	/* rebind busy workers */
1727 1728
	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;
1729
		struct workqueue_struct *wq;
1730 1731 1732 1733 1734 1735

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		debug_work_activate(rebind_work);
1736

1737 1738 1739 1740 1741 1742 1743 1744
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;
1745

1746 1747 1748
		insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
			worker->scheduled.next,
			work_color_to_flags(WORK_NO_COLOR));
1749
	}
1750 1751
}

T
Tejun Heo 已提交
1752 1753 1754 1755 1756
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1757 1758
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1759
		INIT_LIST_HEAD(&worker->scheduled);
1760
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1761 1762
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1763
	}
T
Tejun Heo 已提交
1764 1765 1766 1767 1768
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1769
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1770
 *
1771
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1781
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1782
{
1783
	struct global_cwq *gcwq = pool->gcwq;
1784
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1785
	struct worker *worker = NULL;
1786
	int id = -1;
T
Tejun Heo 已提交
1787

1788
	spin_lock_irq(&gcwq->lock);
1789
	while (ida_get_new(&pool->worker_ida, &id)) {
1790
		spin_unlock_irq(&gcwq->lock);
1791
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1792
			goto fail;
1793
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1794
	}
1795
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1796 1797 1798 1799 1800

	worker = alloc_worker();
	if (!worker)
		goto fail;

1801
	worker->pool = pool;
T
Tejun Heo 已提交
1802 1803
	worker->id = id;

1804
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1805
		worker->task = kthread_create_on_node(worker_thread,
1806 1807
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1808 1809
	else
		worker->task = kthread_create(worker_thread, worker,
1810
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1811 1812 1813
	if (IS_ERR(worker->task))
		goto fail;

1814 1815 1816
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1817
	/*
1818 1819 1820 1821 1822 1823 1824
	 * Determine CPU binding of the new worker depending on
	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1825
	 */
1826
	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1827
		kthread_bind(worker->task, gcwq->cpu);
1828
	} else {
1829
		worker->task->flags |= PF_THREAD_BOUND;
1830
		worker->flags |= WORKER_UNBOUND;
1831
	}
T
Tejun Heo 已提交
1832 1833 1834 1835

	return worker;
fail:
	if (id >= 0) {
1836
		spin_lock_irq(&gcwq->lock);
1837
		ida_remove(&pool->worker_ida, id);
1838
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1839 1840 1841 1842 1843 1844 1845 1846 1847
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1848
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1849 1850
 *
 * CONTEXT:
1851
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1852 1853 1854
 */
static void start_worker(struct worker *worker)
{
1855
	worker->flags |= WORKER_STARTED;
1856
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1857
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1858 1859 1860 1861 1862 1863 1864
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1865 1866 1867 1868
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1869 1870 1871
 */
static void destroy_worker(struct worker *worker)
{
1872 1873
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1874 1875 1876 1877
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1878
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1879

T
Tejun Heo 已提交
1880
	if (worker->flags & WORKER_STARTED)
1881
		pool->nr_workers--;
T
Tejun Heo 已提交
1882
	if (worker->flags & WORKER_IDLE)
1883
		pool->nr_idle--;
T
Tejun Heo 已提交
1884 1885

	list_del_init(&worker->entry);
1886
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1887 1888 1889

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1890 1891 1892
	kthread_stop(worker->task);
	kfree(worker);

1893
	spin_lock_irq(&gcwq->lock);
1894
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1895 1896
}

1897
static void idle_worker_timeout(unsigned long __pool)
1898
{
1899 1900
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1901 1902 1903

	spin_lock_irq(&gcwq->lock);

1904
	if (too_many_workers(pool)) {
1905 1906 1907 1908
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1909
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1910 1911 1912
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1913
			mod_timer(&pool->idle_timer, expires);
1914 1915
		else {
			/* it's been idle for too long, wake up manager */
1916
			pool->flags |= POOL_MANAGE_WORKERS;
1917
			wake_up_worker(pool);
1918
		}
1919 1920 1921 1922
	}

	spin_unlock_irq(&gcwq->lock);
}
1923

1924 1925 1926 1927
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1928
	unsigned int cpu;
1929 1930 1931 1932 1933

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1934
	cpu = cwq->pool->gcwq->cpu;
1935 1936 1937
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1938
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1939 1940 1941 1942
		wake_up_process(wq->rescuer->task);
	return true;
}

1943
static void gcwq_mayday_timeout(unsigned long __pool)
1944
{
1945 1946
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1947 1948 1949 1950
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1951
	if (need_to_create_worker(pool)) {
1952 1953 1954 1955 1956 1957
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1958
		list_for_each_entry(work, &pool->worklist, entry)
1959
			send_mayday(work);
L
Linus Torvalds 已提交
1960
	}
1961 1962 1963

	spin_unlock_irq(&gcwq->lock);

1964
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1965 1966
}

1967 1968
/**
 * maybe_create_worker - create a new worker if necessary
1969
 * @pool: pool to create a new worker for
1970
 *
1971
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1972 1973
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1974
 * sent to all rescuers with works scheduled on @pool to resolve
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1989
static bool maybe_create_worker(struct worker_pool *pool)
1990 1991
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1992
{
1993 1994 1995
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
1996 1997
		return false;
restart:
1998 1999
	spin_unlock_irq(&gcwq->lock);

2000
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2001
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2002 2003 2004 2005

	while (true) {
		struct worker *worker;

2006
		worker = create_worker(pool);
2007
		if (worker) {
2008
			del_timer_sync(&pool->mayday_timer);
2009 2010
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
2011
			BUG_ON(need_to_create_worker(pool));
2012 2013 2014
			return true;
		}

2015
		if (!need_to_create_worker(pool))
2016
			break;
L
Linus Torvalds 已提交
2017

2018 2019
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
2020

2021
		if (!need_to_create_worker(pool))
2022 2023 2024
			break;
	}

2025
	del_timer_sync(&pool->mayday_timer);
2026
	spin_lock_irq(&gcwq->lock);
2027
	if (need_to_create_worker(pool))
2028 2029 2030 2031 2032 2033
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2034
 * @pool: pool to destroy workers for
2035
 *
2036
 * Destroy @pool workers which have been idle for longer than
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2047
static bool maybe_destroy_workers(struct worker_pool *pool)
2048 2049
{
	bool ret = false;
L
Linus Torvalds 已提交
2050

2051
	while (too_many_workers(pool)) {
2052 2053
		struct worker *worker;
		unsigned long expires;
2054

2055
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2056
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2057

2058
		if (time_before(jiffies, expires)) {
2059
			mod_timer(&pool->idle_timer, expires);
2060
			break;
2061
		}
L
Linus Torvalds 已提交
2062

2063 2064
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2065
	}
2066

2067
	return ret;
2068 2069
}

2070
/**
2071 2072
 * manage_workers - manage worker pool
 * @worker: self
2073
 *
2074 2075 2076 2077 2078 2079 2080
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2081 2082
 *
 * CONTEXT:
2083 2084 2085 2086 2087 2088
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
2089
 */
2090
static bool manage_workers(struct worker *worker)
2091
{
2092
	struct worker_pool *pool = worker->pool;
2093
	bool ret = false;
2094

2095
	if (pool->flags & POOL_MANAGING_WORKERS)
2096
		return ret;
2097

2098
	pool->flags |= POOL_MANAGING_WORKERS;
2099

2100 2101 2102 2103 2104 2105
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2106
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2107 2108
	 * manager against CPU hotplug.
	 *
2109
	 * assoc_mutex would always be free unless CPU hotplug is in
2110 2111
	 * progress.  trylock first without dropping @gcwq->lock.
	 */
2112
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2113
		spin_unlock_irq(&pool->gcwq->lock);
2114
		mutex_lock(&pool->assoc_mutex);
2115 2116
		/*
		 * CPU hotplug could have happened while we were waiting
2117
		 * for assoc_mutex.  Hotplug itself can't handle us
2118 2119 2120
		 * because manager isn't either on idle or busy list, and
		 * @gcwq's state and ours could have deviated.
		 *
2121
		 * As hotplug is now excluded via assoc_mutex, we can
2122 2123 2124 2125 2126 2127 2128 2129
		 * simply try to bind.  It will succeed or fail depending
		 * on @gcwq's current state.  Try it and adjust
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2130

2131 2132
		ret = true;
	}
2133

2134
	pool->flags &= ~POOL_MANAGE_WORKERS;
2135 2136

	/*
2137 2138
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2139
	 */
2140 2141
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2142

2143
	pool->flags &= ~POOL_MANAGING_WORKERS;
2144
	mutex_unlock(&pool->assoc_mutex);
2145
	return ret;
2146 2147
}

2148 2149
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2150
 * @worker: self
2151 2152 2153 2154 2155 2156 2157 2158 2159
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2160
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2161
 */
T
Tejun Heo 已提交
2162
static void process_one_work(struct worker *worker, struct work_struct *work)
2163 2164
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
2165
{
2166
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2167 2168
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
2169
	struct hlist_head *bwh = busy_worker_head(gcwq, work);
2170
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2171
	work_func_t f = work->func;
2172
	int work_color;
2173
	struct worker *collision;
2174 2175 2176 2177 2178 2179 2180 2181
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2182 2183 2184
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2185
#endif
2186 2187 2188 2189 2190
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
	 * unbound or a disassociated gcwq.
	 */
2191
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2192
		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2193 2194
		     raw_smp_processor_id() != gcwq->cpu);

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
	collision = __find_worker_executing_work(gcwq, bwh, work);
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2207
	/* claim and dequeue */
2208
	debug_work_deactivate(work);
T
Tejun Heo 已提交
2209
	hlist_add_head(&worker->hentry, bwh);
T
Tejun Heo 已提交
2210
	worker->current_work = work;
2211
	worker->current_cwq = cwq;
2212
	work_color = get_work_color(work);
2213

2214 2215
	list_del_init(&work->entry);

2216 2217 2218 2219 2220 2221 2222
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2223 2224 2225 2226
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2227 2228
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2229

2230
	/*
2231 2232 2233 2234
	 * Record the last CPU and clear PENDING which should be the last
	 * update to @work.  Also, do this inside @gcwq->lock so that
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2235 2236
	 */
	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2237

2238
	spin_unlock_irq(&gcwq->lock);
2239

2240
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2241
	lock_map_acquire(&lockdep_map);
2242
	trace_workqueue_execute_start(work);
2243
	f(work);
2244 2245 2246 2247 2248
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2249 2250 2251 2252
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2253 2254 2255
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
		       current->comm, preempt_count(), task_pid_nr(current), f);
2256 2257 2258 2259
		debug_show_held_locks(current);
		dump_stack();
	}

2260
	spin_lock_irq(&gcwq->lock);
2261

2262 2263 2264 2265
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2266
	/* we're done with it, release */
T
Tejun Heo 已提交
2267
	hlist_del_init(&worker->hentry);
T
Tejun Heo 已提交
2268
	worker->current_work = NULL;
2269
	worker->current_cwq = NULL;
2270
	cwq_dec_nr_in_flight(cwq, work_color);
2271 2272
}

2273 2274 2275 2276 2277 2278 2279 2280 2281
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2282
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2283 2284 2285
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2286
{
2287 2288
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2289
						struct work_struct, entry);
T
Tejun Heo 已提交
2290
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2291 2292 2293
	}
}

T
Tejun Heo 已提交
2294 2295
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2296
 * @__worker: self
T
Tejun Heo 已提交
2297
 *
2298 2299 2300 2301 2302
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2303
 */
T
Tejun Heo 已提交
2304
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2305
{
T
Tejun Heo 已提交
2306
	struct worker *worker = __worker;
2307 2308
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2309

2310 2311
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2312 2313
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2314

2315 2316
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
T
Tejun Heo 已提交
2317
		spin_unlock_irq(&gcwq->lock);
2318

2319
		/* if DIE is set, destruction is requested */
2320 2321 2322 2323 2324
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2325
		/* otherwise, rebind */
2326 2327
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2328
	}
2329

T
Tejun Heo 已提交
2330
	worker_leave_idle(worker);
2331
recheck:
2332
	/* no more worker necessary? */
2333
	if (!need_more_worker(pool))
2334 2335 2336
		goto sleep;

	/* do we need to manage? */
2337
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2338 2339
		goto recheck;

T
Tejun Heo 已提交
2340 2341 2342 2343 2344 2345 2346
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2347 2348 2349 2350 2351 2352 2353 2354
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2355
		struct work_struct *work =
2356
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2357 2358 2359 2360 2361 2362
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2363
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2364 2365 2366
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2367
		}
2368
	} while (keep_working(pool));
2369 2370

	worker_set_flags(worker, WORKER_PREP, false);
2371
sleep:
2372
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2373
		goto recheck;
2374

T
Tejun Heo 已提交
2375
	/*
2376 2377 2378 2379 2380
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2381 2382 2383 2384 2385 2386
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2387 2388
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
/**
 * rescuer_thread - the rescuer thread function
 * @__wq: the associated workqueue
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
static int rescuer_thread(void *__wq)
{
	struct workqueue_struct *wq = __wq;
	struct worker *rescuer = wq->rescuer;
	struct list_head *scheduled = &rescuer->scheduled;
2413
	bool is_unbound = wq->flags & WQ_UNBOUND;
2414 2415 2416 2417 2418 2419
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2420 2421
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2422
		return 0;
2423
	}
2424

2425 2426 2427 2428
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2429
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2430 2431
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2432 2433
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2434 2435 2436
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2437
		mayday_clear_cpu(cpu, wq->mayday_mask);
2438 2439

		/* migrate to the target cpu if possible */
2440
		rescuer->pool = pool;
2441 2442 2443 2444 2445 2446 2447
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2448
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2449 2450 2451 2452
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2453 2454 2455 2456 2457 2458

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2459 2460
		if (keep_working(pool))
			wake_up_worker(pool);
2461

2462 2463 2464 2465 2466
		spin_unlock_irq(&gcwq->lock);
	}

	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2467 2468
}

O
Oleg Nesterov 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2480 2481 2482 2483
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2484 2485
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2486
 *
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2500 2501
 *
 * CONTEXT:
2502
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2503
 */
2504
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2505 2506
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2507
{
2508 2509 2510
	struct list_head *head;
	unsigned int linked = 0;

2511
	/*
2512
	 * debugobject calls are safe here even with gcwq->lock locked
2513 2514 2515 2516
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2517
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2518
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2519
	init_completion(&barr->done);
2520

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2536
	debug_work_activate(&barr->work);
2537 2538
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2539 2540
}

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2574
{
2575 2576
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2577

2578 2579 2580
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2581
	}
2582

2583
	for_each_cwq_cpu(cpu, wq) {
2584
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2585
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2586

2587
		spin_lock_irq(&gcwq->lock);
2588

2589 2590
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2591

2592 2593 2594 2595 2596 2597
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2598

2599 2600 2601 2602
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2603

2604
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2605
	}
2606

2607 2608
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2609

2610
	return wait;
L
Linus Torvalds 已提交
2611 2612
}

2613
/**
L
Linus Torvalds 已提交
2614
 * flush_workqueue - ensure that any scheduled work has run to completion.
2615
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2616 2617 2618 2619
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2620 2621
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2622
 */
2623
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2624
{
2625 2626 2627 2628 2629 2630
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2631

2632 2633
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2695 2696 2697 2698
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2766
}
2767
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2768

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2799
		bool drained;
2800

2801
		spin_lock_irq(&cwq->pool->gcwq->lock);
2802
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2803
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2804 2805

		if (drained)
2806 2807 2808 2809
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2810 2811
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2822
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2823
{
2824
	struct worker *worker = NULL;
2825
	struct global_cwq *gcwq;
2826 2827 2828
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2829 2830
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2831
		return false;
2832

2833
	spin_lock_irq(&gcwq->lock);
2834 2835 2836
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2837 2838
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2839 2840
		 */
		smp_rmb();
2841
		cwq = get_work_cwq(work);
2842
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2843
			goto already_gone;
2844
	} else {
2845
		worker = find_worker_executing_work(gcwq, work);
2846
		if (!worker)
T
Tejun Heo 已提交
2847
			goto already_gone;
2848
		cwq = worker->current_cwq;
2849
	}
2850

2851
	insert_wq_barrier(cwq, barr, work, worker);
2852
	spin_unlock_irq(&gcwq->lock);
2853

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2864
	lock_map_release(&cwq->wq->lockdep_map);
2865

2866
	return true;
T
Tejun Heo 已提交
2867
already_gone:
2868
	spin_unlock_irq(&gcwq->lock);
2869
	return false;
2870
}
2871 2872 2873 2874 2875

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2876 2877
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2878 2879 2880 2881 2882 2883 2884 2885 2886
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2887 2888 2889
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2890
	if (start_flush_work(work, &barr)) {
2891 2892 2893
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2894
	} else {
2895
		return false;
2896 2897
	}
}
2898
EXPORT_SYMBOL_GPL(flush_work);
2899

2900
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2901
{
2902
	unsigned long flags;
2903 2904 2905
	int ret;

	do {
2906 2907 2908 2909 2910 2911
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2912
			flush_work(work);
2913 2914
	} while (unlikely(ret < 0));

2915 2916 2917 2918
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2919
	flush_work(work);
2920
	clear_work_data(work);
2921 2922 2923
	return ret;
}

2924
/**
2925 2926
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2927
 *
2928 2929 2930 2931
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2932
 *
2933 2934
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2935
 *
2936
 * The caller must ensure that the workqueue on which @work was last
2937
 * queued can't be destroyed before this function returns.
2938 2939 2940
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2941
 */
2942
bool cancel_work_sync(struct work_struct *work)
2943
{
2944
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2945
}
2946
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2947

2948
/**
2949 2950
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2951
 *
2952 2953 2954
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2955
 *
2956 2957 2958
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2959
 */
2960 2961
bool flush_delayed_work(struct delayed_work *dwork)
{
2962
	local_irq_disable();
2963
	if (del_timer_sync(&dwork->timer))
2964
		__queue_work(dwork->cpu,
2965
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2966
	local_irq_enable();
2967 2968 2969 2970
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2971
/**
2972 2973
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2974
 *
2975 2976 2977 2978 2979
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2980
 *
2981
 * This function is safe to call from any context including IRQ handler.
2982
 */
2983
bool cancel_delayed_work(struct delayed_work *dwork)
2984
{
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
	local_irq_restore(flags);
2997
	return ret;
2998
}
2999
EXPORT_SYMBOL(cancel_delayed_work);
3000

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3011
{
3012
	return __cancel_work_timer(&dwork->work, true);
3013
}
3014
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3015

3016
/**
3017 3018 3019 3020 3021 3022
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3023
bool schedule_work_on(int cpu, struct work_struct *work)
3024
{
3025
	return queue_work_on(cpu, system_wq, work);
3026 3027 3028
}
EXPORT_SYMBOL(schedule_work_on);

3029 3030 3031 3032
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3033 3034
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3035 3036 3037 3038
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3039
 */
3040
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3041
{
3042
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3043
}
3044
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3045

3046 3047 3048
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3049
 * @dwork: job to be done
3050 3051 3052 3053 3054
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3055 3056
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3057
{
3058
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3059
}
3060
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3061

3062 3063
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3064 3065
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3066 3067 3068 3069
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3070
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3071
{
3072
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3073
}
3074
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3075

3076
/**
3077
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3078 3079
 * @func: the function to call
 *
3080 3081
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3082
 * schedule_on_each_cpu() is very slow.
3083 3084 3085
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3086
 */
3087
int schedule_on_each_cpu(work_func_t func)
3088 3089
{
	int cpu;
3090
	struct work_struct __percpu *works;
3091

3092 3093
	works = alloc_percpu(struct work_struct);
	if (!works)
3094
		return -ENOMEM;
3095

3096 3097
	get_online_cpus();

3098
	for_each_online_cpu(cpu) {
3099 3100 3101
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3102
		schedule_work_on(cpu, work);
3103
	}
3104 3105 3106 3107

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3108
	put_online_cpus();
3109
	free_percpu(works);
3110 3111 3112
	return 0;
}

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3137 3138
void flush_scheduled_work(void)
{
3139
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3140
}
3141
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3142

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3155
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3156 3157
{
	if (!in_interrupt()) {
3158
		fn(&ew->work);
3159 3160 3161
		return 0;
	}

3162
	INIT_WORK(&ew->work, fn);
3163 3164 3165 3166 3167 3168
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3169 3170
int keventd_up(void)
{
3171
	return system_wq != NULL;
L
Linus Torvalds 已提交
3172 3173
}

3174
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3175
{
3176
	/*
T
Tejun Heo 已提交
3177 3178 3179
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3180
	 */
T
Tejun Heo 已提交
3181 3182 3183
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3184

3185
	if (!(wq->flags & WQ_UNBOUND))
3186
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3187
	else {
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3200
	}
3201

3202
	/* just in case, make sure it's actually aligned */
3203 3204
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3205 3206
}

3207
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3208
{
3209
	if (!(wq->flags & WQ_UNBOUND))
3210 3211 3212
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3213
		kfree(*(void **)(wq->cpu_wq.single + 1));
3214
	}
T
Tejun Heo 已提交
3215 3216
}

3217 3218
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3219
{
3220 3221 3222
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3223 3224
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3225

3226
	return clamp_val(max_active, 1, lim);
3227 3228
}

3229
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3230 3231 3232
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3233
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3234
{
3235
	va_list args, args1;
L
Linus Torvalds 已提交
3236
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3237
	unsigned int cpu;
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3252

3253 3254 3255 3256 3257 3258 3259
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3260
	max_active = max_active ?: WQ_DFL_ACTIVE;
3261
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3262

3263
	/* init wq */
3264
	wq->flags = flags;
3265
	wq->saved_max_active = max_active;
3266 3267 3268 3269
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3270

3271
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3272
	INIT_LIST_HEAD(&wq->list);
3273

3274 3275 3276
	if (alloc_cwqs(wq) < 0)
		goto err;

3277
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3278
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3279
		struct global_cwq *gcwq = get_gcwq(cpu);
3280
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3281

T
Tejun Heo 已提交
3282
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3283
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3284
		cwq->wq = wq;
3285
		cwq->flush_color = -1;
3286 3287
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3288
	}
T
Tejun Heo 已提交
3289

3290 3291 3292
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3293
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3294 3295 3296 3297 3298 3299
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3300 3301
		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
					       wq->name);
3302 3303 3304 3305 3306
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3307 3308
	}

3309 3310 3311 3312 3313
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3314
	spin_lock(&workqueue_lock);
3315

3316
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3317
		for_each_cwq_cpu(cpu, wq)
3318 3319
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3320
	list_add(&wq->list, &workqueues);
3321

T
Tejun Heo 已提交
3322 3323
	spin_unlock(&workqueue_lock);

3324
	return wq;
T
Tejun Heo 已提交
3325 3326
err:
	if (wq) {
3327
		free_cwqs(wq);
3328
		free_mayday_mask(wq->mayday_mask);
3329
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3330 3331 3332
		kfree(wq);
	}
	return NULL;
3333
}
3334
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3335

3336 3337 3338 3339 3340 3341 3342 3343
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3344
	unsigned int cpu;
3345

3346 3347
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3348

3349 3350 3351 3352
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3353
	spin_lock(&workqueue_lock);
3354
	list_del(&wq->list);
3355
	spin_unlock(&workqueue_lock);
3356

3357
	/* sanity check */
3358
	for_each_cwq_cpu(cpu, wq) {
3359 3360 3361 3362 3363
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3364 3365
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3366
	}
3367

3368 3369
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3370
		free_mayday_mask(wq->mayday_mask);
3371
		kfree(wq->rescuer);
3372 3373
	}

3374
	free_cwqs(wq);
3375 3376 3377 3378
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3413
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3414 3415 3416 3417 3418

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3419
	for_each_cwq_cpu(cpu, wq) {
3420 3421 3422 3423
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3424
		if (!(wq->flags & WQ_FREEZABLE) ||
3425
		    !(gcwq->flags & GCWQ_FREEZING))
3426
			cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
3427

3428
		spin_unlock_irq(&gcwq->lock);
3429
	}
3430

3431
	spin_unlock(&workqueue_lock);
3432
}
3433
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3434

3435
/**
3436 3437 3438
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3439
 *
3440 3441 3442
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3443
 *
3444 3445
 * RETURNS:
 * %true if congested, %false otherwise.
3446
 */
3447
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3448
{
3449 3450 3451
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3452
}
3453
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3454

3455
/**
3456 3457
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3458
 *
3459
 * RETURNS:
3460
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3461
 */
3462
unsigned int work_cpu(struct work_struct *work)
3463
{
3464
	struct global_cwq *gcwq = get_work_gcwq(work);
3465

3466
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3467
}
3468
EXPORT_SYMBOL_GPL(work_cpu);
3469

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3484
{
3485 3486 3487
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3488

3489
	if (!gcwq)
3490
		return 0;
L
Linus Torvalds 已提交
3491

3492
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3493

3494 3495 3496 3497
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3498

3499
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3500

3501
	return ret;
L
Linus Torvalds 已提交
3502
}
3503
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3504

3505 3506 3507
/*
 * CPU hotplug.
 *
3508 3509 3510 3511 3512 3513 3514
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3515 3516 3517
 * This is solved by allowing a gcwq to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3518
 */
L
Linus Torvalds 已提交
3519

3520
/* claim manager positions of all pools */
3521
static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3522 3523 3524 3525
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
3526
		mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3527
	spin_lock_irq(&gcwq->lock);
3528 3529 3530
}

/* release manager positions */
3531
static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3532 3533 3534
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3535
	spin_unlock_irq(&gcwq->lock);
3536
	for_each_worker_pool(pool, gcwq)
3537
		mutex_unlock(&pool->assoc_mutex);
3538 3539
}

3540
static void gcwq_unbind_fn(struct work_struct *work)
3541
{
3542
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3543
	struct worker_pool *pool;
3544 3545 3546
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3547

3548 3549
	BUG_ON(gcwq->cpu != smp_processor_id());

3550
	gcwq_claim_assoc_and_lock(gcwq);
3551

3552 3553 3554 3555 3556 3557
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3558
	for_each_worker_pool(pool, gcwq)
3559
		list_for_each_entry(worker, &pool->idle_list, entry)
3560
			worker->flags |= WORKER_UNBOUND;
3561

3562
	for_each_busy_worker(worker, i, pos, gcwq)
3563
		worker->flags |= WORKER_UNBOUND;
3564

3565 3566
	gcwq->flags |= GCWQ_DISASSOCIATED;

3567
	gcwq_release_assoc_and_unlock(gcwq);
3568

3569
	/*
3570
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3571 3572
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3573 3574
	 */
	schedule();
3575

3576
	/*
3577 3578 3579 3580 3581 3582 3583 3584 3585
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3586
	 */
3587 3588
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3589 3590
}

T
Tejun Heo 已提交
3591 3592 3593 3594
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3595
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3596 3597
					       unsigned long action,
					       void *hcpu)
3598 3599
{
	unsigned int cpu = (unsigned long)hcpu;
3600
	struct global_cwq *gcwq = get_gcwq(cpu);
3601
	struct worker_pool *pool;
3602

T
Tejun Heo 已提交
3603
	switch (action & ~CPU_TASKS_FROZEN) {
3604
	case CPU_UP_PREPARE:
3605
		for_each_worker_pool(pool, gcwq) {
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3618
		}
T
Tejun Heo 已提交
3619
		break;
3620

3621 3622
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3623
		gcwq_claim_assoc_and_lock(gcwq);
3624
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3625
		rebind_workers(gcwq);
3626
		gcwq_release_assoc_and_unlock(gcwq);
3627
		break;
3628
	}
3629 3630 3631 3632 3633 3634 3635
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3636
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3637 3638 3639
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3640 3641 3642
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3643 3644
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3645 3646
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3647
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3648 3649
		flush_work(&unbind_work);
		break;
3650 3651 3652 3653
	}
	return NOTIFY_OK;
}

3654
#ifdef CONFIG_SMP
3655

3656
struct work_for_cpu {
3657
	struct work_struct work;
3658 3659 3660 3661 3662
	long (*fn)(void *);
	void *arg;
	long ret;
};

3663
static void work_for_cpu_fn(struct work_struct *work)
3664
{
3665 3666
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3667 3668 3669 3670 3671 3672 3673 3674 3675
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3676 3677
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3678
 * The caller must not hold any locks which would prevent @fn from completing.
3679 3680 3681
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3682
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3683

3684 3685 3686
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3687 3688 3689 3690 3691
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3692 3693 3694 3695 3696
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3697 3698 3699
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3700 3701
 *
 * CONTEXT:
3702
 * Grabs and releases workqueue_lock and gcwq->lock's.
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3713
	for_each_gcwq_cpu(cpu) {
3714
		struct global_cwq *gcwq = get_gcwq(cpu);
3715
		struct workqueue_struct *wq;
3716 3717 3718

		spin_lock_irq(&gcwq->lock);

3719 3720 3721
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3722 3723 3724
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3725
			if (cwq && wq->flags & WQ_FREEZABLE)
3726 3727
				cwq->max_active = 0;
		}
3728 3729

		spin_unlock_irq(&gcwq->lock);
3730 3731 3732 3733 3734 3735
	}

	spin_unlock(&workqueue_lock);
}

/**
3736
 * freeze_workqueues_busy - are freezable workqueues still busy?
3737 3738 3739 3740 3741 3742 3743 3744
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3745 3746
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3757
	for_each_gcwq_cpu(cpu) {
3758
		struct workqueue_struct *wq;
3759 3760 3761 3762 3763 3764 3765
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3766
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3785
 * frozen works are transferred to their respective gcwq worklists.
3786 3787
 *
 * CONTEXT:
3788
 * Grabs and releases workqueue_lock and gcwq->lock's.
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3799
	for_each_gcwq_cpu(cpu) {
3800
		struct global_cwq *gcwq = get_gcwq(cpu);
3801
		struct worker_pool *pool;
3802
		struct workqueue_struct *wq;
3803 3804 3805

		spin_lock_irq(&gcwq->lock);

3806 3807 3808
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3809 3810 3811
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3812
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3813 3814 3815
				continue;

			/* restore max_active and repopulate worklist */
3816
			cwq_set_max_active(cwq, wq->saved_max_active);
3817
		}
3818

3819 3820
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3821

3822
		spin_unlock_irq(&gcwq->lock);
3823 3824 3825 3826 3827 3828 3829 3830
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3831
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3832
{
T
Tejun Heo 已提交
3833
	unsigned int cpu;
T
Tejun Heo 已提交
3834
	int i;
T
Tejun Heo 已提交
3835

3836 3837 3838 3839
	/* make sure we have enough bits for OFFQ CPU number */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
		     WORK_CPU_LAST);

3840
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3841
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3842 3843

	/* initialize gcwqs */
3844
	for_each_gcwq_cpu(cpu) {
3845
		struct global_cwq *gcwq = get_gcwq(cpu);
3846
		struct worker_pool *pool;
3847 3848 3849

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3850
		gcwq->flags |= GCWQ_DISASSOCIATED;
3851

T
Tejun Heo 已提交
3852 3853 3854
		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);

3855 3856 3857 3858
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3859

3860 3861 3862
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3863

3864 3865 3866
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3867
			mutex_init(&pool->assoc_mutex);
3868 3869
			ida_init(&pool->worker_ida);
		}
3870 3871
	}

3872
	/* create the initial worker */
3873
	for_each_online_gcwq_cpu(cpu) {
3874
		struct global_cwq *gcwq = get_gcwq(cpu);
3875
		struct worker_pool *pool;
3876

3877 3878
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3879 3880 3881 3882

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3883
			worker = create_worker(pool);
3884 3885 3886 3887 3888
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3889 3890
	}

3891
	system_wq = alloc_workqueue("events", 0, 0);
3892
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3893
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3894 3895
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3896 3897
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3898
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3899
	       !system_unbound_wq || !system_freezable_wq);
3900
	return 0;
L
Linus Torvalds 已提交
3901
}
3902
early_initcall(init_workqueues);