workqueue.c 106.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
116
 *    If POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125 126
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
T
Tejun Heo 已提交
127
	int			id;		/* I: pool ID */
128
	unsigned int		flags;		/* X: flags */
129 130 131

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
132 133

	/* nr_idle includes the ones off idle_list for rebinding */
134 135 136 137 138 139
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

140
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
141 142 143
	struct ida		worker_ida;	/* L: for worker IDs */
};

144
/*
145 146 147
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
148 149 150 151
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
152

153
	/* workers are chained either in busy_hash or pool idle_list */
154
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
T
Tejun Heo 已提交
155 156
						/* L: hash of busy workers */

157
	struct worker_pool	pools[NR_STD_WORKER_POOLS];
158
						/* normal and highpri pools */
159 160
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
161
/*
162
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
163 164
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
165 166
 */
struct cpu_workqueue_struct {
167
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
168
	struct workqueue_struct *wq;		/* I: the owning workqueue */
169 170 171 172
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
173
	int			nr_active;	/* L: nr of active works */
174
	int			max_active;	/* L: max active works */
175
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
176
};
L
Linus Torvalds 已提交
177

178 179 180 181 182 183 184 185 186
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

187 188 189 190 191 192 193 194 195 196
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
197
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
198 199 200 201 202 203 204 205 206
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
207 208 209 210 211 212

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
213
	unsigned int		flags;		/* W: WQ_* flags */
214 215 216 217 218
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
219
	struct list_head	list;		/* W: list of all workqueues */
220 221 222 223 224 225 226 227 228

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

229
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
230 231
	struct worker		*rescuer;	/* I: rescue worker */

232
	int			nr_drainers;	/* W: drain in progress */
233
	int			saved_max_active; /* W: saved cwq max_active */
234
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
235
	struct lockdep_map	lockdep_map;
236
#endif
237
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
238 239
};

240 241
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
242
struct workqueue_struct *system_highpri_wq __read_mostly;
243
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
244
struct workqueue_struct *system_long_wq __read_mostly;
245
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
246
struct workqueue_struct *system_unbound_wq __read_mostly;
247
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
248
struct workqueue_struct *system_freezable_wq __read_mostly;
249
EXPORT_SYMBOL_GPL(system_freezable_wq);
250

251 252 253
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

254
#define for_each_worker_pool(pool, gcwq)				\
255
	for ((pool) = &(gcwq)->pools[0];				\
256
	     (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
257

258
#define for_each_busy_worker(worker, i, pos, gcwq)			\
259
	hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

282 283 284 285 286 287 288 289 290 291 292 293 294
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

310 311 312 313
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

314 315 316 317 318
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
354
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
390
	.debug_hint	= work_debug_hint,
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

426 427
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
428
static LIST_HEAD(workqueues);
429
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
430

431 432 433 434 435
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
436
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
437
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
438

439
/*
440 441 442
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The pools
 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
 * WORKER_UNBOUND set.
443 444
 */
static struct global_cwq unbound_global_cwq;
445 446
static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
	[0 ... NR_STD_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
447
};
448

T
Tejun Heo 已提交
449 450 451 452
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
453
static int worker_thread(void *__worker);
T
Tejun Heo 已提交
454
static unsigned int work_cpu(struct work_struct *work);
L
Linus Torvalds 已提交
455

456
static int std_worker_pool_pri(struct worker_pool *pool)
457 458 459 460
{
	return pool - pool->gcwq->pools;
}

461 462
static struct global_cwq *get_gcwq(unsigned int cpu)
{
463 464 465 466
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
467 468
}

T
Tejun Heo 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

482
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
483
{
484
	int cpu = pool->gcwq->cpu;
485
	int idx = std_worker_pool_pri(pool);
486

487
	if (cpu != WORK_CPU_UNBOUND)
488
		return &per_cpu(pool_nr_running, cpu)[idx];
489
	else
490
		return &unbound_pool_nr_running[idx];
491 492
}

T
Tejun Heo 已提交
493 494
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
495
{
496
	if (!(wq->flags & WQ_UNBOUND)) {
497
		if (likely(cpu < nr_cpu_ids))
498 499 500 501
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
519

520
/*
521 522 523
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
 * is cleared and the high bits contain OFFQ flags and CPU number.
524
 *
525 526 527 528
 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, cpu or clear
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
529
 *
530 531 532 533
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
 * a work.  gcwq is available once the work has been queued anywhere after
 * initialization until it is sync canceled.  cwq is available only while
 * the work item is queued.
534
 *
535 536 537 538
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
539
 */
540 541
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
542
{
543
	BUG_ON(!work_pending(work));
544 545
	atomic_long_set(&work->data, data | flags | work_static(work));
}
546

547 548 549 550 551
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
552
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
553 554
}

555 556
static void set_work_cpu_and_clear_pending(struct work_struct *work,
					   unsigned int cpu)
557
{
558 559 560 561 562 563 564
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
565
	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
566
}
567

568
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
569
{
570
	smp_wmb();	/* see set_work_cpu_and_clear_pending() */
571
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
572 573
}

574
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
575
{
576
	unsigned long data = atomic_long_read(&work->data);
577

578 579 580 581
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
582 583
}

584
static struct global_cwq *get_work_gcwq(struct work_struct *work)
585
{
586
	unsigned long data = atomic_long_read(&work->data);
587 588
	unsigned int cpu;

589 590
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
591
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
592

593
	cpu = data >> WORK_OFFQ_CPU_SHIFT;
594
	if (cpu == WORK_OFFQ_CPU_NONE)
595 596
		return NULL;

597
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
598
	return get_gcwq(cpu);
599 600
}

601 602 603
static void mark_work_canceling(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);
604
	unsigned long cpu = gcwq ? gcwq->cpu : WORK_OFFQ_CPU_NONE;
605 606 607 608 609 610 611 612 613 614 615 616

	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
		      WORK_STRUCT_PENDING);
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

617
/*
618 619 620
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
621 622
 */

623
static bool __need_more_worker(struct worker_pool *pool)
624
{
625
	return !atomic_read(get_pool_nr_running(pool));
626 627
}

628
/*
629 630
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
631 632 633 634
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
635
 */
636
static bool need_more_worker(struct worker_pool *pool)
637
{
638
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
639
}
640

641
/* Can I start working?  Called from busy but !running workers. */
642
static bool may_start_working(struct worker_pool *pool)
643
{
644
	return pool->nr_idle;
645 646 647
}

/* Do I need to keep working?  Called from currently running workers. */
648
static bool keep_working(struct worker_pool *pool)
649
{
650
	atomic_t *nr_running = get_pool_nr_running(pool);
651

652
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
653 654 655
}

/* Do we need a new worker?  Called from manager. */
656
static bool need_to_create_worker(struct worker_pool *pool)
657
{
658
	return need_more_worker(pool) && !may_start_working(pool);
659
}
660

661
/* Do I need to be the manager? */
662
static bool need_to_manage_workers(struct worker_pool *pool)
663
{
664
	return need_to_create_worker(pool) ||
665
		(pool->flags & POOL_MANAGE_WORKERS);
666 667 668
}

/* Do we have too many workers and should some go away? */
669
static bool too_many_workers(struct worker_pool *pool)
670
{
671
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
672 673
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
674

675 676 677 678 679 680 681
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

682
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
683 684
}

685
/*
686 687 688
 * Wake up functions.
 */

689
/* Return the first worker.  Safe with preemption disabled */
690
static struct worker *first_worker(struct worker_pool *pool)
691
{
692
	if (unlikely(list_empty(&pool->idle_list)))
693 694
		return NULL;

695
	return list_first_entry(&pool->idle_list, struct worker, entry);
696 697 698 699
}

/**
 * wake_up_worker - wake up an idle worker
700
 * @pool: worker pool to wake worker from
701
 *
702
 * Wake up the first idle worker of @pool.
703 704 705 706
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
707
static void wake_up_worker(struct worker_pool *pool)
708
{
709
	struct worker *worker = first_worker(pool);
710 711 712 713 714

	if (likely(worker))
		wake_up_process(worker->task);
}

715
/**
716 717 718 719 720 721 722 723 724 725 726 727 728 729
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

730 731
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
		WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
732
		atomic_inc(get_pool_nr_running(worker->pool));
733
	}
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
755 756
	struct worker_pool *pool;
	atomic_t *nr_running;
757

758 759 760 761 762
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
763
	if (worker->flags & WORKER_NOT_RUNNING)
764 765
		return NULL;

766 767 768
	pool = worker->pool;
	nr_running = get_pool_nr_running(pool);

769 770 771 772 773 774 775 776
	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
777 778 779 780 781
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
782
	 */
783
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
784
		to_wakeup = first_worker(pool);
785 786 787 788 789
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
790
 * @worker: self
791 792 793
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
794 795 796
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
797
 *
798 799
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
800 801 802 803
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
804
	struct worker_pool *pool = worker->pool;
805

806 807
	WARN_ON_ONCE(worker->task != current);

808 809 810 811 812 813 814
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
815
		atomic_t *nr_running = get_pool_nr_running(pool);
816 817 818

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
819
			    !list_empty(&pool->worklist))
820
				wake_up_worker(pool);
821 822 823 824
		} else
			atomic_dec(nr_running);
	}

825 826 827 828
	worker->flags |= flags;
}

/**
829
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
830
 * @worker: self
831 832
 * @flags: flags to clear
 *
833
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
834
 *
835 836
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
837 838 839
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
840
	struct worker_pool *pool = worker->pool;
841 842
	unsigned int oflags = worker->flags;

843 844
	WARN_ON_ONCE(worker->task != current);

845
	worker->flags &= ~flags;
846

847 848 849 850 851
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
852 853
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
854
			atomic_inc(get_pool_nr_running(pool));
855 856
}

857 858 859 860 861
/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
 * Find a worker which is executing @work on @gcwq by searching
 * @gcwq->busy_hash which is keyed by the address of @work.  For a worker
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
883 884 885 886 887 888 889
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
890
 */
891 892
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
893
{
894 895 896
	struct worker *worker;
	struct hlist_node *tmp;

897 898 899 900
	hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
901 902 903
			return worker;

	return NULL;
904 905
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

947
static void cwq_activate_delayed_work(struct work_struct *work)
948
{
949
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
950 951 952 953 954 955 956

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

957 958 959 960 961 962 963 964
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

965 966 967 968 969 970 971 972 973 974 975
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
976
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
977 978 979 980 981 982 983
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

984 985 986 987 988
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1010
/**
1011
 * try_to_grab_pending - steal work item from worklist and disable irq
1012 1013
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1014
 * @flags: place to store irq state
1015 1016 1017 1018 1019 1020 1021
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1022 1023
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1024
 *
1025
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1026 1027 1028
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1029 1030 1031 1032
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1033
 * This function is safe to call from any context including IRQ handler.
1034
 */
1035 1036
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1037 1038 1039
{
	struct global_cwq *gcwq;

1040 1041
	local_irq_save(*flags);

1042 1043 1044 1045
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1046 1047 1048 1049 1050
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1051 1052 1053 1054 1055
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1056 1057 1058 1059 1060 1061 1062 1063 1064
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	gcwq = get_work_gcwq(work);
	if (!gcwq)
1065
		goto fail;
1066

1067
	spin_lock(&gcwq->lock);
1068 1069 1070 1071 1072 1073 1074 1075 1076
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong gcwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (gcwq == get_work_gcwq(work)) {
			debug_work_deactivate(work);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

			/*
			 * A delayed work item cannot be grabbed directly
			 * because it might have linked NO_COLOR work items
			 * which, if left on the delayed_list, will confuse
			 * cwq->nr_active management later on and cause
			 * stall.  Make sure the work item is activated
			 * before grabbing.
			 */
			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
				cwq_activate_delayed_work(work);

1089 1090
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
1091
				get_work_color(work));
1092

1093
			spin_unlock(&gcwq->lock);
1094
			return 1;
1095 1096
		}
	}
1097 1098 1099 1100 1101 1102
	spin_unlock(&gcwq->lock);
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1103
	return -EAGAIN;
1104 1105
}

T
Tejun Heo 已提交
1106
/**
1107
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1108 1109 1110 1111 1112
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1113 1114
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1115 1116
 *
 * CONTEXT:
1117
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1118
 */
O
Oleg Nesterov 已提交
1119
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1120 1121
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1122
{
1123
	struct worker_pool *pool = cwq->pool;
1124

T
Tejun Heo 已提交
1125
	/* we own @work, set data and link */
1126
	set_work_cwq(work, cwq, extra_flags);
1127

1128 1129 1130 1131 1132
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1133

1134
	list_add_tail(&work->entry, head);
1135 1136 1137 1138 1139 1140 1141 1142

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1143 1144
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1145 1146
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
1179
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1180 1181
			 struct work_struct *work)
{
1182 1183
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
1184
	struct list_head *worklist;
1185
	unsigned int work_flags;
1186
	unsigned int req_cpu = cpu;
1187 1188 1189 1190 1191 1192 1193 1194

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1195

1196
	debug_work_activate(work);
1197

1198
	/* if dying, only works from the same workqueue are allowed */
1199
	if (unlikely(wq->flags & WQ_DRAINING) &&
1200
	    WARN_ON_ONCE(!is_chained_work(wq)))
1201 1202
		return;

1203 1204
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1205 1206
		struct global_cwq *last_gcwq;

1207
		if (cpu == WORK_CPU_UNBOUND)
1208 1209
			cpu = raw_smp_processor_id();

1210
		/*
1211 1212 1213 1214
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1215
		 */
1216
		gcwq = get_gcwq(cpu);
1217 1218 1219
		last_gcwq = get_work_gcwq(work);

		if (last_gcwq && last_gcwq != gcwq) {
1220 1221
			struct worker *worker;

1222
			spin_lock(&last_gcwq->lock);
1223 1224 1225 1226 1227 1228 1229

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1230 1231
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1232
			}
1233 1234 1235
		} else {
			spin_lock(&gcwq->lock);
		}
1236 1237
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1238
		spin_lock(&gcwq->lock);
1239 1240 1241 1242
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1243
	trace_workqueue_queue_work(req_cpu, cwq, work);
1244

1245
	if (WARN_ON(!list_empty(&work->entry))) {
1246
		spin_unlock(&gcwq->lock);
1247 1248
		return;
	}
1249

1250
	cwq->nr_in_flight[cwq->work_color]++;
1251
	work_flags = work_color_to_flags(cwq->work_color);
1252 1253

	if (likely(cwq->nr_active < cwq->max_active)) {
1254
		trace_workqueue_activate_work(work);
1255
		cwq->nr_active++;
1256
		worklist = &cwq->pool->worklist;
1257 1258
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1259
		worklist = &cwq->delayed_works;
1260
	}
1261

1262
	insert_work(cwq, work, worklist, work_flags);
1263

1264
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1265 1266
}

1267
/**
1268 1269
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1270 1271 1272
 * @wq: workqueue to use
 * @work: work to queue
 *
1273
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1274
 *
1275 1276
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1277
 */
1278 1279
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1280
{
1281
	bool ret = false;
1282
	unsigned long flags;
1283

1284
	local_irq_save(flags);
1285

1286
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1287
		__queue_work(cpu, wq, work);
1288
		ret = true;
1289
	}
1290

1291
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1292 1293
	return ret;
}
1294
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1295

1296
/**
1297
 * queue_work - queue work on a workqueue
1298 1299 1300
 * @wq: workqueue to use
 * @work: work to queue
 *
1301
 * Returns %false if @work was already on a queue, %true otherwise.
1302
 *
1303 1304
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1305
 */
1306
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1307
{
1308
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1309
}
1310
EXPORT_SYMBOL_GPL(queue_work);
1311

1312
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1313
{
1314
	struct delayed_work *dwork = (struct delayed_work *)__data;
1315
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1316

1317
	/* should have been called from irqsafe timer with irq already off */
1318
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1319
}
1320
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1321

1322 1323
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1324
{
1325 1326 1327 1328 1329 1330
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1331 1332
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1345
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1346

1347 1348 1349 1350 1351 1352 1353 1354
	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
	 * work's gcwq is preserved to allow reentrance detection for
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
		struct global_cwq *gcwq = get_work_gcwq(work);

1355 1356 1357 1358 1359 1360 1361
		/*
		 * If we cannot get the last gcwq from @work directly,
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
		if (gcwq)
1362
			lcpu = gcwq->cpu;
1363
		if (lcpu == WORK_CPU_UNBOUND)
1364 1365 1366 1367 1368 1369 1370
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1371
	dwork->cpu = cpu;
1372 1373 1374 1375 1376 1377
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1378 1379
}

1380 1381 1382 1383
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1384
 * @dwork: work to queue
1385 1386
 * @delay: number of jiffies to wait before queueing
 *
1387 1388 1389
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1390
 */
1391 1392
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1393
{
1394
	struct work_struct *work = &dwork->work;
1395
	bool ret = false;
1396
	unsigned long flags;
1397

1398 1399
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1400

1401
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1402
		__queue_delayed_work(cpu, wq, dwork, delay);
1403
		ret = true;
1404
	}
1405

1406
	local_irq_restore(flags);
1407 1408
	return ret;
}
1409
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1410

1411 1412 1413 1414 1415 1416
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1417
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1418
 */
1419
bool queue_delayed_work(struct workqueue_struct *wq,
1420 1421
			struct delayed_work *dwork, unsigned long delay)
{
1422
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1423 1424
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1441
 * This function is safe to call from any context including IRQ handler.
1442 1443 1444 1445 1446 1447 1448
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1449

1450 1451 1452
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1453

1454 1455 1456
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1457
	}
1458 1459

	/* -ENOENT from try_to_grab_pending() becomes %true */
1460 1461
	return ret;
}
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1478

T
Tejun Heo 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1490
{
1491
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1492 1493 1494 1495 1496

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1497 1498
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1499
	pool->nr_idle++;
1500
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1501 1502

	/* idle_list is LIFO */
1503
	list_add(&worker->entry, &pool->idle_list);
1504

1505 1506
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1507

1508
	/*
1509 1510 1511 1512
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1513
	 */
1514
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1515
		     pool->nr_workers == pool->nr_idle &&
1516
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1530
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1531 1532

	BUG_ON(!(worker->flags & WORKER_IDLE));
1533
	worker_clr_flags(worker, WORKER_IDLE);
1534
	pool->nr_idle--;
T
Tejun Heo 已提交
1535 1536 1537
	list_del_init(&worker->entry);
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1554
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1555
 * binding against %POOL_DISASSOCIATED which is set during
1556 1557 1558
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1569
__acquires(&gcwq->lock)
1570
{
1571 1572
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
1573 1574 1575
	struct task_struct *task = worker->task;

	while (true) {
1576
		/*
1577 1578 1579
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1580
		 * against POOL_DISASSOCIATED.
1581
		 */
1582
		if (!(pool->flags & POOL_DISASSOCIATED))
1583
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1584 1585

		spin_lock_irq(&gcwq->lock);
1586
		if (pool->flags & POOL_DISASSOCIATED)
1587 1588 1589 1590 1591 1592 1593
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1594 1595 1596 1597 1598 1599
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1600
		cpu_relax();
1601
		cond_resched();
1602 1603 1604
	}
}

1605
/*
1606
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1607
 * list_empty(@worker->entry) before leaving idle and call this function.
1608 1609 1610 1611 1612
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

1613 1614 1615
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1616

1617 1618 1619
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
	spin_unlock_irq(&gcwq->lock);
1620 1621
}

1622
/*
1623
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1624 1625 1626
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1627
 */
1628
static void busy_worker_rebind_fn(struct work_struct *work)
1629 1630
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1631
	struct global_cwq *gcwq = worker->pool->gcwq;
1632

1633 1634
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1635 1636 1637 1638

	spin_unlock_irq(&gcwq->lock);
}

1639 1640 1641 1642 1643 1644 1645
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
1646 1647 1648 1649
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1650
 *
1651 1652 1653 1654
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1655
 *
1656 1657 1658 1659
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1660 1661 1662 1663
 */
static void rebind_workers(struct global_cwq *gcwq)
{
	struct worker_pool *pool;
1664
	struct worker *worker, *n;
1665 1666 1667 1668 1669 1670
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
1671
		lockdep_assert_held(&pool->assoc_mutex);
1672

1673
	/* dequeue and kick idle ones */
1674
	for_each_worker_pool(pool, gcwq) {
1675 1676 1677 1678 1679 1680 1681
		list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
			/*
			 * idle workers should be off @pool->idle_list
			 * until rebind is complete to avoid receiving
			 * premature local wake-ups.
			 */
			list_del_init(&worker->entry);
1682

1683 1684 1685 1686
			/*
			 * worker_thread() will see the above dequeuing
			 * and call idle_worker_rebind().
			 */
1687 1688 1689 1690
			wake_up_process(worker->task);
		}
	}

1691
	/* rebind busy workers */
1692 1693
	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;
1694
		struct workqueue_struct *wq;
1695 1696 1697 1698 1699 1700

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		debug_work_activate(rebind_work);
1701

1702 1703 1704 1705
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
1706
		if (std_worker_pool_pri(worker->pool))
1707 1708 1709
			wq = system_highpri_wq;
		else
			wq = system_wq;
1710

1711 1712 1713
		insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
			worker->scheduled.next,
			work_color_to_flags(WORK_NO_COLOR));
1714
	}
1715 1716
}

T
Tejun Heo 已提交
1717 1718 1719 1720 1721
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1722 1723
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1724
		INIT_LIST_HEAD(&worker->scheduled);
1725
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1726 1727
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1728
	}
T
Tejun Heo 已提交
1729 1730 1731 1732 1733
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1734
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1735
 *
1736
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1746
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1747
{
1748
	struct global_cwq *gcwq = pool->gcwq;
1749
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1750
	struct worker *worker = NULL;
1751
	int id = -1;
T
Tejun Heo 已提交
1752

1753
	spin_lock_irq(&gcwq->lock);
1754
	while (ida_get_new(&pool->worker_ida, &id)) {
1755
		spin_unlock_irq(&gcwq->lock);
1756
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1757
			goto fail;
1758
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1759
	}
1760
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1761 1762 1763 1764 1765

	worker = alloc_worker();
	if (!worker)
		goto fail;

1766
	worker->pool = pool;
T
Tejun Heo 已提交
1767 1768
	worker->id = id;

1769
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1770
		worker->task = kthread_create_on_node(worker_thread,
1771 1772
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1773 1774
	else
		worker->task = kthread_create(worker_thread, worker,
1775
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1776 1777 1778
	if (IS_ERR(worker->task))
		goto fail;

1779
	if (std_worker_pool_pri(pool))
1780 1781
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1782
	/*
1783
	 * Determine CPU binding of the new worker depending on
1784
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1785 1786 1787 1788 1789
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1790
	 */
1791
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1792
		kthread_bind(worker->task, gcwq->cpu);
1793
	} else {
1794
		worker->task->flags |= PF_THREAD_BOUND;
1795
		worker->flags |= WORKER_UNBOUND;
1796
	}
T
Tejun Heo 已提交
1797 1798 1799 1800

	return worker;
fail:
	if (id >= 0) {
1801
		spin_lock_irq(&gcwq->lock);
1802
		ida_remove(&pool->worker_ida, id);
1803
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1813
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1814 1815
 *
 * CONTEXT:
1816
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1817 1818 1819
 */
static void start_worker(struct worker *worker)
{
1820
	worker->flags |= WORKER_STARTED;
1821
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1822
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1823 1824 1825 1826 1827 1828 1829
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1830 1831 1832 1833
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1834 1835 1836
 */
static void destroy_worker(struct worker *worker)
{
1837 1838
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1839 1840 1841 1842
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1843
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1844

T
Tejun Heo 已提交
1845
	if (worker->flags & WORKER_STARTED)
1846
		pool->nr_workers--;
T
Tejun Heo 已提交
1847
	if (worker->flags & WORKER_IDLE)
1848
		pool->nr_idle--;
T
Tejun Heo 已提交
1849 1850

	list_del_init(&worker->entry);
1851
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1852 1853 1854

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1855 1856 1857
	kthread_stop(worker->task);
	kfree(worker);

1858
	spin_lock_irq(&gcwq->lock);
1859
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1860 1861
}

1862
static void idle_worker_timeout(unsigned long __pool)
1863
{
1864 1865
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1866 1867 1868

	spin_lock_irq(&gcwq->lock);

1869
	if (too_many_workers(pool)) {
1870 1871 1872 1873
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1874
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1875 1876 1877
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1878
			mod_timer(&pool->idle_timer, expires);
1879 1880
		else {
			/* it's been idle for too long, wake up manager */
1881
			pool->flags |= POOL_MANAGE_WORKERS;
1882
			wake_up_worker(pool);
1883
		}
1884 1885 1886 1887
	}

	spin_unlock_irq(&gcwq->lock);
}
1888

1889 1890 1891 1892
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1893
	unsigned int cpu;
1894 1895 1896 1897 1898

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1899
	cpu = cwq->pool->gcwq->cpu;
1900 1901 1902
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1903
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1904 1905 1906 1907
		wake_up_process(wq->rescuer->task);
	return true;
}

1908
static void gcwq_mayday_timeout(unsigned long __pool)
1909
{
1910 1911
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1912 1913 1914 1915
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1916
	if (need_to_create_worker(pool)) {
1917 1918 1919 1920 1921 1922
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1923
		list_for_each_entry(work, &pool->worklist, entry)
1924
			send_mayday(work);
L
Linus Torvalds 已提交
1925
	}
1926 1927 1928

	spin_unlock_irq(&gcwq->lock);

1929
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1930 1931
}

1932 1933
/**
 * maybe_create_worker - create a new worker if necessary
1934
 * @pool: pool to create a new worker for
1935
 *
1936
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1937 1938
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1939
 * sent to all rescuers with works scheduled on @pool to resolve
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1954
static bool maybe_create_worker(struct worker_pool *pool)
1955 1956
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1957
{
1958 1959 1960
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
1961 1962
		return false;
restart:
1963 1964
	spin_unlock_irq(&gcwq->lock);

1965
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1966
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1967 1968 1969 1970

	while (true) {
		struct worker *worker;

1971
		worker = create_worker(pool);
1972
		if (worker) {
1973
			del_timer_sync(&pool->mayday_timer);
1974 1975
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
1976
			BUG_ON(need_to_create_worker(pool));
1977 1978 1979
			return true;
		}

1980
		if (!need_to_create_worker(pool))
1981
			break;
L
Linus Torvalds 已提交
1982

1983 1984
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1985

1986
		if (!need_to_create_worker(pool))
1987 1988 1989
			break;
	}

1990
	del_timer_sync(&pool->mayday_timer);
1991
	spin_lock_irq(&gcwq->lock);
1992
	if (need_to_create_worker(pool))
1993 1994 1995 1996 1997 1998
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1999
 * @pool: pool to destroy workers for
2000
 *
2001
 * Destroy @pool workers which have been idle for longer than
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2012
static bool maybe_destroy_workers(struct worker_pool *pool)
2013 2014
{
	bool ret = false;
L
Linus Torvalds 已提交
2015

2016
	while (too_many_workers(pool)) {
2017 2018
		struct worker *worker;
		unsigned long expires;
2019

2020
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2021
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2022

2023
		if (time_before(jiffies, expires)) {
2024
			mod_timer(&pool->idle_timer, expires);
2025
			break;
2026
		}
L
Linus Torvalds 已提交
2027

2028 2029
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2030
	}
2031

2032
	return ret;
2033 2034
}

2035
/**
2036 2037
 * manage_workers - manage worker pool
 * @worker: self
2038
 *
2039 2040 2041 2042 2043 2044 2045
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2046 2047
 *
 * CONTEXT:
2048 2049 2050 2051 2052 2053
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
2054
 */
2055
static bool manage_workers(struct worker *worker)
2056
{
2057
	struct worker_pool *pool = worker->pool;
2058
	bool ret = false;
2059

2060
	if (pool->flags & POOL_MANAGING_WORKERS)
2061
		return ret;
2062

2063
	pool->flags |= POOL_MANAGING_WORKERS;
2064

2065 2066 2067 2068 2069 2070
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2071
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2072 2073
	 * manager against CPU hotplug.
	 *
2074
	 * assoc_mutex would always be free unless CPU hotplug is in
2075 2076
	 * progress.  trylock first without dropping @gcwq->lock.
	 */
2077
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2078
		spin_unlock_irq(&pool->gcwq->lock);
2079
		mutex_lock(&pool->assoc_mutex);
2080 2081
		/*
		 * CPU hotplug could have happened while we were waiting
2082
		 * for assoc_mutex.  Hotplug itself can't handle us
2083 2084 2085
		 * because manager isn't either on idle or busy list, and
		 * @gcwq's state and ours could have deviated.
		 *
2086
		 * As hotplug is now excluded via assoc_mutex, we can
2087 2088 2089 2090 2091 2092 2093 2094
		 * simply try to bind.  It will succeed or fail depending
		 * on @gcwq's current state.  Try it and adjust
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2095

2096 2097
		ret = true;
	}
2098

2099
	pool->flags &= ~POOL_MANAGE_WORKERS;
2100 2101

	/*
2102 2103
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2104
	 */
2105 2106
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2107

2108
	pool->flags &= ~POOL_MANAGING_WORKERS;
2109
	mutex_unlock(&pool->assoc_mutex);
2110
	return ret;
2111 2112
}

2113 2114
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2115
 * @worker: self
2116 2117 2118 2119 2120 2121 2122 2123 2124
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2125
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2126
 */
T
Tejun Heo 已提交
2127
static void process_one_work(struct worker *worker, struct work_struct *work)
2128 2129
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
2130
{
2131
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2132 2133
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
2134
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2135
	int work_color;
2136
	struct worker *collision;
2137 2138 2139 2140 2141 2142 2143 2144
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2145 2146 2147
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2148
#endif
2149 2150 2151
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2152
	 * unbound or a disassociated pool.
2153
	 */
2154
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2155
		     !(pool->flags & POOL_DISASSOCIATED) &&
2156 2157
		     raw_smp_processor_id() != gcwq->cpu);

2158 2159 2160 2161 2162 2163
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2164
	collision = find_worker_executing_work(gcwq, work);
2165 2166 2167 2168 2169
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2170
	/* claim and dequeue */
2171
	debug_work_deactivate(work);
2172
	hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2173
	worker->current_work = work;
2174
	worker->current_func = work->func;
2175
	worker->current_cwq = cwq;
2176
	work_color = get_work_color(work);
2177

2178 2179
	list_del_init(&work->entry);

2180 2181 2182 2183 2184 2185 2186
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2187 2188 2189 2190
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2191 2192
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2193

2194
	/*
2195 2196 2197 2198
	 * Record the last CPU and clear PENDING which should be the last
	 * update to @work.  Also, do this inside @gcwq->lock so that
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2199 2200
	 */
	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2201

2202
	spin_unlock_irq(&gcwq->lock);
2203

2204
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2205
	lock_map_acquire(&lockdep_map);
2206
	trace_workqueue_execute_start(work);
2207
	worker->current_func(work);
2208 2209 2210 2211 2212
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2213 2214 2215 2216
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2217 2218
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2219 2220
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2221 2222 2223 2224
		debug_show_held_locks(current);
		dump_stack();
	}

2225
	spin_lock_irq(&gcwq->lock);
2226

2227 2228 2229 2230
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2231
	/* we're done with it, release */
2232
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2233
	worker->current_work = NULL;
2234
	worker->current_func = NULL;
2235
	worker->current_cwq = NULL;
2236
	cwq_dec_nr_in_flight(cwq, work_color);
2237 2238
}

2239 2240 2241 2242 2243 2244 2245 2246 2247
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2248
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2249 2250 2251
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2252
{
2253 2254
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2255
						struct work_struct, entry);
T
Tejun Heo 已提交
2256
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2257 2258 2259
	}
}

T
Tejun Heo 已提交
2260 2261
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2262
 * @__worker: self
T
Tejun Heo 已提交
2263
 *
2264 2265 2266 2267 2268
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2269
 */
T
Tejun Heo 已提交
2270
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2271
{
T
Tejun Heo 已提交
2272
	struct worker *worker = __worker;
2273 2274
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2275

2276 2277
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2278 2279
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2280

2281 2282
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
T
Tejun Heo 已提交
2283
		spin_unlock_irq(&gcwq->lock);
2284

2285
		/* if DIE is set, destruction is requested */
2286 2287 2288 2289 2290
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2291
		/* otherwise, rebind */
2292 2293
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2294
	}
2295

T
Tejun Heo 已提交
2296
	worker_leave_idle(worker);
2297
recheck:
2298
	/* no more worker necessary? */
2299
	if (!need_more_worker(pool))
2300 2301 2302
		goto sleep;

	/* do we need to manage? */
2303
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2304 2305
		goto recheck;

T
Tejun Heo 已提交
2306 2307 2308 2309 2310 2311 2312
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2313 2314 2315 2316 2317 2318 2319 2320
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2321
		struct work_struct *work =
2322
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2323 2324 2325 2326 2327 2328
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2329
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2330 2331 2332
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2333
		}
2334
	} while (keep_working(pool));
2335 2336

	worker_set_flags(worker, WORKER_PREP, false);
2337
sleep:
2338
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2339
		goto recheck;
2340

T
Tejun Heo 已提交
2341
	/*
2342 2343 2344 2345 2346
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2347 2348 2349 2350 2351 2352
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2353 2354
}

2355 2356
/**
 * rescuer_thread - the rescuer thread function
2357
 * @__rescuer: self
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2374
static int rescuer_thread(void *__rescuer)
2375
{
2376 2377
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2378
	struct list_head *scheduled = &rescuer->scheduled;
2379
	bool is_unbound = wq->flags & WQ_UNBOUND;
2380 2381 2382
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2383 2384 2385 2386 2387 2388

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2389 2390 2391
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2392 2393
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2394
		rescuer->task->flags &= ~PF_WQ_WORKER;
2395
		return 0;
2396
	}
2397

2398 2399 2400 2401
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2402
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2403 2404
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2405 2406
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2407 2408 2409
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2410
		mayday_clear_cpu(cpu, wq->mayday_mask);
2411 2412

		/* migrate to the target cpu if possible */
2413
		rescuer->pool = pool;
2414 2415 2416 2417 2418 2419 2420
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2421
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2422 2423 2424 2425
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2426 2427 2428 2429 2430 2431

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2432 2433
		if (keep_working(pool))
			wake_up_worker(pool);
2434

2435 2436 2437
		spin_unlock_irq(&gcwq->lock);
	}

2438 2439
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2440 2441
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2442 2443
}

O
Oleg Nesterov 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2455 2456 2457 2458
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2459 2460
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2461
 *
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2475 2476
 *
 * CONTEXT:
2477
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2478
 */
2479
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2480 2481
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2482
{
2483 2484 2485
	struct list_head *head;
	unsigned int linked = 0;

2486
	/*
2487
	 * debugobject calls are safe here even with gcwq->lock locked
2488 2489 2490 2491
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2492
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2493
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2494
	init_completion(&barr->done);
2495

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2511
	debug_work_activate(&barr->work);
2512 2513
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2514 2515
}

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2549
{
2550 2551
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2552

2553 2554 2555
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2556
	}
2557

2558
	for_each_cwq_cpu(cpu, wq) {
2559
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2560
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2561

2562
		spin_lock_irq(&gcwq->lock);
2563

2564 2565
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2566

2567 2568 2569 2570 2571 2572
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2573

2574 2575 2576 2577
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2578

2579
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2580
	}
2581

2582 2583
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2584

2585
	return wait;
L
Linus Torvalds 已提交
2586 2587
}

2588
/**
L
Linus Torvalds 已提交
2589
 * flush_workqueue - ensure that any scheduled work has run to completion.
2590
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2591 2592 2593 2594
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2595 2596
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2597
 */
2598
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2599
{
2600 2601 2602 2603 2604 2605
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2606

2607 2608
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2670 2671 2672 2673
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2741
}
2742
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2774
		bool drained;
2775

2776
		spin_lock_irq(&cwq->pool->gcwq->lock);
2777
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2778
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2779 2780

		if (drained)
2781 2782 2783 2784
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2785 2786
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2797
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2798
{
2799
	struct worker *worker = NULL;
2800
	struct global_cwq *gcwq;
2801 2802 2803
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2804 2805
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2806
		return false;
2807

2808
	spin_lock_irq(&gcwq->lock);
2809 2810 2811
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2812 2813
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2814 2815
		 */
		smp_rmb();
2816
		cwq = get_work_cwq(work);
2817
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2818
			goto already_gone;
2819
	} else {
2820
		worker = find_worker_executing_work(gcwq, work);
2821
		if (!worker)
T
Tejun Heo 已提交
2822
			goto already_gone;
2823
		cwq = worker->current_cwq;
2824
	}
2825

2826
	insert_wq_barrier(cwq, barr, work, worker);
2827
	spin_unlock_irq(&gcwq->lock);
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2839
	lock_map_release(&cwq->wq->lockdep_map);
2840

2841
	return true;
T
Tejun Heo 已提交
2842
already_gone:
2843
	spin_unlock_irq(&gcwq->lock);
2844
	return false;
2845
}
2846 2847 2848 2849 2850

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2851 2852
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2853 2854 2855 2856 2857 2858 2859 2860 2861
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2862 2863 2864
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2865
	if (start_flush_work(work, &barr)) {
2866 2867 2868
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2869
	} else {
2870
		return false;
2871 2872
	}
}
2873
EXPORT_SYMBOL_GPL(flush_work);
2874

2875
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2876
{
2877
	unsigned long flags;
2878 2879 2880
	int ret;

	do {
2881 2882 2883 2884 2885 2886
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2887
			flush_work(work);
2888 2889
	} while (unlikely(ret < 0));

2890 2891 2892 2893
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2894
	flush_work(work);
2895
	clear_work_data(work);
2896 2897 2898
	return ret;
}

2899
/**
2900 2901
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2902
 *
2903 2904 2905 2906
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2907
 *
2908 2909
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2910
 *
2911
 * The caller must ensure that the workqueue on which @work was last
2912
 * queued can't be destroyed before this function returns.
2913 2914 2915
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2916
 */
2917
bool cancel_work_sync(struct work_struct *work)
2918
{
2919
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2920
}
2921
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2922

2923
/**
2924 2925
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2926
 *
2927 2928 2929
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2930
 *
2931 2932 2933
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2934
 */
2935 2936
bool flush_delayed_work(struct delayed_work *dwork)
{
2937
	local_irq_disable();
2938
	if (del_timer_sync(&dwork->timer))
2939
		__queue_work(dwork->cpu,
2940
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2941
	local_irq_enable();
2942 2943 2944 2945
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2946
/**
2947 2948
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2949
 *
2950 2951 2952 2953 2954
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2955
 *
2956
 * This function is safe to call from any context including IRQ handler.
2957
 */
2958
bool cancel_delayed_work(struct delayed_work *dwork)
2959
{
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
	local_irq_restore(flags);
2972
	return ret;
2973
}
2974
EXPORT_SYMBOL(cancel_delayed_work);
2975

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2986
{
2987
	return __cancel_work_timer(&dwork->work, true);
2988
}
2989
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2990

2991
/**
2992 2993 2994 2995 2996 2997
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2998
bool schedule_work_on(int cpu, struct work_struct *work)
2999
{
3000
	return queue_work_on(cpu, system_wq, work);
3001 3002 3003
}
EXPORT_SYMBOL(schedule_work_on);

3004 3005 3006 3007
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3008 3009
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3010 3011 3012 3013
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3014
 */
3015
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3016
{
3017
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3018
}
3019
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3020

3021 3022 3023
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3024
 * @dwork: job to be done
3025 3026 3027 3028 3029
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3030 3031
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3032
{
3033
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3034
}
3035
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3036

3037 3038
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3039 3040
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3041 3042 3043 3044
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3045
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3046
{
3047
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3048
}
3049
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3050

3051
/**
3052
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3053 3054
 * @func: the function to call
 *
3055 3056
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3057
 * schedule_on_each_cpu() is very slow.
3058 3059 3060
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3061
 */
3062
int schedule_on_each_cpu(work_func_t func)
3063 3064
{
	int cpu;
3065
	struct work_struct __percpu *works;
3066

3067 3068
	works = alloc_percpu(struct work_struct);
	if (!works)
3069
		return -ENOMEM;
3070

3071 3072
	get_online_cpus();

3073
	for_each_online_cpu(cpu) {
3074 3075 3076
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3077
		schedule_work_on(cpu, work);
3078
	}
3079 3080 3081 3082

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3083
	put_online_cpus();
3084
	free_percpu(works);
3085 3086 3087
	return 0;
}

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3112 3113
void flush_scheduled_work(void)
{
3114
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3115
}
3116
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3117

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3130
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3131 3132
{
	if (!in_interrupt()) {
3133
		fn(&ew->work);
3134 3135 3136
		return 0;
	}

3137
	INIT_WORK(&ew->work, fn);
3138 3139 3140 3141 3142 3143
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3144 3145
int keventd_up(void)
{
3146
	return system_wq != NULL;
L
Linus Torvalds 已提交
3147 3148
}

3149
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3150
{
3151
	/*
T
Tejun Heo 已提交
3152 3153 3154
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3155
	 */
T
Tejun Heo 已提交
3156 3157 3158
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3159

3160
	if (!(wq->flags & WQ_UNBOUND))
3161
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3162
	else {
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3175
	}
3176

3177
	/* just in case, make sure it's actually aligned */
3178 3179
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3180 3181
}

3182
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3183
{
3184
	if (!(wq->flags & WQ_UNBOUND))
3185 3186 3187
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3188
		kfree(*(void **)(wq->cpu_wq.single + 1));
3189
	}
T
Tejun Heo 已提交
3190 3191
}

3192 3193
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3194
{
3195 3196 3197
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3198 3199
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3200

3201
	return clamp_val(max_active, 1, lim);
3202 3203
}

3204
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3205 3206 3207
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3208
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3209
{
3210
	va_list args, args1;
L
Linus Torvalds 已提交
3211
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3212
	unsigned int cpu;
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3227

3228 3229 3230 3231 3232 3233 3234
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3235
	max_active = max_active ?: WQ_DFL_ACTIVE;
3236
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3237

3238
	/* init wq */
3239
	wq->flags = flags;
3240
	wq->saved_max_active = max_active;
3241 3242 3243 3244
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3245

3246
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3247
	INIT_LIST_HEAD(&wq->list);
3248

3249 3250 3251
	if (alloc_cwqs(wq) < 0)
		goto err;

3252
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3253
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3254
		struct global_cwq *gcwq = get_gcwq(cpu);
3255
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3256

T
Tejun Heo 已提交
3257
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3258
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3259
		cwq->wq = wq;
3260
		cwq->flush_color = -1;
3261 3262
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3263
	}
T
Tejun Heo 已提交
3264

3265 3266 3267
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3268
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3269 3270 3271 3272 3273 3274
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3275 3276
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3277
					       wq->name);
3278 3279 3280 3281 3282
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3283 3284
	}

3285 3286 3287 3288 3289
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3290
	spin_lock(&workqueue_lock);
3291

3292
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3293
		for_each_cwq_cpu(cpu, wq)
3294 3295
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3296
	list_add(&wq->list, &workqueues);
3297

T
Tejun Heo 已提交
3298 3299
	spin_unlock(&workqueue_lock);

3300
	return wq;
T
Tejun Heo 已提交
3301 3302
err:
	if (wq) {
3303
		free_cwqs(wq);
3304
		free_mayday_mask(wq->mayday_mask);
3305
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3306 3307 3308
		kfree(wq);
	}
	return NULL;
3309
}
3310
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3311

3312 3313 3314 3315 3316 3317 3318 3319
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3320
	unsigned int cpu;
3321

3322 3323
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3324

3325 3326 3327 3328
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3329
	spin_lock(&workqueue_lock);
3330
	list_del(&wq->list);
3331
	spin_unlock(&workqueue_lock);
3332

3333
	/* sanity check */
3334
	for_each_cwq_cpu(cpu, wq) {
3335 3336 3337 3338 3339
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3340 3341
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3342
	}
3343

3344 3345
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3346
		free_mayday_mask(wq->mayday_mask);
3347
		kfree(wq->rescuer);
3348 3349
	}

3350
	free_cwqs(wq);
3351 3352 3353 3354
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3389
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3390 3391 3392 3393 3394

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3395
	for_each_cwq_cpu(cpu, wq) {
3396 3397 3398
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
3399 3400 3401

		spin_lock_irq(&gcwq->lock);

3402
		if (!(wq->flags & WQ_FREEZABLE) ||
3403 3404
		    !(pool->flags & POOL_FREEZING))
			cwq_set_max_active(cwq, max_active);
3405

3406
		spin_unlock_irq(&gcwq->lock);
3407
	}
3408

3409
	spin_unlock(&workqueue_lock);
3410
}
3411
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3412

3413
/**
3414 3415 3416
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3417
 *
3418 3419 3420
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3421
 *
3422 3423
 * RETURNS:
 * %true if congested, %false otherwise.
3424
 */
3425
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3426
{
3427 3428 3429
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3430
}
3431
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3432

3433
/**
3434 3435
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3436
 *
3437
 * RETURNS:
3438
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3439
 */
T
Tejun Heo 已提交
3440
static unsigned int work_cpu(struct work_struct *work)
3441
{
3442
	struct global_cwq *gcwq = get_work_gcwq(work);
3443

3444
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3445 3446
}

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3461
{
3462 3463 3464
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3465

3466
	if (!gcwq)
3467
		return 0;
L
Linus Torvalds 已提交
3468

3469
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3470

3471 3472 3473 3474
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3475

3476
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3477

3478
	return ret;
L
Linus Torvalds 已提交
3479
}
3480
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3481

3482 3483 3484
/*
 * CPU hotplug.
 *
3485 3486 3487 3488 3489 3490 3491
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3492
 * This is solved by allowing the pools to be disassociated from the CPU
3493 3494
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3495
 */
L
Linus Torvalds 已提交
3496

3497
/* claim manager positions of all pools */
3498
static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3499 3500 3501 3502
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
3503
		mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3504
	spin_lock_irq(&gcwq->lock);
3505 3506 3507
}

/* release manager positions */
3508
static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3509 3510 3511
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3512
	spin_unlock_irq(&gcwq->lock);
3513
	for_each_worker_pool(pool, gcwq)
3514
		mutex_unlock(&pool->assoc_mutex);
3515 3516
}

3517
static void gcwq_unbind_fn(struct work_struct *work)
3518
{
3519
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3520
	struct worker_pool *pool;
3521 3522 3523
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3524

3525 3526
	BUG_ON(gcwq->cpu != smp_processor_id());

3527
	gcwq_claim_assoc_and_lock(gcwq);
3528

3529 3530 3531 3532 3533 3534
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3535
	for_each_worker_pool(pool, gcwq)
3536
		list_for_each_entry(worker, &pool->idle_list, entry)
3537
			worker->flags |= WORKER_UNBOUND;
3538

3539
	for_each_busy_worker(worker, i, pos, gcwq)
3540
		worker->flags |= WORKER_UNBOUND;
3541

3542 3543
	for_each_worker_pool(pool, gcwq)
		pool->flags |= POOL_DISASSOCIATED;
3544

3545
	gcwq_release_assoc_and_unlock(gcwq);
3546

3547
	/*
3548
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3549 3550
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3551 3552
	 */
	schedule();
3553

3554
	/*
3555 3556 3557 3558 3559 3560 3561 3562 3563
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3564
	 */
3565 3566
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3567 3568
}

T
Tejun Heo 已提交
3569 3570 3571 3572
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3573
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3574 3575
					       unsigned long action,
					       void *hcpu)
3576 3577
{
	unsigned int cpu = (unsigned long)hcpu;
3578
	struct global_cwq *gcwq = get_gcwq(cpu);
3579
	struct worker_pool *pool;
3580

T
Tejun Heo 已提交
3581
	switch (action & ~CPU_TASKS_FROZEN) {
3582
	case CPU_UP_PREPARE:
3583
		for_each_worker_pool(pool, gcwq) {
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3596
		}
T
Tejun Heo 已提交
3597
		break;
3598

3599 3600
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3601
		gcwq_claim_assoc_and_lock(gcwq);
3602 3603
		for_each_worker_pool(pool, gcwq)
			pool->flags &= ~POOL_DISASSOCIATED;
3604
		rebind_workers(gcwq);
3605
		gcwq_release_assoc_and_unlock(gcwq);
3606
		break;
3607
	}
3608 3609 3610 3611 3612 3613 3614
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3615
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3616 3617 3618
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3619 3620 3621
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3622 3623
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3624 3625
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3626
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3627 3628
		flush_work(&unbind_work);
		break;
3629 3630 3631 3632
	}
	return NOTIFY_OK;
}

3633
#ifdef CONFIG_SMP
3634

3635
struct work_for_cpu {
3636
	struct work_struct work;
3637 3638 3639 3640 3641
	long (*fn)(void *);
	void *arg;
	long ret;
};

3642
static void work_for_cpu_fn(struct work_struct *work)
3643
{
3644 3645
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3646 3647 3648 3649 3650 3651 3652 3653 3654
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3655 3656
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3657
 * The caller must not hold any locks which would prevent @fn from completing.
3658 3659 3660
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3661
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3662

3663 3664 3665
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3666 3667 3668 3669 3670
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3671 3672 3673 3674 3675
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3676 3677 3678
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3679 3680
 *
 * CONTEXT:
3681
 * Grabs and releases workqueue_lock and gcwq->lock's.
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3692
	for_each_gcwq_cpu(cpu) {
3693
		struct global_cwq *gcwq = get_gcwq(cpu);
3694
		struct worker_pool *pool;
3695
		struct workqueue_struct *wq;
3696 3697 3698

		spin_lock_irq(&gcwq->lock);

3699 3700 3701 3702
		for_each_worker_pool(pool, gcwq) {
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
		}
3703

3704 3705 3706
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3707
			if (cwq && wq->flags & WQ_FREEZABLE)
3708 3709
				cwq->max_active = 0;
		}
3710 3711

		spin_unlock_irq(&gcwq->lock);
3712 3713 3714 3715 3716 3717
	}

	spin_unlock(&workqueue_lock);
}

/**
3718
 * freeze_workqueues_busy - are freezable workqueues still busy?
3719 3720 3721 3722 3723 3724 3725 3726
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3727 3728
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3739
	for_each_gcwq_cpu(cpu) {
3740
		struct workqueue_struct *wq;
3741 3742 3743 3744 3745 3746 3747
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3748
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3767
 * frozen works are transferred to their respective gcwq worklists.
3768 3769
 *
 * CONTEXT:
3770
 * Grabs and releases workqueue_lock and gcwq->lock's.
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3781
	for_each_gcwq_cpu(cpu) {
3782
		struct global_cwq *gcwq = get_gcwq(cpu);
3783
		struct worker_pool *pool;
3784
		struct workqueue_struct *wq;
3785 3786 3787

		spin_lock_irq(&gcwq->lock);

3788 3789 3790 3791
		for_each_worker_pool(pool, gcwq) {
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
		}
3792

3793 3794 3795
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3796
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3797 3798 3799
				continue;

			/* restore max_active and repopulate worklist */
3800
			cwq_set_max_active(cwq, wq->saved_max_active);
3801
		}
3802

3803 3804
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3805

3806
		spin_unlock_irq(&gcwq->lock);
3807 3808 3809 3810 3811 3812 3813 3814
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3815
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3816
{
T
Tejun Heo 已提交
3817 3818
	unsigned int cpu;

3819 3820 3821 3822
	/* make sure we have enough bits for OFFQ CPU number */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
		     WORK_CPU_LAST);

3823
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3824
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3825 3826

	/* initialize gcwqs */
3827
	for_each_gcwq_cpu(cpu) {
3828
		struct global_cwq *gcwq = get_gcwq(cpu);
3829
		struct worker_pool *pool;
3830 3831 3832 3833

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;

3834
		hash_init(gcwq->busy_hash);
T
Tejun Heo 已提交
3835

3836 3837
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
3838
			pool->flags |= POOL_DISASSOCIATED;
3839 3840
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3841

3842 3843 3844
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3845

3846 3847 3848
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3849
			mutex_init(&pool->assoc_mutex);
3850
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3851 3852 3853

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3854
		}
3855 3856
	}

3857
	/* create the initial worker */
3858
	for_each_online_gcwq_cpu(cpu) {
3859
		struct global_cwq *gcwq = get_gcwq(cpu);
3860
		struct worker_pool *pool;
3861

3862 3863 3864
		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3865 3866 3867
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3868
			worker = create_worker(pool);
3869 3870 3871 3872 3873
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3874 3875
	}

3876
	system_wq = alloc_workqueue("events", 0, 0);
3877
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3878
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3879 3880
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3881 3882
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3883
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3884
	       !system_unbound_wq || !system_freezable_wq);
3885
	return 0;
L
Linus Torvalds 已提交
3886
}
3887
early_initcall(init_workqueues);