workqueue.c 122.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47

48
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
49

T
Tejun Heo 已提交
50
enum {
51 52
	/*
	 * worker_pool flags
53
	 *
54
	 * A bound pool is either associated or disassociated with its CPU.
55 56 57 58 59 60
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
61
	 * be executing on any CPU.  The pool behaves as an unbound one.
62
	 *
63 64
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
65
	 * create_worker() is in progress.
66
	 */
67
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
79

80 81
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
82

83
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
84

85
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
86
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
87

88 89 90
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

91 92 93
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
94 95 96 97 98 99 100 101
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
102
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
103
};
L
Linus Torvalds 已提交
104 105

/*
T
Tejun Heo 已提交
106 107
 * Structure fields follow one of the following exclusion rules.
 *
108 109
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
110
 *
111 112 113
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
114
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
115
 *
116 117 118 119
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
120
 *
121 122
 * F: wq->flush_mutex protected.
 *
123 124 125
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131 132
 * PW: pwq_lock protected.
 *
 * FR: wq->flush_mutex and pwq_lock protected for writes.  Sched-RCU
133
 *     protected for reads.
134 135
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
136 137
 */

138
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
139

140
struct worker_pool {
141
	spinlock_t		lock;		/* the pool lock */
142
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162
	struct mutex		manager_mutex;	/* manager exclusion */
163
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
164

T
Tejun Heo 已提交
165
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
166 167
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
168

169 170 171 172 173 174
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
175 176 177 178 179 180

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
181 182
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
183
/*
184 185 186 187
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
188
 */
189
struct pool_workqueue {
190
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
191
	struct workqueue_struct *wq;		/* I: the owning workqueue */
192 193
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
194
	int			refcnt;		/* L: reference count */
195 196
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
197
	int			nr_active;	/* L: nr of active works */
198
	int			max_active;	/* L: max active works */
199
	struct list_head	delayed_works;	/* L: delayed works */
200
	struct list_head	pwqs_node;	/* FR: node on wq->pwqs */
201
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
202 203 204 205 206

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
207
	 * determined without grabbing pwq_lock.
T
Tejun Heo 已提交
208 209 210
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
211
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
212

213 214 215 216 217 218 219 220 221
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

222 223
struct wq_device;

L
Linus Torvalds 已提交
224
/*
225 226
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
227 228
 */
struct workqueue_struct {
229
	unsigned int		flags;		/* PL: WQ_* flags */
230
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
231
	struct list_head	pwqs;		/* FR: all pwqs of this wq */
232
	struct list_head	list;		/* PL: list of all workqueues */
233 234 235 236

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
237
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
238 239 240 241
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

242
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
243 244
	struct worker		*rescuer;	/* I: rescue worker */

245
	int			nr_drainers;	/* PL: drain in progress */
246
	int			saved_max_active; /* PW: saved pwq max_active */
247 248 249 250

#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
251
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
252
	struct lockdep_map	lockdep_map;
253
#endif
254
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
255 256
};

257 258
static struct kmem_cache *pwq_cache;

259
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
260
static DEFINE_SPINLOCK(pwq_lock);	/* protects pool_workqueues */
261
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
262

263 264
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
265 266 267 268 269

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

270
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
271

272
/* PL: hash of all unbound pools keyed by pool->attrs */
273 274
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

275
/* I: attributes used when instantiating standard unbound pools on demand */
276 277
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

278 279
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
280
struct workqueue_struct *system_highpri_wq __read_mostly;
281
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
282
struct workqueue_struct *system_long_wq __read_mostly;
283
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
284
struct workqueue_struct *system_unbound_wq __read_mostly;
285
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
286
struct workqueue_struct *system_freezable_wq __read_mostly;
287
EXPORT_SYMBOL_GPL(system_freezable_wq);
288

289 290 291 292
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

293 294 295
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

296
#define assert_rcu_or_pool_mutex()					\
297
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
298 299
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
300

301
#define assert_rcu_or_pwq_lock()					\
302
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
303 304
			   lockdep_is_held(&pwq_lock),			\
			   "sched RCU or pwq_lock should be held")
305

306 307
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
308 309
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
310 311 312 313 314 315
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

316 317 318
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
319
	     (pool)++)
320

T
Tejun Heo 已提交
321 322 323
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
324
 * @pi: integer used for iteration
325
 *
326 327 328
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
329 330 331
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
332
 */
333 334
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
335
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
336
		else
T
Tejun Heo 已提交
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

354 355 356 357
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
358
 *
359 360 361
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
362 363 364
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
365 366
 */
#define for_each_pwq(pwq, wq)						\
367
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
368
		if (({ assert_rcu_or_pwq_lock(); false; })) { }		\
369
		else
370

371 372 373 374
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

375 376 377 378 379
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
415
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
451
	.debug_hint	= work_debug_hint,
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
487 488 489 490 491
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

492
	lockdep_assert_held(&wq_pool_mutex);
493

494 495 496 497 498
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
499

500
	return ret;
501 502
}

503 504 505 506
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
507 508 509
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
510
 */
511
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
512
{
513
	assert_rcu_or_pwq_lock();
514 515
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
516 517
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
533

534
/*
535 536
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
537
 * is cleared and the high bits contain OFFQ flags and pool ID.
538
 *
539 540
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
541 542
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
543
 *
544
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
545
 * corresponding to a work.  Pool is available once the work has been
546
 * queued anywhere after initialization until it is sync canceled.  pwq is
547
 * available only while the work item is queued.
548
 *
549 550 551 552
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
553
 */
554 555
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
556
{
557
	WARN_ON_ONCE(!work_pending(work));
558 559
	atomic_long_set(&work->data, data | flags | work_static(work));
}
560

561
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
562 563
			 unsigned long extra_flags)
{
564 565
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
566 567
}

568 569 570 571 572 573 574
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

575 576
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
577
{
578 579 580 581 582 583 584
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
585
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
586
}
587

588
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
589
{
590 591
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
592 593
}

594
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
595
{
596
	unsigned long data = atomic_long_read(&work->data);
597

598
	if (data & WORK_STRUCT_PWQ)
599 600 601
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
602 603
}

604 605 606 607 608
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
609
 *
610 611 612
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
613 614 615 616 617
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
618 619
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
620
{
621
	unsigned long data = atomic_long_read(&work->data);
622
	int pool_id;
623

624
	assert_rcu_or_pool_mutex();
625

626 627
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
628
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
629

630 631
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
632 633
		return NULL;

634
	return idr_find(&worker_pool_idr, pool_id);
635 636 637 638 639 640 641 642 643 644 645
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
646 647
	unsigned long data = atomic_long_read(&work->data);

648 649
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
650
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
651

652
	return data >> WORK_OFFQ_POOL_SHIFT;
653 654
}

655 656
static void mark_work_canceling(struct work_struct *work)
{
657
	unsigned long pool_id = get_work_pool_id(work);
658

659 660
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
661 662 663 664 665 666
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

667
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
668 669
}

670
/*
671 672
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
673
 * they're being called with pool->lock held.
674 675
 */

676
static bool __need_more_worker(struct worker_pool *pool)
677
{
678
	return !atomic_read(&pool->nr_running);
679 680
}

681
/*
682 683
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
684 685
 *
 * Note that, because unbound workers never contribute to nr_running, this
686
 * function will always return %true for unbound pools as long as the
687
 * worklist isn't empty.
688
 */
689
static bool need_more_worker(struct worker_pool *pool)
690
{
691
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
692
}
693

694
/* Can I start working?  Called from busy but !running workers. */
695
static bool may_start_working(struct worker_pool *pool)
696
{
697
	return pool->nr_idle;
698 699 700
}

/* Do I need to keep working?  Called from currently running workers. */
701
static bool keep_working(struct worker_pool *pool)
702
{
703 704
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
705 706 707
}

/* Do we need a new worker?  Called from manager. */
708
static bool need_to_create_worker(struct worker_pool *pool)
709
{
710
	return need_more_worker(pool) && !may_start_working(pool);
711
}
712

713
/* Do I need to be the manager? */
714
static bool need_to_manage_workers(struct worker_pool *pool)
715
{
716
	return need_to_create_worker(pool) ||
717
		(pool->flags & POOL_MANAGE_WORKERS);
718 719 720
}

/* Do we have too many workers and should some go away? */
721
static bool too_many_workers(struct worker_pool *pool)
722
{
723
	bool managing = mutex_is_locked(&pool->manager_arb);
724 725
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
726

727 728 729 730 731 732 733
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

734
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
735 736
}

737
/*
738 739 740
 * Wake up functions.
 */

741
/* Return the first worker.  Safe with preemption disabled */
742
static struct worker *first_worker(struct worker_pool *pool)
743
{
744
	if (unlikely(list_empty(&pool->idle_list)))
745 746
		return NULL;

747
	return list_first_entry(&pool->idle_list, struct worker, entry);
748 749 750 751
}

/**
 * wake_up_worker - wake up an idle worker
752
 * @pool: worker pool to wake worker from
753
 *
754
 * Wake up the first idle worker of @pool.
755 756
 *
 * CONTEXT:
757
 * spin_lock_irq(pool->lock).
758
 */
759
static void wake_up_worker(struct worker_pool *pool)
760
{
761
	struct worker *worker = first_worker(pool);
762 763 764 765 766

	if (likely(worker))
		wake_up_process(worker->task);
}

767
/**
768 769 770 771 772 773 774 775 776 777
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
778
void wq_worker_waking_up(struct task_struct *task, int cpu)
779 780 781
{
	struct worker *worker = kthread_data(task);

782
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
783
		WARN_ON_ONCE(worker->pool->cpu != cpu);
784
		atomic_inc(&worker->pool->nr_running);
785
	}
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
803
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
804 805
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
806
	struct worker_pool *pool;
807

808 809 810 811 812
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
813
	if (worker->flags & WORKER_NOT_RUNNING)
814 815
		return NULL;

816 817
	pool = worker->pool;

818
	/* this can only happen on the local cpu */
819 820
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
821 822 823 824 825 826

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
827 828 829
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
830
	 * manipulating idle_list, so dereferencing idle_list without pool
831
	 * lock is safe.
832
	 */
833 834
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
835
		to_wakeup = first_worker(pool);
836 837 838 839 840
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
841
 * @worker: self
842 843 844
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
845 846 847
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
848
 *
849
 * CONTEXT:
850
 * spin_lock_irq(pool->lock)
851 852 853 854
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
855
	struct worker_pool *pool = worker->pool;
856

857 858
	WARN_ON_ONCE(worker->task != current);

859 860 861 862 863 864 865 866
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
867
			if (atomic_dec_and_test(&pool->nr_running) &&
868
			    !list_empty(&pool->worklist))
869
				wake_up_worker(pool);
870
		} else
871
			atomic_dec(&pool->nr_running);
872 873
	}

874 875 876 877
	worker->flags |= flags;
}

/**
878
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
879
 * @worker: self
880 881
 * @flags: flags to clear
 *
882
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
883
 *
884
 * CONTEXT:
885
 * spin_lock_irq(pool->lock)
886 887 888
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
889
	struct worker_pool *pool = worker->pool;
890 891
	unsigned int oflags = worker->flags;

892 893
	WARN_ON_ONCE(worker->task != current);

894
	worker->flags &= ~flags;
895

896 897 898 899 900
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
901 902
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
903
			atomic_inc(&pool->nr_running);
904 905
}

906 907
/**
 * find_worker_executing_work - find worker which is executing a work
908
 * @pool: pool of interest
909 910
 * @work: work to find worker for
 *
911 912
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
913 914 915 916 917 918 919 920 921 922 923 924
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
925 926 927 928 929 930
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
931 932
 *
 * CONTEXT:
933
 * spin_lock_irq(pool->lock).
934 935 936 937
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
938
 */
939
static struct worker *find_worker_executing_work(struct worker_pool *pool,
940
						 struct work_struct *work)
941
{
942 943
	struct worker *worker;

944
	hash_for_each_possible(pool->busy_hash, worker, hentry,
945 946 947
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
948 949 950
			return worker;

	return NULL;
951 952
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
968
 * spin_lock_irq(pool->lock).
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1033
static void pwq_activate_delayed_work(struct work_struct *work)
1034
{
1035
	struct pool_workqueue *pwq = get_work_pwq(work);
1036 1037

	trace_workqueue_activate_work(work);
1038
	move_linked_works(work, &pwq->pool->worklist, NULL);
1039
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1040
	pwq->nr_active++;
1041 1042
}

1043
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1044
{
1045
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1046 1047
						    struct work_struct, entry);

1048
	pwq_activate_delayed_work(work);
1049 1050
}

1051
/**
1052 1053
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1054 1055 1056
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1057
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1058 1059
 *
 * CONTEXT:
1060
 * spin_lock_irq(pool->lock).
1061
 */
1062
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1063
{
T
Tejun Heo 已提交
1064
	/* uncolored work items don't participate in flushing or nr_active */
1065
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1066
		goto out_put;
1067

1068
	pwq->nr_in_flight[color]--;
1069

1070 1071
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1072
		/* one down, submit a delayed one */
1073 1074
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1075 1076 1077
	}

	/* is flush in progress and are we at the flushing tip? */
1078
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1079
		goto out_put;
1080 1081

	/* are there still in-flight works? */
1082
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1083
		goto out_put;
1084

1085 1086
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1087 1088

	/*
1089
	 * If this was the last pwq, wake up the first flusher.  It
1090 1091
	 * will handle the rest.
	 */
1092 1093
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1094 1095
out_put:
	put_pwq(pwq);
1096 1097
}

1098
/**
1099
 * try_to_grab_pending - steal work item from worklist and disable irq
1100 1101
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1102
 * @flags: place to store irq state
1103 1104 1105 1106 1107 1108 1109
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1110 1111
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1112
 *
1113
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1114 1115 1116
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1117 1118 1119 1120
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1121
 * This function is safe to call from any context including IRQ handler.
1122
 */
1123 1124
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1125
{
1126
	struct worker_pool *pool;
1127
	struct pool_workqueue *pwq;
1128

1129 1130
	local_irq_save(*flags);

1131 1132 1133 1134
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1135 1136 1137 1138 1139
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1140 1141 1142 1143 1144
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1145 1146 1147 1148 1149 1150 1151
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1152 1153
	pool = get_work_pool(work);
	if (!pool)
1154
		goto fail;
1155

1156
	spin_lock(&pool->lock);
1157
	/*
1158 1159 1160 1161 1162
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1163 1164
	 * item is currently queued on that pool.
	 */
1165 1166
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1167 1168 1169 1170 1171
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1172
		 * on the delayed_list, will confuse pwq->nr_active
1173 1174 1175 1176
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1177
			pwq_activate_delayed_work(work);
1178 1179

		list_del_init(&work->entry);
1180
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1181

1182
		/* work->data points to pwq iff queued, point to pool */
1183 1184 1185 1186
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1187
	}
1188
	spin_unlock(&pool->lock);
1189 1190 1191 1192 1193
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1194
	return -EAGAIN;
1195 1196
}

T
Tejun Heo 已提交
1197
/**
1198
 * insert_work - insert a work into a pool
1199
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1200 1201 1202 1203
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1204
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1205
 * work_struct flags.
T
Tejun Heo 已提交
1206 1207
 *
 * CONTEXT:
1208
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1209
 */
1210 1211
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1212
{
1213
	struct worker_pool *pool = pwq->pool;
1214

T
Tejun Heo 已提交
1215
	/* we own @work, set data and link */
1216
	set_work_pwq(work, pwq, extra_flags);
1217
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1218
	get_pwq(pwq);
1219 1220

	/*
1221 1222 1223
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1224 1225 1226
	 */
	smp_mb();

1227 1228
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1229 1230
}

1231 1232
/*
 * Test whether @work is being queued from another work executing on the
1233
 * same workqueue.
1234 1235 1236
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1237 1238 1239 1240 1241 1242 1243
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1244
	return worker && worker->current_pwq->wq == wq;
1245 1246
}

1247
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1248 1249
			 struct work_struct *work)
{
1250
	struct pool_workqueue *pwq;
1251
	struct worker_pool *last_pool;
1252
	struct list_head *worklist;
1253
	unsigned int work_flags;
1254
	unsigned int req_cpu = cpu;
1255 1256 1257 1258 1259 1260 1261 1262

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1263

1264
	debug_work_activate(work);
1265

1266
	/* if dying, only works from the same workqueue are allowed */
1267
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1268
	    WARN_ON_ONCE(!is_chained_work(wq)))
1269
		return;
1270
retry:
1271
	/* pwq which will be used unless @work is executing elsewhere */
1272
	if (!(wq->flags & WQ_UNBOUND)) {
1273
		if (cpu == WORK_CPU_UNBOUND)
1274
			cpu = raw_smp_processor_id();
1275
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1276 1277 1278
	} else {
		pwq = first_pwq(wq);
	}
1279

1280 1281 1282 1283 1284 1285 1286 1287
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1288

1289
		spin_lock(&last_pool->lock);
1290

1291
		worker = find_worker_executing_work(last_pool, work);
1292

1293 1294
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1295
		} else {
1296 1297
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1298
			spin_lock(&pwq->pool->lock);
1299
		}
1300
	} else {
1301
		spin_lock(&pwq->pool->lock);
1302 1303
	}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
	 * without another pwq replacing it as the first pwq or while a
	 * work item is executing on it, so the retying is guaranteed to
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1323 1324
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1325

1326
	if (WARN_ON(!list_empty(&work->entry))) {
1327
		spin_unlock(&pwq->pool->lock);
1328 1329
		return;
	}
1330

1331 1332
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1333

1334
	if (likely(pwq->nr_active < pwq->max_active)) {
1335
		trace_workqueue_activate_work(work);
1336 1337
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1338 1339
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1340
		worklist = &pwq->delayed_works;
1341
	}
1342

1343
	insert_work(pwq, work, worklist, work_flags);
1344

1345
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1346 1347
}

1348
/**
1349 1350
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1351 1352 1353
 * @wq: workqueue to use
 * @work: work to queue
 *
1354
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1355
 *
1356 1357
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1358
 */
1359 1360
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1361
{
1362
	bool ret = false;
1363
	unsigned long flags;
1364

1365
	local_irq_save(flags);
1366

1367
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1368
		__queue_work(cpu, wq, work);
1369
		ret = true;
1370
	}
1371

1372
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1373 1374
	return ret;
}
1375
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1376

1377
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1378
{
1379
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1380

1381
	/* should have been called from irqsafe timer with irq already off */
1382
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1383
}
1384
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1385

1386 1387
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1388
{
1389 1390 1391 1392 1393
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1394 1395
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1408
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1409

1410
	dwork->wq = wq;
1411
	dwork->cpu = cpu;
1412 1413 1414 1415 1416 1417
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1418 1419
}

1420 1421 1422 1423
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1424
 * @dwork: work to queue
1425 1426
 * @delay: number of jiffies to wait before queueing
 *
1427 1428 1429
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1430
 */
1431 1432
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1433
{
1434
	struct work_struct *work = &dwork->work;
1435
	bool ret = false;
1436
	unsigned long flags;
1437

1438 1439
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1440

1441
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1442
		__queue_delayed_work(cpu, wq, dwork, delay);
1443
		ret = true;
1444
	}
1445

1446
	local_irq_restore(flags);
1447 1448
	return ret;
}
1449
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1466
 * This function is safe to call from any context including IRQ handler.
1467 1468 1469 1470 1471 1472 1473
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1474

1475 1476 1477
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1478

1479 1480 1481
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1482
	}
1483 1484

	/* -ENOENT from try_to_grab_pending() becomes %true */
1485 1486
	return ret;
}
1487 1488
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1489 1490 1491 1492 1493 1494 1495 1496
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1497
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1498 1499
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1500
{
1501
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1502

1503 1504 1505 1506
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1507

1508 1509
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1510
	pool->nr_idle++;
1511
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1512 1513

	/* idle_list is LIFO */
1514
	list_add(&worker->entry, &pool->idle_list);
1515

1516 1517
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1518

1519
	/*
1520
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1521
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1522 1523
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1524
	 */
1525
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1526
		     pool->nr_workers == pool->nr_idle &&
1527
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1537
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1538 1539 1540
 */
static void worker_leave_idle(struct worker *worker)
{
1541
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1542

1543 1544
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1545
	worker_clr_flags(worker, WORKER_IDLE);
1546
	pool->nr_idle--;
T
Tejun Heo 已提交
1547 1548 1549
	list_del_init(&worker->entry);
}

1550
/**
1551 1552 1553 1554
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1555 1556 1557 1558 1559 1560
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1561
 * This function is to be used by unbound workers and rescuers to bind
1562 1563 1564
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1565
 * verbatim as it's best effort and blocking and pool may be
1566 1567
 * [dis]associated in the meantime.
 *
1568
 * This function tries set_cpus_allowed() and locks pool and verifies the
1569
 * binding against %POOL_DISASSOCIATED which is set during
1570 1571 1572
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1573 1574
 *
 * CONTEXT:
1575
 * Might sleep.  Called without any lock but returns with pool->lock
1576 1577 1578
 * held.
 *
 * RETURNS:
1579
 * %true if the associated pool is online (@worker is successfully
1580 1581
 * bound), %false if offline.
 */
1582
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1583
__acquires(&pool->lock)
1584 1585
{
	while (true) {
1586
		/*
1587 1588 1589
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1590
		 * against POOL_DISASSOCIATED.
1591
		 */
1592
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1593
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1594

1595
		spin_lock_irq(&pool->lock);
1596
		if (pool->flags & POOL_DISASSOCIATED)
1597
			return false;
1598
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1599
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1600
			return true;
1601
		spin_unlock_irq(&pool->lock);
1602

1603 1604 1605 1606 1607 1608
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1609
		cpu_relax();
1610
		cond_resched();
1611 1612 1613
	}
}

T
Tejun Heo 已提交
1614 1615 1616 1617 1618
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1619 1620
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1621
		INIT_LIST_HEAD(&worker->scheduled);
1622 1623
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1624
	}
T
Tejun Heo 已提交
1625 1626 1627 1628 1629
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1630
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1631
 *
1632
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1642
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1643
{
T
Tejun Heo 已提交
1644
	const char *pri = pool->attrs->nice < 0  ? "H" : "";
T
Tejun Heo 已提交
1645
	struct worker *worker = NULL;
1646
	int id = -1;
T
Tejun Heo 已提交
1647

1648 1649
	lockdep_assert_held(&pool->manager_mutex);

1650 1651 1652 1653 1654
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1655
	spin_lock_irq(&pool->lock);
1656 1657 1658

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1659
	spin_unlock_irq(&pool->lock);
1660 1661 1662
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1663 1664 1665 1666 1667

	worker = alloc_worker();
	if (!worker)
		goto fail;

1668
	worker->pool = pool;
T
Tejun Heo 已提交
1669 1670
	worker->id = id;

1671
	if (pool->cpu >= 0)
1672
		worker->task = kthread_create_on_node(worker_thread,
1673
					worker, cpu_to_node(pool->cpu),
1674
					"kworker/%d:%d%s", pool->cpu, id, pri);
1675 1676
	else
		worker->task = kthread_create(worker_thread, worker,
1677 1678
					      "kworker/u%d:%d%s",
					      pool->id, id, pri);
T
Tejun Heo 已提交
1679 1680 1681
	if (IS_ERR(worker->task))
		goto fail;

1682 1683 1684 1685
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1686 1687
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1688

1689 1690
	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;
T
Tejun Heo 已提交
1691 1692 1693 1694 1695 1696 1697

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1698
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1699

1700 1701 1702 1703 1704
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1705
	return worker;
1706

T
Tejun Heo 已提交
1707 1708
fail:
	if (id >= 0) {
1709
		spin_lock_irq(&pool->lock);
1710
		idr_remove(&pool->worker_idr, id);
1711
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1721
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1722 1723
 *
 * CONTEXT:
1724
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1725 1726 1727
 */
static void start_worker(struct worker *worker)
{
1728
	worker->flags |= WORKER_STARTED;
1729
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1730
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1731 1732 1733
	wake_up_process(worker->task);
}

1734 1735 1736 1737
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1738
 * Grab the managership of @pool and create and start a new worker for it.
1739 1740 1741 1742 1743
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1744 1745
	mutex_lock(&pool->manager_mutex);

1746 1747 1748 1749 1750 1751 1752
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1753 1754
	mutex_unlock(&pool->manager_mutex);

1755 1756 1757
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1758 1759 1760 1761
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1762
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1763 1764
 *
 * CONTEXT:
1765
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1766 1767 1768
 */
static void destroy_worker(struct worker *worker)
{
1769
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1770

1771 1772 1773
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1774
	/* sanity check frenzy */
1775 1776 1777
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1778

T
Tejun Heo 已提交
1779
	if (worker->flags & WORKER_STARTED)
1780
		pool->nr_workers--;
T
Tejun Heo 已提交
1781
	if (worker->flags & WORKER_IDLE)
1782
		pool->nr_idle--;
T
Tejun Heo 已提交
1783 1784

	list_del_init(&worker->entry);
1785
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1786

1787 1788
	idr_remove(&pool->worker_idr, worker->id);

1789
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1790

T
Tejun Heo 已提交
1791 1792 1793
	kthread_stop(worker->task);
	kfree(worker);

1794
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1795 1796
}

1797
static void idle_worker_timeout(unsigned long __pool)
1798
{
1799
	struct worker_pool *pool = (void *)__pool;
1800

1801
	spin_lock_irq(&pool->lock);
1802

1803
	if (too_many_workers(pool)) {
1804 1805 1806 1807
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1808
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1809 1810 1811
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1812
			mod_timer(&pool->idle_timer, expires);
1813 1814
		else {
			/* it's been idle for too long, wake up manager */
1815
			pool->flags |= POOL_MANAGE_WORKERS;
1816
			wake_up_worker(pool);
1817
		}
1818 1819
	}

1820
	spin_unlock_irq(&pool->lock);
1821
}
1822

1823
static void send_mayday(struct work_struct *work)
1824
{
1825 1826
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1827

1828
	lockdep_assert_held(&wq_mayday_lock);
1829

1830
	if (!wq->rescuer)
1831
		return;
1832 1833

	/* mayday mayday mayday */
1834 1835
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1836
		wake_up_process(wq->rescuer->task);
1837
	}
1838 1839
}

1840
static void pool_mayday_timeout(unsigned long __pool)
1841
{
1842
	struct worker_pool *pool = (void *)__pool;
1843 1844
	struct work_struct *work;

1845
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1846
	spin_lock(&pool->lock);
1847

1848
	if (need_to_create_worker(pool)) {
1849 1850 1851 1852 1853 1854
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1855
		list_for_each_entry(work, &pool->worklist, entry)
1856
			send_mayday(work);
L
Linus Torvalds 已提交
1857
	}
1858

1859
	spin_unlock(&pool->lock);
1860
	spin_unlock_irq(&wq_mayday_lock);
1861

1862
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1863 1864
}

1865 1866
/**
 * maybe_create_worker - create a new worker if necessary
1867
 * @pool: pool to create a new worker for
1868
 *
1869
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1870 1871
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1872
 * sent to all rescuers with works scheduled on @pool to resolve
1873 1874
 * possible allocation deadlock.
 *
1875 1876
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1877 1878
 *
 * LOCKING:
1879
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1880 1881 1882 1883
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1884
 * %false if no action was taken and pool->lock stayed locked, %true
1885 1886
 * otherwise.
 */
1887
static bool maybe_create_worker(struct worker_pool *pool)
1888 1889
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1890
{
1891
	if (!need_to_create_worker(pool))
1892 1893
		return false;
restart:
1894
	spin_unlock_irq(&pool->lock);
1895

1896
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1897
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1898 1899 1900 1901

	while (true) {
		struct worker *worker;

1902
		worker = create_worker(pool);
1903
		if (worker) {
1904
			del_timer_sync(&pool->mayday_timer);
1905
			spin_lock_irq(&pool->lock);
1906
			start_worker(worker);
1907 1908
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1909 1910 1911
			return true;
		}

1912
		if (!need_to_create_worker(pool))
1913
			break;
L
Linus Torvalds 已提交
1914

1915 1916
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1917

1918
		if (!need_to_create_worker(pool))
1919 1920 1921
			break;
	}

1922
	del_timer_sync(&pool->mayday_timer);
1923
	spin_lock_irq(&pool->lock);
1924
	if (need_to_create_worker(pool))
1925 1926 1927 1928 1929 1930
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1931
 * @pool: pool to destroy workers for
1932
 *
1933
 * Destroy @pool workers which have been idle for longer than
1934 1935 1936
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1937
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1938 1939 1940
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1941
 * %false if no action was taken and pool->lock stayed locked, %true
1942 1943
 * otherwise.
 */
1944
static bool maybe_destroy_workers(struct worker_pool *pool)
1945 1946
{
	bool ret = false;
L
Linus Torvalds 已提交
1947

1948
	while (too_many_workers(pool)) {
1949 1950
		struct worker *worker;
		unsigned long expires;
1951

1952
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1953
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1954

1955
		if (time_before(jiffies, expires)) {
1956
			mod_timer(&pool->idle_timer, expires);
1957
			break;
1958
		}
L
Linus Torvalds 已提交
1959

1960 1961
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1962
	}
1963

1964
	return ret;
1965 1966
}

1967
/**
1968 1969
 * manage_workers - manage worker pool
 * @worker: self
1970
 *
1971
 * Assume the manager role and manage the worker pool @worker belongs
1972
 * to.  At any given time, there can be only zero or one manager per
1973
 * pool.  The exclusion is handled automatically by this function.
1974 1975 1976 1977
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1978 1979
 *
 * CONTEXT:
1980
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1981 1982 1983
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
1984 1985
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
1986
 */
1987
static bool manage_workers(struct worker *worker)
1988
{
1989
	struct worker_pool *pool = worker->pool;
1990
	bool ret = false;
1991

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2013
	if (!mutex_trylock(&pool->manager_arb))
2014
		return ret;
2015

2016
	/*
2017 2018
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2019
	 */
2020
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2021
		spin_unlock_irq(&pool->lock);
2022
		mutex_lock(&pool->manager_mutex);
2023 2024
		ret = true;
	}
2025

2026
	pool->flags &= ~POOL_MANAGE_WORKERS;
2027 2028

	/*
2029 2030
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2031
	 */
2032 2033
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2034

2035
	mutex_unlock(&pool->manager_mutex);
2036
	mutex_unlock(&pool->manager_arb);
2037
	return ret;
2038 2039
}

2040 2041
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2042
 * @worker: self
2043 2044 2045 2046 2047 2048 2049 2050 2051
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2052
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2053
 */
T
Tejun Heo 已提交
2054
static void process_one_work(struct worker *worker, struct work_struct *work)
2055 2056
__releases(&pool->lock)
__acquires(&pool->lock)
2057
{
2058
	struct pool_workqueue *pwq = get_work_pwq(work);
2059
	struct worker_pool *pool = worker->pool;
2060
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2061
	int work_color;
2062
	struct worker *collision;
2063 2064 2065 2066 2067 2068 2069 2070
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2071 2072 2073
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2074
#endif
2075 2076 2077
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2078
	 * unbound or a disassociated pool.
2079
	 */
2080
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2081
		     !(pool->flags & POOL_DISASSOCIATED) &&
2082
		     raw_smp_processor_id() != pool->cpu);
2083

2084 2085 2086 2087 2088 2089
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2090
	collision = find_worker_executing_work(pool, work);
2091 2092 2093 2094 2095
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2096
	/* claim and dequeue */
2097
	debug_work_deactivate(work);
2098
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2099
	worker->current_work = work;
2100
	worker->current_func = work->func;
2101
	worker->current_pwq = pwq;
2102
	work_color = get_work_color(work);
2103

2104 2105
	list_del_init(&work->entry);

2106 2107 2108 2109 2110 2111 2112
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2113
	/*
2114
	 * Unbound pool isn't concurrency managed and work items should be
2115 2116
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2117 2118
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2119

2120
	/*
2121
	 * Record the last pool and clear PENDING which should be the last
2122
	 * update to @work.  Also, do this inside @pool->lock so that
2123 2124
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2125
	 */
2126
	set_work_pool_and_clear_pending(work, pool->id);
2127

2128
	spin_unlock_irq(&pool->lock);
2129

2130
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2131
	lock_map_acquire(&lockdep_map);
2132
	trace_workqueue_execute_start(work);
2133
	worker->current_func(work);
2134 2135 2136 2137 2138
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2139
	lock_map_release(&lockdep_map);
2140
	lock_map_release(&pwq->wq->lockdep_map);
2141 2142

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2143 2144
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2145 2146
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2147 2148 2149 2150
		debug_show_held_locks(current);
		dump_stack();
	}

2151
	spin_lock_irq(&pool->lock);
2152

2153 2154 2155 2156
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2157
	/* we're done with it, release */
2158
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2159
	worker->current_work = NULL;
2160
	worker->current_func = NULL;
2161 2162
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2163 2164
}

2165 2166 2167 2168 2169 2170 2171 2172 2173
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2174
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2175 2176 2177
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2178
{
2179 2180
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2181
						struct work_struct, entry);
T
Tejun Heo 已提交
2182
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2183 2184 2185
	}
}

T
Tejun Heo 已提交
2186 2187
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2188
 * @__worker: self
T
Tejun Heo 已提交
2189
 *
2190 2191 2192 2193 2194
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
T
Tejun Heo 已提交
2195
 */
T
Tejun Heo 已提交
2196
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2197
{
T
Tejun Heo 已提交
2198
	struct worker *worker = __worker;
2199
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2200

2201 2202
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2203
woke_up:
2204
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2205

2206 2207
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2208
		spin_unlock_irq(&pool->lock);
2209 2210 2211
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2212
	}
2213

T
Tejun Heo 已提交
2214
	worker_leave_idle(worker);
2215
recheck:
2216
	/* no more worker necessary? */
2217
	if (!need_more_worker(pool))
2218 2219 2220
		goto sleep;

	/* do we need to manage? */
2221
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2222 2223
		goto recheck;

T
Tejun Heo 已提交
2224 2225 2226 2227 2228
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2229
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2230

2231
	/*
2232 2233 2234 2235 2236
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2237
	 */
2238
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2239 2240

	do {
T
Tejun Heo 已提交
2241
		struct work_struct *work =
2242
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2243 2244 2245 2246 2247 2248
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2249
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2250 2251 2252
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2253
		}
2254
	} while (keep_working(pool));
2255 2256

	worker_set_flags(worker, WORKER_PREP, false);
2257
sleep:
2258
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2259
		goto recheck;
2260

T
Tejun Heo 已提交
2261
	/*
2262 2263 2264 2265 2266
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2267 2268 2269
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2270
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2271 2272
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2273 2274
}

2275 2276
/**
 * rescuer_thread - the rescuer thread function
2277
 * @__rescuer: self
2278 2279
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2280
 * workqueue which has WQ_MEM_RECLAIM set.
2281
 *
2282
 * Regular work processing on a pool may block trying to create a new
2283 2284 2285 2286 2287
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2288 2289
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2290 2291 2292 2293
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2294
static int rescuer_thread(void *__rescuer)
2295
{
2296 2297
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2298 2299 2300
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2301 2302 2303 2304 2305 2306

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2307 2308 2309
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2310 2311
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2312
		rescuer->task->flags &= ~PF_WQ_WORKER;
2313
		return 0;
2314
	}
2315

2316
	/* see whether any pwq is asking for help */
2317
	spin_lock_irq(&wq_mayday_lock);
2318 2319 2320 2321

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2322
		struct worker_pool *pool = pwq->pool;
2323 2324 2325
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2326 2327
		list_del_init(&pwq->mayday_node);

2328
		spin_unlock_irq(&wq_mayday_lock);
2329 2330

		/* migrate to the target cpu if possible */
2331
		worker_maybe_bind_and_lock(pool);
2332
		rescuer->pool = pool;
2333 2334 2335 2336 2337

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2338
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2339
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2340
			if (get_work_pwq(work) == pwq)
2341 2342 2343
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2344 2345

		/*
2346
		 * Leave this pool.  If keep_working() is %true, notify a
2347 2348 2349
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2350 2351
		if (keep_working(pool))
			wake_up_worker(pool);
2352

2353
		rescuer->pool = NULL;
2354
		spin_unlock(&pool->lock);
2355
		spin_lock(&wq_mayday_lock);
2356 2357
	}

2358
	spin_unlock_irq(&wq_mayday_lock);
2359

2360 2361
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2362 2363
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2364 2365
}

O
Oleg Nesterov 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2377 2378
/**
 * insert_wq_barrier - insert a barrier work
2379
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2380
 * @barr: wq_barrier to insert
2381 2382
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2383
 *
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2396
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2397 2398
 *
 * CONTEXT:
2399
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2400
 */
2401
static void insert_wq_barrier(struct pool_workqueue *pwq,
2402 2403
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2404
{
2405 2406 2407
	struct list_head *head;
	unsigned int linked = 0;

2408
	/*
2409
	 * debugobject calls are safe here even with pool->lock locked
2410 2411 2412 2413
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2414
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2415
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2416
	init_completion(&barr->done);
2417

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2433
	debug_work_activate(&barr->work);
2434
	insert_work(pwq, &barr->work, head,
2435
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2436 2437
}

2438
/**
2439
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2440 2441 2442 2443
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2444
 * Prepare pwqs for workqueue flushing.
2445
 *
2446 2447 2448 2449 2450
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2451 2452 2453 2454 2455 2456 2457
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2458
 * If @work_color is non-negative, all pwqs should have the same
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2469
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2470
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2471
{
2472
	bool wait = false;
2473
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2474

2475
	if (flush_color >= 0) {
2476
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2477
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2478
	}
2479

2480 2481
	local_irq_disable();

2482
	for_each_pwq(pwq, wq) {
2483
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2484

2485
		spin_lock(&pool->lock);
2486

2487
		if (flush_color >= 0) {
2488
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2489

2490 2491 2492
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2493 2494 2495
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2496

2497
		if (work_color >= 0) {
2498
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2499
			pwq->work_color = work_color;
2500
		}
L
Linus Torvalds 已提交
2501

2502
		spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
2503
	}
2504

2505 2506
	local_irq_enable();

2507
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2508
		complete(&wq->first_flusher->done);
2509

2510
	return wait;
L
Linus Torvalds 已提交
2511 2512
}

2513
/**
L
Linus Torvalds 已提交
2514
 * flush_workqueue - ensure that any scheduled work has run to completion.
2515
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2516
 *
2517 2518
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2519
 */
2520
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2521
{
2522 2523 2524 2525 2526 2527
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2528

2529 2530
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2545
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2546 2547 2548 2549 2550
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2551
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2552 2553 2554

			wq->first_flusher = &this_flusher;

2555
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2556 2557 2558 2559 2560 2561 2562 2563
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2564
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2565
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2566
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2592 2593 2594 2595
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2596 2597
	wq->first_flusher = NULL;

2598 2599
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2612 2613
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2633
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2634 2635 2636
		}

		if (list_empty(&wq->flusher_queue)) {
2637
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2638 2639 2640 2641 2642
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2643
		 * the new first flusher and arm pwqs.
2644
		 */
2645 2646
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2647 2648 2649 2650

		list_del_init(&next->list);
		wq->first_flusher = next;

2651
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2663
}
2664
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2665

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2680
	struct pool_workqueue *pwq;
2681 2682 2683 2684

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2685
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2686
	 */
2687
	mutex_lock(&wq_pool_mutex);
2688
	if (!wq->nr_drainers++)
2689
		wq->flags |= __WQ_DRAINING;
2690
	mutex_unlock(&wq_pool_mutex);
2691 2692 2693
reflush:
	flush_workqueue(wq);

2694 2695
	local_irq_disable();

2696
	for_each_pwq(pwq, wq) {
2697
		bool drained;
2698

2699
		spin_lock(&pwq->pool->lock);
2700
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2701
		spin_unlock(&pwq->pool->lock);
2702 2703

		if (drained)
2704 2705 2706 2707
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2708
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2709
				wq->name, flush_cnt);
2710 2711

		local_irq_enable();
2712 2713 2714
		goto reflush;
	}

2715 2716
	local_irq_enable();

2717
	mutex_lock(&wq_pool_mutex);
2718
	if (!--wq->nr_drainers)
2719
		wq->flags &= ~__WQ_DRAINING;
2720
	mutex_unlock(&wq_pool_mutex);
2721 2722 2723
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2724
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2725
{
2726
	struct worker *worker = NULL;
2727
	struct worker_pool *pool;
2728
	struct pool_workqueue *pwq;
2729 2730

	might_sleep();
2731 2732

	local_irq_disable();
2733
	pool = get_work_pool(work);
2734 2735
	if (!pool) {
		local_irq_enable();
2736
		return false;
2737
	}
2738

2739
	spin_lock(&pool->lock);
2740
	/* see the comment in try_to_grab_pending() with the same code */
2741 2742 2743
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2744
			goto already_gone;
2745
	} else {
2746
		worker = find_worker_executing_work(pool, work);
2747
		if (!worker)
T
Tejun Heo 已提交
2748
			goto already_gone;
2749
		pwq = worker->current_pwq;
2750
	}
2751

2752
	insert_wq_barrier(pwq, barr, work, worker);
2753
	spin_unlock_irq(&pool->lock);
2754

2755 2756 2757 2758 2759 2760
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2761
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2762
		lock_map_acquire(&pwq->wq->lockdep_map);
2763
	else
2764 2765
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2766

2767
	return true;
T
Tejun Heo 已提交
2768
already_gone:
2769
	spin_unlock_irq(&pool->lock);
2770
	return false;
2771
}
2772 2773 2774 2775 2776

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2777 2778
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2779 2780 2781 2782 2783 2784 2785 2786 2787
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2788 2789 2790
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2791
	if (start_flush_work(work, &barr)) {
2792 2793 2794
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2795
	} else {
2796
		return false;
2797 2798
	}
}
2799
EXPORT_SYMBOL_GPL(flush_work);
2800

2801
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2802
{
2803
	unsigned long flags;
2804 2805 2806
	int ret;

	do {
2807 2808 2809 2810 2811 2812
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2813
			flush_work(work);
2814 2815
	} while (unlikely(ret < 0));

2816 2817 2818 2819
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2820
	flush_work(work);
2821
	clear_work_data(work);
2822 2823 2824
	return ret;
}

2825
/**
2826 2827
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2828
 *
2829 2830 2831 2832
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2833
 *
2834 2835
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2836
 *
2837
 * The caller must ensure that the workqueue on which @work was last
2838
 * queued can't be destroyed before this function returns.
2839 2840 2841
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2842
 */
2843
bool cancel_work_sync(struct work_struct *work)
2844
{
2845
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2846
}
2847
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2848

2849
/**
2850 2851
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2852
 *
2853 2854 2855
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2856
 *
2857 2858 2859
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2860
 */
2861 2862
bool flush_delayed_work(struct delayed_work *dwork)
{
2863
	local_irq_disable();
2864
	if (del_timer_sync(&dwork->timer))
2865
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2866
	local_irq_enable();
2867 2868 2869 2870
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2871
/**
2872 2873
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2874
 *
2875 2876 2877 2878 2879
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2880
 *
2881
 * This function is safe to call from any context including IRQ handler.
2882
 */
2883
bool cancel_delayed_work(struct delayed_work *dwork)
2884
{
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2895 2896
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2897
	local_irq_restore(flags);
2898
	return ret;
2899
}
2900
EXPORT_SYMBOL(cancel_delayed_work);
2901

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2912
{
2913
	return __cancel_work_timer(&dwork->work, true);
2914
}
2915
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2916

2917
/**
2918
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2919 2920
 * @func: the function to call
 *
2921 2922
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2923
 * schedule_on_each_cpu() is very slow.
2924 2925 2926
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2927
 */
2928
int schedule_on_each_cpu(work_func_t func)
2929 2930
{
	int cpu;
2931
	struct work_struct __percpu *works;
2932

2933 2934
	works = alloc_percpu(struct work_struct);
	if (!works)
2935
		return -ENOMEM;
2936

2937 2938
	get_online_cpus();

2939
	for_each_online_cpu(cpu) {
2940 2941 2942
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2943
		schedule_work_on(cpu, work);
2944
	}
2945 2946 2947 2948

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2949
	put_online_cpus();
2950
	free_percpu(works);
2951 2952 2953
	return 0;
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2978 2979
void flush_scheduled_work(void)
{
2980
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2981
}
2982
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2983

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
2996
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2997 2998
{
	if (!in_interrupt()) {
2999
		fn(&ew->work);
3000 3001 3002
		return 0;
	}

3003
	INIT_WORK(&ew->work, fn);
3004 3005 3006 3007 3008 3009
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

static ssize_t wq_pool_id_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct worker_pool *pool;
	int written;

	rcu_read_lock_sched();
	pool = first_pwq(wq)->pool;
	written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    first_pwq(wq)->pool->attrs->nice);
	rcu_read_unlock_sched();

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	rcu_read_lock_sched();
	copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
	rcu_read_unlock_sched();
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = cpumask_scnprintf(buf, PAGE_SIZE,
				    first_pwq(wq)->pool->attrs->cpumask);
	rcu_read_unlock_sched();

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_id, 0444, wq_pool_id_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_setall(attrs->cpumask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/*
 * Hacky implementation of jhash of bitmaps which only considers the
 * specified number of bits.  We probably want a proper implementation in
 * include/linux/jhash.h.
 */
static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
{
	int nr_longs = bits / BITS_PER_LONG;
	int nr_leftover = bits % BITS_PER_LONG;
	unsigned long leftover = 0;

	if (nr_longs)
		hash = jhash(bitmap, nr_longs * sizeof(long), hash);
	if (nr_leftover) {
		bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
		hash = jhash(&leftover, sizeof(long), hash);
	}
	return hash;
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
	hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3371 3372 3373 3374 3375
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3376 3377 3378
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3379 3380
 */
static int init_worker_pool(struct worker_pool *pool)
3381 3382
{
	spin_lock_init(&pool->lock);
3383 3384
	pool->id = -1;
	pool->cpu = -1;
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3398
	mutex_init(&pool->manager_mutex);
3399
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3400

3401 3402 3403 3404
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3405 3406 3407 3408
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3409 3410
}

3411 3412 3413 3414
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3415
	idr_destroy(&pool->worker_idr);
3416 3417 3418 3419 3420 3421 3422 3423 3424
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3425 3426 3427
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3428 3429 3430 3431 3432
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3433
	mutex_lock(&wq_pool_mutex);
3434
	if (--pool->refcnt) {
3435
		mutex_unlock(&wq_pool_mutex);
3436 3437 3438 3439 3440 3441
		return;
	}

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
	    WARN_ON(!list_empty(&pool->worklist))) {
3442
		mutex_unlock(&wq_pool_mutex);
3443 3444 3445 3446 3447 3448 3449 3450
		return;
	}

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3451
	mutex_unlock(&wq_pool_mutex);
3452

3453 3454 3455 3456 3457
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3458
	mutex_lock(&pool->manager_arb);
3459
	mutex_lock(&pool->manager_mutex);
3460 3461 3462 3463 3464 3465 3466
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3467
	mutex_unlock(&pool->manager_mutex);
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;

3492
	mutex_lock(&wq_pool_mutex);
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3507 3508 3509
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3510
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3511 3512 3513 3514 3515 3516
	copy_workqueue_attrs(pool->attrs, attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3517
	if (create_and_start_worker(pool) < 0)
3518 3519 3520 3521 3522
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
3523
	mutex_unlock(&wq_pool_mutex);
3524 3525
	return pool;
fail:
3526
	mutex_unlock(&wq_pool_mutex);
3527 3528 3529 3530 3531
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3552 3553 3554 3555 3556 3557
	/*
	 * Unlink @pwq.  Synchronization against flush_mutex isn't strictly
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
	mutex_lock(&wq->flush_mutex);
3558
	spin_lock_irq(&pwq_lock);
T
Tejun Heo 已提交
3559
	list_del_rcu(&pwq->pwqs_node);
3560
	spin_unlock_irq(&pwq_lock);
3561
	mutex_unlock(&wq->flush_mutex);
T
Tejun Heo 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573

	put_unbound_pool(pool);
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
	if (list_empty(&wq->pwqs))
		kfree(wq);
}

3574
/**
3575
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3576 3577
 * @pwq: target pool_workqueue
 *
3578 3579 3580
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3581
 */
3582
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3583
{
3584 3585 3586 3587
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3588
	lockdep_assert_held(&pwq_lock);
3589 3590 3591 3592 3593 3594 3595 3596 3597

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

	spin_lock(&pwq->pool->lock);

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3598

3599 3600 3601
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3602 3603 3604 3605 3606 3607

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3608 3609 3610 3611 3612
	} else {
		pwq->max_active = 0;
	}

	spin_unlock(&pwq->pool->lock);
3613 3614
}

3615 3616
static void init_and_link_pwq(struct pool_workqueue *pwq,
			      struct workqueue_struct *wq,
3617 3618
			      struct worker_pool *pool,
			      struct pool_workqueue **p_last_pwq)
3619 3620 3621 3622 3623 3624
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3625
	pwq->refcnt = 1;
3626 3627
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3628
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3629

3630
	mutex_lock(&wq->flush_mutex);
3631
	spin_lock_irq(&pwq_lock);
3632

3633 3634 3635 3636
	/*
	 * Set the matching work_color.  This is synchronized with
	 * flush_mutex to avoid confusing flush_workqueue().
	 */
3637 3638
	if (p_last_pwq)
		*p_last_pwq = first_pwq(wq);
3639
	pwq->work_color = wq->work_color;
3640 3641 3642 3643 3644

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3645
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3646

3647
	spin_unlock_irq(&pwq_lock);
3648
	mutex_unlock(&wq->flush_mutex);
3649 3650
}

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  If @attrs doesn't match the
 * current attributes, a new pwq is created and made the first pwq which
 * will serve all new work items.  Older pwqs are released as in-flight
 * work items finish.  Note that a work item which repeatedly requeues
 * itself back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	struct pool_workqueue *pwq, *last_pwq;
	struct worker_pool *pool;

3671
	/* only unbound workqueues can change attributes */
3672 3673 3674
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3675 3676 3677 3678
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
	if (!pwq)
		return -ENOMEM;

	pool = get_unbound_pool(attrs);
	if (!pool) {
		kmem_cache_free(pwq_cache, pwq);
		return -ENOMEM;
	}

	init_and_link_pwq(pwq, wq, pool, &last_pwq);
	if (last_pwq) {
		spin_lock_irq(&last_pwq->pool->lock);
		put_pwq(last_pwq);
		spin_unlock_irq(&last_pwq->pool->lock);
	}

	return 0;
}

3699
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3700
{
3701
	bool highpri = wq->flags & WQ_HIGHPRI;
3702 3703 3704
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3705 3706
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3707 3708 3709
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3710 3711
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3712
			struct worker_pool *cpu_pools =
3713
				per_cpu(cpu_worker_pools, cpu);
3714

3715
			init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3716
		}
3717
		return 0;
3718
	} else {
3719
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3720
	}
T
Tejun Heo 已提交
3721 3722
}

3723 3724
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3725
{
3726 3727 3728
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3729 3730
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3731

3732
	return clamp_val(max_active, 1, lim);
3733 3734
}

3735
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3736 3737 3738
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3739
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3740
{
3741
	va_list args, args1;
L
Linus Torvalds 已提交
3742
	struct workqueue_struct *wq;
3743
	struct pool_workqueue *pwq;
3744 3745 3746 3747 3748 3749 3750 3751 3752
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
3753
		return NULL;
3754 3755 3756 3757

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3758

3759
	max_active = max_active ?: WQ_DFL_ACTIVE;
3760
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3761

3762
	/* init wq */
3763
	wq->flags = flags;
3764
	wq->saved_max_active = max_active;
3765
	mutex_init(&wq->flush_mutex);
3766
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3767
	INIT_LIST_HEAD(&wq->pwqs);
3768 3769
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3770
	INIT_LIST_HEAD(&wq->maydays);
3771

3772
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3773
	INIT_LIST_HEAD(&wq->list);
3774

3775
	if (alloc_and_link_pwqs(wq) < 0)
3776
		goto err_free_wq;
T
Tejun Heo 已提交
3777

3778 3779 3780 3781 3782
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3783 3784
		struct worker *rescuer;

3785
		rescuer = alloc_worker();
3786
		if (!rescuer)
3787
			goto err_destroy;
3788

3789 3790
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3791
					       wq->name);
3792 3793 3794 3795
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3796

3797
		wq->rescuer = rescuer;
3798
		rescuer->task->flags |= PF_NO_SETAFFINITY;
3799
		wake_up_process(rescuer->task);
3800 3801
	}

3802 3803 3804
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3805
	/*
3806 3807 3808
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3809
	 */
3810
	mutex_lock(&wq_pool_mutex);
3811

3812
	spin_lock_irq(&pwq_lock);
3813 3814
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3815
	spin_unlock_irq(&pwq_lock);
3816

T
Tejun Heo 已提交
3817
	list_add(&wq->list, &workqueues);
3818

3819
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
3820

3821
	return wq;
3822 3823 3824 3825 3826 3827

err_free_wq:
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3828
	return NULL;
3829
}
3830
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3831

3832 3833 3834 3835 3836 3837 3838 3839
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3840
	struct pool_workqueue *pwq;
3841

3842 3843
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3844

3845
	/* sanity checks */
3846
	spin_lock_irq(&pwq_lock);
3847
	for_each_pwq(pwq, wq) {
3848 3849
		int i;

3850 3851
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
3852
				spin_unlock_irq(&pwq_lock);
3853
				return;
3854 3855 3856
			}
		}

T
Tejun Heo 已提交
3857 3858
		if (WARN_ON(pwq->refcnt > 1) ||
		    WARN_ON(pwq->nr_active) ||
3859
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3860
			spin_unlock_irq(&pwq_lock);
3861
			return;
3862
		}
3863
	}
3864
	spin_unlock_irq(&pwq_lock);
3865

3866 3867 3868 3869
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3870
	mutex_lock(&wq_pool_mutex);
3871
	list_del_init(&wq->list);
3872
	mutex_unlock(&wq_pool_mutex);
3873

3874 3875
	workqueue_sysfs_unregister(wq);

3876
	if (wq->rescuer) {
3877
		kthread_stop(wq->rescuer->task);
3878
		kfree(wq->rescuer);
3879
		wq->rescuer = NULL;
3880 3881
	}

T
Tejun Heo 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
		 * access the first pwq and put the base ref.  As both pwqs
		 * and pools are sched-RCU protected, the lock operations
		 * are safe.  @wq will be freed when the last pwq is
		 * released.
		 */
3897 3898
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
T
Tejun Heo 已提交
3899 3900 3901
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
3902
	}
3903 3904 3905
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3918
	struct pool_workqueue *pwq;
3919

3920 3921 3922 3923
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

3924
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3925

3926
	spin_lock_irq(&pwq_lock);
3927 3928 3929

	wq->saved_max_active = max_active;

3930 3931
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3932

3933
	spin_unlock_irq(&pwq_lock);
3934
}
3935
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3936

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

3947
	return worker && worker->rescue_wq;
3948 3949
}

3950
/**
3951 3952 3953
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3954
 *
3955 3956 3957
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3958
 *
3959 3960
 * RETURNS:
 * %true if congested, %false otherwise.
3961
 */
3962
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3963
{
3964
	struct pool_workqueue *pwq;
3965 3966
	bool ret;

3967
	rcu_read_lock_sched();
3968 3969 3970 3971 3972

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
3973

3974
	ret = !list_empty(&pwq->delayed_works);
3975
	rcu_read_unlock_sched();
3976 3977

	return ret;
L
Linus Torvalds 已提交
3978
}
3979
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3980

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3993
{
3994
	struct worker_pool *pool;
3995 3996
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3997

3998 3999
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4000

4001 4002
	local_irq_save(flags);
	pool = get_work_pool(work);
4003
	if (pool) {
4004
		spin_lock(&pool->lock);
4005 4006
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4007
		spin_unlock(&pool->lock);
4008
	}
4009
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4010

4011
	return ret;
L
Linus Torvalds 已提交
4012
}
4013
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4014

4015 4016 4017
/*
 * CPU hotplug.
 *
4018
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4019
 * are a lot of assumptions on strong associations among work, pwq and
4020
 * pool which make migrating pending and scheduled works very
4021
 * difficult to implement without impacting hot paths.  Secondly,
4022
 * worker pools serve mix of short, long and very long running works making
4023 4024
 * blocked draining impractical.
 *
4025
 * This is solved by allowing the pools to be disassociated from the CPU
4026 4027
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4028
 */
L
Linus Torvalds 已提交
4029

4030
static void wq_unbind_fn(struct work_struct *work)
4031
{
4032
	int cpu = smp_processor_id();
4033
	struct worker_pool *pool;
4034
	struct worker *worker;
4035
	int wi;
4036

4037
	for_each_cpu_worker_pool(pool, cpu) {
4038
		WARN_ON_ONCE(cpu != smp_processor_id());
4039

4040
		mutex_lock(&pool->manager_mutex);
4041
		spin_lock_irq(&pool->lock);
4042

4043
		/*
4044
		 * We've blocked all manager operations.  Make all workers
4045 4046 4047 4048 4049
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4050
		for_each_pool_worker(worker, wi, pool)
4051
			worker->flags |= WORKER_UNBOUND;
4052

4053
		pool->flags |= POOL_DISASSOCIATED;
4054

4055
		spin_unlock_irq(&pool->lock);
4056
		mutex_unlock(&pool->manager_mutex);
4057
	}
4058

4059
	/*
4060
	 * Call schedule() so that we cross rq->lock and thus can guarantee
4061 4062
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
4063 4064
	 */
	schedule();
4065

4066
	/*
4067 4068
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
4069 4070 4071
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
4072 4073 4074 4075
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
4076
	 */
4077
	for_each_cpu_worker_pool(pool, cpu)
4078
		atomic_set(&pool->nr_running, 0);
4079 4080
}

T
Tejun Heo 已提交
4081 4082 4083 4084
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4085
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4086 4087 4088
 */
static void rebind_workers(struct worker_pool *pool)
{
4089 4090
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4091 4092 4093

	lockdep_assert_held(&pool->manager_mutex);

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4104

4105
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4106

4107 4108
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4109 4110

		/*
4111 4112 4113 4114 4115 4116
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4117
		 */
4118 4119
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4120

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4140
	}
4141 4142

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4143 4144
}

4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4178 4179 4180 4181
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4182
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4183 4184
					       unsigned long action,
					       void *hcpu)
4185
{
4186
	int cpu = (unsigned long)hcpu;
4187
	struct worker_pool *pool;
4188
	int pi;
4189

T
Tejun Heo 已提交
4190
	switch (action & ~CPU_TASKS_FROZEN) {
4191
	case CPU_UP_PREPARE:
4192
		for_each_cpu_worker_pool(pool, cpu) {
4193 4194
			if (pool->nr_workers)
				continue;
4195
			if (create_and_start_worker(pool) < 0)
4196
				return NOTIFY_BAD;
4197
		}
T
Tejun Heo 已提交
4198
		break;
4199

4200 4201
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4202
		mutex_lock(&wq_pool_mutex);
4203 4204

		for_each_pool(pool, pi) {
4205
			mutex_lock(&pool->manager_mutex);
4206

4207 4208 4209 4210
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4211

4212 4213 4214 4215
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4216

4217
			mutex_unlock(&pool->manager_mutex);
4218
		}
4219

4220
		mutex_unlock(&wq_pool_mutex);
4221
		break;
4222
	}
4223 4224 4225 4226 4227 4228 4229
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4230
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4231 4232 4233
						 unsigned long action,
						 void *hcpu)
{
4234
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4235 4236
	struct work_struct unbind_work;

4237 4238
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
4239
		/* unbinding should happen on the local CPU */
4240
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4241
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
4242 4243
		flush_work(&unbind_work);
		break;
4244 4245 4246 4247
	}
	return NOTIFY_OK;
}

4248
#ifdef CONFIG_SMP
4249

4250
struct work_for_cpu {
4251
	struct work_struct work;
4252 4253 4254 4255 4256
	long (*fn)(void *);
	void *arg;
	long ret;
};

4257
static void work_for_cpu_fn(struct work_struct *work)
4258
{
4259 4260
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4261 4262 4263 4264 4265 4266 4267 4268 4269
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4270 4271
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4272
 * The caller must not hold any locks which would prevent @fn from completing.
4273
 */
4274
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4275
{
4276
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4277

4278 4279 4280
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
4281 4282 4283 4284 4285
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4286 4287 4288 4289 4290
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4291
 * Start freezing workqueues.  After this function returns, all freezable
4292
 * workqueues will queue new works to their delayed_works list instead of
4293
 * pool->worklist.
4294 4295
 *
 * CONTEXT:
4296
 * Grabs and releases wq_pool_mutex, pwq_lock and pool->lock's.
4297 4298 4299
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4300
	struct worker_pool *pool;
4301 4302
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4303
	int pi;
4304

4305
	mutex_lock(&wq_pool_mutex);
4306

4307
	WARN_ON_ONCE(workqueue_freezing);
4308 4309
	workqueue_freezing = true;

4310
	/* set FREEZING */
4311
	for_each_pool(pool, pi) {
4312
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4313 4314
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4315
		spin_unlock_irq(&pool->lock);
4316
	}
4317

4318
	/* suppress further executions by setting max_active to zero */
4319
	spin_lock_irq(&pwq_lock);
4320
	list_for_each_entry(wq, &workqueues, list) {
4321 4322
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4323
	}
4324
	spin_unlock_irq(&pwq_lock);
4325

4326
	mutex_unlock(&wq_pool_mutex);
4327 4328 4329
}

/**
4330
 * freeze_workqueues_busy - are freezable workqueues still busy?
4331 4332 4333 4334 4335
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4336
 * Grabs and releases wq_pool_mutex.
4337 4338
 *
 * RETURNS:
4339 4340
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4341 4342 4343 4344
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4345 4346
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4347

4348
	mutex_lock(&wq_pool_mutex);
4349

4350
	WARN_ON_ONCE(!workqueue_freezing);
4351

4352 4353 4354
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4355 4356 4357 4358
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4359
		rcu_read_lock_sched();
4360
		for_each_pwq(pwq, wq) {
4361
			WARN_ON_ONCE(pwq->nr_active < 0);
4362
			if (pwq->nr_active) {
4363
				busy = true;
4364
				rcu_read_unlock_sched();
4365 4366 4367
				goto out_unlock;
			}
		}
4368
		rcu_read_unlock_sched();
4369 4370
	}
out_unlock:
4371
	mutex_unlock(&wq_pool_mutex);
4372 4373 4374 4375 4376 4377 4378
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4379
 * frozen works are transferred to their respective pool worklists.
4380 4381
 *
 * CONTEXT:
4382
 * Grabs and releases wq_pool_mutex, pwq_lock and pool->lock's.
4383 4384 4385
 */
void thaw_workqueues(void)
{
4386 4387 4388
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4389
	int pi;
4390

4391
	mutex_lock(&wq_pool_mutex);
4392 4393 4394 4395

	if (!workqueue_freezing)
		goto out_unlock;

4396
	/* clear FREEZING */
4397
	for_each_pool(pool, pi) {
4398
		spin_lock_irq(&pool->lock);
4399 4400
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4401
		spin_unlock_irq(&pool->lock);
4402
	}
4403

4404
	/* restore max_active and repopulate worklist */
4405
	spin_lock_irq(&pwq_lock);
4406
	list_for_each_entry(wq, &workqueues, list) {
4407 4408
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4409
	}
4410
	spin_unlock_irq(&pwq_lock);
4411 4412 4413

	workqueue_freezing = false;
out_unlock:
4414
	mutex_unlock(&wq_pool_mutex);
4415 4416 4417
}
#endif /* CONFIG_FREEZER */

4418
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4419
{
T
Tejun Heo 已提交
4420 4421
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4422

4423 4424
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4425
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4426

4427 4428 4429 4430
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4431
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4432
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4433

4434
	/* initialize CPU pools */
4435
	for_each_possible_cpu(cpu) {
4436
		struct worker_pool *pool;
4437

T
Tejun Heo 已提交
4438
		i = 0;
4439
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4440
			BUG_ON(init_worker_pool(pool));
4441
			pool->cpu = cpu;
4442
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4443 4444
			pool->attrs->nice = std_nice[i++];

T
Tejun Heo 已提交
4445
			/* alloc pool ID */
4446
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4447
			BUG_ON(worker_pool_assign_id(pool));
4448
			mutex_unlock(&wq_pool_mutex);
4449
		}
4450 4451
	}

4452
	/* create the initial worker */
4453
	for_each_online_cpu(cpu) {
4454
		struct worker_pool *pool;
4455

4456
		for_each_cpu_worker_pool(pool, cpu) {
4457
			pool->flags &= ~POOL_DISASSOCIATED;
4458
			BUG_ON(create_and_start_worker(pool) < 0);
4459
		}
4460 4461
	}

4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

		attrs->nice = std_nice[i];
		cpumask_setall(attrs->cpumask);

		unbound_std_wq_attrs[i] = attrs;
	}

4474
	system_wq = alloc_workqueue("events", 0, 0);
4475
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4476
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4477 4478
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4479 4480
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4481
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4482
	       !system_unbound_wq || !system_freezable_wq);
4483
	return 0;
L
Linus Torvalds 已提交
4484
}
4485
early_initcall(init_workqueues);