workqueue.c 107.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
116
 *    If POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125 126
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
T
Tejun Heo 已提交
127
	int			id;		/* I: pool ID */
128
	unsigned int		flags;		/* X: flags */
129 130 131

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
132 133

	/* nr_idle includes the ones off idle_list for rebinding */
134 135 136 137 138 139
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

140 141 142 143
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

144
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
145 146 147
	struct ida		worker_ida;	/* L: for worker IDs */
};

148
/*
149 150 151
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
152 153 154 155
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
156

157
	struct worker_pool	pools[NR_STD_WORKER_POOLS];
158
						/* normal and highpri pools */
159 160
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
161
/*
162
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
163 164
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
165 166
 */
struct cpu_workqueue_struct {
167
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
168
	struct workqueue_struct *wq;		/* I: the owning workqueue */
169 170 171 172
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
173
	int			nr_active;	/* L: nr of active works */
174
	int			max_active;	/* L: max active works */
175
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
176
};
L
Linus Torvalds 已提交
177

178 179 180 181 182 183 184 185 186
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

187 188 189 190 191 192 193 194 195 196
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
197
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
198 199 200 201 202 203 204 205 206
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
207 208 209 210 211 212

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
213
	unsigned int		flags;		/* W: WQ_* flags */
214 215 216 217 218
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
219
	struct list_head	list;		/* W: list of all workqueues */
220 221 222 223 224 225 226 227 228

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

229
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
230 231
	struct worker		*rescuer;	/* I: rescue worker */

232
	int			nr_drainers;	/* W: drain in progress */
233
	int			saved_max_active; /* W: saved cwq max_active */
234
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
235
	struct lockdep_map	lockdep_map;
236
#endif
237
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
238 239
};

240 241
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
242
struct workqueue_struct *system_highpri_wq __read_mostly;
243
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
244
struct workqueue_struct *system_long_wq __read_mostly;
245
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
246
struct workqueue_struct *system_unbound_wq __read_mostly;
247
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
248
struct workqueue_struct *system_freezable_wq __read_mostly;
249
EXPORT_SYMBOL_GPL(system_freezable_wq);
250

251 252 253
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

254
#define for_each_worker_pool(pool, gcwq)				\
255
	for ((pool) = &(gcwq)->pools[0];				\
256
	     (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
257

258 259
#define for_each_busy_worker(worker, i, pos, pool)			\
	hash_for_each(pool->busy_hash, i, pos, worker, hentry)
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

282 283 284 285 286 287 288 289 290 291 292 293 294
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

310 311 312 313
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

314 315 316 317 318
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
354
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
390
	.debug_hint	= work_debug_hint,
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

426 427
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
428
static LIST_HEAD(workqueues);
429
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
430

431 432 433 434 435
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
436
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
437
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
438

439
/*
440 441 442
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The pools
 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
 * WORKER_UNBOUND set.
443 444
 */
static struct global_cwq unbound_global_cwq;
445 446
static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
	[0 ... NR_STD_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
447
};
448

T
Tejun Heo 已提交
449 450 451 452
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
453
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
454

455
static int std_worker_pool_pri(struct worker_pool *pool)
456 457 458 459
{
	return pool - pool->gcwq->pools;
}

460 461
static struct global_cwq *get_gcwq(unsigned int cpu)
{
462 463 464 465
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
466 467
}

T
Tejun Heo 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

481 482 483 484 485 486 487 488 489
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

490
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
491
{
492
	int cpu = pool->gcwq->cpu;
493
	int idx = std_worker_pool_pri(pool);
494

495
	if (cpu != WORK_CPU_UNBOUND)
496
		return &per_cpu(pool_nr_running, cpu)[idx];
497
	else
498
		return &unbound_pool_nr_running[idx];
499 500
}

T
Tejun Heo 已提交
501 502
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
503
{
504
	if (!(wq->flags & WQ_UNBOUND)) {
505
		if (likely(cpu < nr_cpu_ids))
506 507 508 509
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
510 511
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
527

528
/*
529 530
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
531
 * is cleared and the high bits contain OFFQ flags and pool ID.
532
 *
533 534
 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, pool or clear
535 536
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
537
 *
538 539 540 541
 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
 * corresponding to a work.  Pool is available once the work has been
 * queued anywhere after initialization until it is sync canceled.  cwq is
 * available only while the work item is queued.
542
 *
543 544 545 546
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
547
 */
548 549
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
550
{
551
	BUG_ON(!work_pending(work));
552 553
	atomic_long_set(&work->data, data | flags | work_static(work));
}
554

555 556 557 558 559
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
560
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
561 562
}

563 564
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
565
{
566 567 568 569 570 571 572
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
573
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
574
}
575

576
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
577
{
578 579
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
580 581
}

582
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
583
{
584
	unsigned long data = atomic_long_read(&work->data);
585

586 587 588 589
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
590 591
}

592 593 594 595 596 597 598
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
599
{
600
	unsigned long data = atomic_long_read(&work->data);
601 602
	struct worker_pool *pool;
	int pool_id;
603

604 605
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
606
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
607

608 609
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
610 611
		return NULL;

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
	struct worker_pool *pool = get_work_pool(work);

	return pool ? pool->id : WORK_OFFQ_POOL_NONE;
}

static struct global_cwq *get_work_gcwq(struct work_struct *work)
{
	struct worker_pool *pool = get_work_pool(work);

	return pool ? pool->gcwq : NULL;
636 637
}

638 639
static void mark_work_canceling(struct work_struct *work)
{
640
	unsigned long pool_id = get_work_pool_id(work);
641

642 643
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
644 645 646 647 648 649 650 651 652
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

653
/*
654 655 656
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
657 658
 */

659
static bool __need_more_worker(struct worker_pool *pool)
660
{
661
	return !atomic_read(get_pool_nr_running(pool));
662 663
}

664
/*
665 666
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
667 668 669 670
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
671
 */
672
static bool need_more_worker(struct worker_pool *pool)
673
{
674
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
675
}
676

677
/* Can I start working?  Called from busy but !running workers. */
678
static bool may_start_working(struct worker_pool *pool)
679
{
680
	return pool->nr_idle;
681 682 683
}

/* Do I need to keep working?  Called from currently running workers. */
684
static bool keep_working(struct worker_pool *pool)
685
{
686
	atomic_t *nr_running = get_pool_nr_running(pool);
687

688
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
689 690 691
}

/* Do we need a new worker?  Called from manager. */
692
static bool need_to_create_worker(struct worker_pool *pool)
693
{
694
	return need_more_worker(pool) && !may_start_working(pool);
695
}
696

697
/* Do I need to be the manager? */
698
static bool need_to_manage_workers(struct worker_pool *pool)
699
{
700
	return need_to_create_worker(pool) ||
701
		(pool->flags & POOL_MANAGE_WORKERS);
702 703 704
}

/* Do we have too many workers and should some go away? */
705
static bool too_many_workers(struct worker_pool *pool)
706
{
707
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
708 709
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
710

711 712 713 714 715 716 717
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

718
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
719 720
}

721
/*
722 723 724
 * Wake up functions.
 */

725
/* Return the first worker.  Safe with preemption disabled */
726
static struct worker *first_worker(struct worker_pool *pool)
727
{
728
	if (unlikely(list_empty(&pool->idle_list)))
729 730
		return NULL;

731
	return list_first_entry(&pool->idle_list, struct worker, entry);
732 733 734 735
}

/**
 * wake_up_worker - wake up an idle worker
736
 * @pool: worker pool to wake worker from
737
 *
738
 * Wake up the first idle worker of @pool.
739 740 741 742
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
743
static void wake_up_worker(struct worker_pool *pool)
744
{
745
	struct worker *worker = first_worker(pool);
746 747 748 749 750

	if (likely(worker))
		wake_up_process(worker->task);
}

751
/**
752 753 754 755 756 757 758 759 760 761 762 763 764 765
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

766 767
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
		WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
768
		atomic_inc(get_pool_nr_running(worker->pool));
769
	}
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
791 792
	struct worker_pool *pool;
	atomic_t *nr_running;
793

794 795 796 797 798
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
799
	if (worker->flags & WORKER_NOT_RUNNING)
800 801
		return NULL;

802 803 804
	pool = worker->pool;
	nr_running = get_pool_nr_running(pool);

805 806 807 808 809 810 811 812
	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
813 814 815 816 817
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
818
	 */
819
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
820
		to_wakeup = first_worker(pool);
821 822 823 824 825
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
826
 * @worker: self
827 828 829
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
830 831 832
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
833
 *
834 835
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
836 837 838 839
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
840
	struct worker_pool *pool = worker->pool;
841

842 843
	WARN_ON_ONCE(worker->task != current);

844 845 846 847 848 849 850
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
851
		atomic_t *nr_running = get_pool_nr_running(pool);
852 853 854

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
855
			    !list_empty(&pool->worklist))
856
				wake_up_worker(pool);
857 858 859 860
		} else
			atomic_dec(nr_running);
	}

861 862 863 864
	worker->flags |= flags;
}

/**
865
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
866
 * @worker: self
867 868
 * @flags: flags to clear
 *
869
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
870
 *
871 872
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
873 874 875
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
876
	struct worker_pool *pool = worker->pool;
877 878
	unsigned int oflags = worker->flags;

879 880
	WARN_ON_ONCE(worker->task != current);

881
	worker->flags &= ~flags;
882

883 884 885 886 887
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
888 889
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
890
			atomic_inc(get_pool_nr_running(pool));
891 892
}

893 894
/**
 * find_worker_executing_work - find worker which is executing a work
895
 * @pool: pool of interest
896 897
 * @work: work to find worker for
 *
898 899
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
919 920 921 922 923 924 925
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
926
 */
927
static struct worker *find_worker_executing_work(struct worker_pool *pool,
928
						 struct work_struct *work)
929
{
930 931 932
	struct worker *worker;
	struct hlist_node *tmp;

933
	hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
934 935 936
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
937 938 939
			return worker;

	return NULL;
940 941
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

983
static void cwq_activate_delayed_work(struct work_struct *work)
984
{
985
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
986 987 988 989 990 991 992

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

993 994 995 996 997 998 999 1000
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
1012
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1013 1014 1015 1016 1017 1018 1019
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

1020 1021 1022 1023 1024
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1046
/**
1047
 * try_to_grab_pending - steal work item from worklist and disable irq
1048 1049
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1050
 * @flags: place to store irq state
1051 1052 1053 1054 1055 1056 1057
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1058 1059
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1060
 *
1061
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1062 1063 1064
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1065 1066 1067 1068
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1069
 * This function is safe to call from any context including IRQ handler.
1070
 */
1071 1072
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1073 1074 1075
{
	struct global_cwq *gcwq;

1076 1077
	local_irq_save(*flags);

1078 1079 1080 1081
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1082 1083 1084 1085 1086
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1087 1088 1089 1090 1091
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1092 1093 1094 1095 1096 1097 1098 1099 1100
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	gcwq = get_work_gcwq(work);
	if (!gcwq)
1101
		goto fail;
1102

1103
	spin_lock(&gcwq->lock);
1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong gcwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (gcwq == get_work_gcwq(work)) {
			debug_work_deactivate(work);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

			/*
			 * A delayed work item cannot be grabbed directly
			 * because it might have linked NO_COLOR work items
			 * which, if left on the delayed_list, will confuse
			 * cwq->nr_active management later on and cause
			 * stall.  Make sure the work item is activated
			 * before grabbing.
			 */
			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
				cwq_activate_delayed_work(work);

1125 1126
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
1127
				get_work_color(work));
1128

1129
			spin_unlock(&gcwq->lock);
1130
			return 1;
1131 1132
		}
	}
1133 1134 1135 1136 1137 1138
	spin_unlock(&gcwq->lock);
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1139
	return -EAGAIN;
1140 1141
}

T
Tejun Heo 已提交
1142
/**
1143
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1144 1145 1146 1147 1148
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1149 1150
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1151 1152
 *
 * CONTEXT:
1153
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1154
 */
O
Oleg Nesterov 已提交
1155
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1156 1157
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1158
{
1159
	struct worker_pool *pool = cwq->pool;
1160

T
Tejun Heo 已提交
1161
	/* we own @work, set data and link */
1162
	set_work_cwq(work, cwq, extra_flags);
1163

1164 1165 1166 1167 1168
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1169

1170
	list_add_tail(&work->entry, head);
1171 1172 1173 1174 1175 1176 1177 1178

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1179 1180
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1181 1182
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
1194 1195 1196
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
1197 1198 1199 1200 1201
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
1202
		for_each_busy_worker(worker, i, pos, pool) {
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
1217
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1218 1219
			 struct work_struct *work)
{
1220 1221
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
1222
	struct list_head *worklist;
1223
	unsigned int work_flags;
1224
	unsigned int req_cpu = cpu;
1225 1226 1227 1228 1229 1230 1231 1232

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1233

1234
	debug_work_activate(work);
1235

1236
	/* if dying, only works from the same workqueue are allowed */
1237
	if (unlikely(wq->flags & WQ_DRAINING) &&
1238
	    WARN_ON_ONCE(!is_chained_work(wq)))
1239 1240
		return;

1241 1242
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1243
		struct worker_pool *last_pool;
1244

1245
		if (cpu == WORK_CPU_UNBOUND)
1246 1247
			cpu = raw_smp_processor_id();

1248
		/*
1249 1250 1251 1252
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1253
		 */
1254
		gcwq = get_gcwq(cpu);
1255
		last_pool = get_work_pool(work);
1256

1257 1258
		if (last_pool && last_pool->gcwq != gcwq) {
			struct global_cwq *last_gcwq = last_pool->gcwq;
1259 1260
			struct worker *worker;

1261
			spin_lock(&last_gcwq->lock);
1262

1263
			worker = find_worker_executing_work(last_pool, work);
1264 1265 1266 1267 1268

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1269 1270
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1271
			}
1272 1273 1274
		} else {
			spin_lock(&gcwq->lock);
		}
1275 1276
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1277
		spin_lock(&gcwq->lock);
1278 1279 1280 1281
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1282
	trace_workqueue_queue_work(req_cpu, cwq, work);
1283

1284
	if (WARN_ON(!list_empty(&work->entry))) {
1285
		spin_unlock(&gcwq->lock);
1286 1287
		return;
	}
1288

1289
	cwq->nr_in_flight[cwq->work_color]++;
1290
	work_flags = work_color_to_flags(cwq->work_color);
1291 1292

	if (likely(cwq->nr_active < cwq->max_active)) {
1293
		trace_workqueue_activate_work(work);
1294
		cwq->nr_active++;
1295
		worklist = &cwq->pool->worklist;
1296 1297
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1298
		worklist = &cwq->delayed_works;
1299
	}
1300

1301
	insert_work(cwq, work, worklist, work_flags);
1302

1303
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1304 1305
}

1306
/**
1307 1308
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1309 1310 1311
 * @wq: workqueue to use
 * @work: work to queue
 *
1312
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1313
 *
1314 1315
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1316
 */
1317 1318
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1319
{
1320
	bool ret = false;
1321
	unsigned long flags;
1322

1323
	local_irq_save(flags);
1324

1325
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1326
		__queue_work(cpu, wq, work);
1327
		ret = true;
1328
	}
1329

1330
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1331 1332
	return ret;
}
1333
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1334

1335
/**
1336
 * queue_work - queue work on a workqueue
1337 1338 1339
 * @wq: workqueue to use
 * @work: work to queue
 *
1340
 * Returns %false if @work was already on a queue, %true otherwise.
1341
 *
1342 1343
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1344
 */
1345
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1346
{
1347
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1348
}
1349
EXPORT_SYMBOL_GPL(queue_work);
1350

1351
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1352
{
1353
	struct delayed_work *dwork = (struct delayed_work *)__data;
1354
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1355

1356
	/* should have been called from irqsafe timer with irq already off */
1357
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1358
}
1359
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1360

1361 1362
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1363
{
1364 1365 1366 1367 1368 1369
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1370 1371
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1384
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1385

1386 1387 1388 1389 1390 1391 1392 1393
	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
	 * work's gcwq is preserved to allow reentrance detection for
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
		struct global_cwq *gcwq = get_work_gcwq(work);

1394 1395 1396 1397 1398 1399 1400
		/*
		 * If we cannot get the last gcwq from @work directly,
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
		if (gcwq)
1401
			lcpu = gcwq->cpu;
1402
		if (lcpu == WORK_CPU_UNBOUND)
1403 1404 1405 1406 1407 1408 1409
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1410
	dwork->cpu = cpu;
1411 1412 1413 1414 1415 1416
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1417 1418
}

1419 1420 1421 1422
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1423
 * @dwork: work to queue
1424 1425
 * @delay: number of jiffies to wait before queueing
 *
1426 1427 1428
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1429
 */
1430 1431
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1432
{
1433
	struct work_struct *work = &dwork->work;
1434
	bool ret = false;
1435
	unsigned long flags;
1436

1437 1438
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1439

1440
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1441
		__queue_delayed_work(cpu, wq, dwork, delay);
1442
		ret = true;
1443
	}
1444

1445
	local_irq_restore(flags);
1446 1447
	return ret;
}
1448
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1449

1450 1451 1452 1453 1454 1455
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1456
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1457
 */
1458
bool queue_delayed_work(struct workqueue_struct *wq,
1459 1460
			struct delayed_work *dwork, unsigned long delay)
{
1461
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1462 1463
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1480
 * This function is safe to call from any context including IRQ handler.
1481 1482 1483 1484 1485 1486 1487
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1488

1489 1490 1491
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1492

1493 1494 1495
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1496
	}
1497 1498

	/* -ENOENT from try_to_grab_pending() becomes %true */
1499 1500
	return ret;
}
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1517

T
Tejun Heo 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1529
{
1530
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1531 1532 1533 1534 1535

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1536 1537
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1538
	pool->nr_idle++;
1539
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1540 1541

	/* idle_list is LIFO */
1542
	list_add(&worker->entry, &pool->idle_list);
1543

1544 1545
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1546

1547
	/*
1548 1549 1550 1551
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1552
	 */
1553
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1554
		     pool->nr_workers == pool->nr_idle &&
1555
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1569
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1570 1571

	BUG_ON(!(worker->flags & WORKER_IDLE));
1572
	worker_clr_flags(worker, WORKER_IDLE);
1573
	pool->nr_idle--;
T
Tejun Heo 已提交
1574 1575 1576
	list_del_init(&worker->entry);
}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1593
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1594
 * binding against %POOL_DISASSOCIATED which is set during
1595 1596 1597
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1608
__acquires(&gcwq->lock)
1609
{
1610 1611
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
1612 1613 1614
	struct task_struct *task = worker->task;

	while (true) {
1615
		/*
1616 1617 1618
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1619
		 * against POOL_DISASSOCIATED.
1620
		 */
1621
		if (!(pool->flags & POOL_DISASSOCIATED))
1622
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1623 1624

		spin_lock_irq(&gcwq->lock);
1625
		if (pool->flags & POOL_DISASSOCIATED)
1626 1627 1628 1629 1630 1631 1632
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1633 1634 1635 1636 1637 1638
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1639
		cpu_relax();
1640
		cond_resched();
1641 1642 1643
	}
}

1644
/*
1645
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1646
 * list_empty(@worker->entry) before leaving idle and call this function.
1647 1648 1649 1650 1651
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

1652 1653 1654
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1655

1656 1657 1658
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
	spin_unlock_irq(&gcwq->lock);
1659 1660
}

1661
/*
1662
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1663 1664 1665
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1666
 */
1667
static void busy_worker_rebind_fn(struct work_struct *work)
1668 1669
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1670
	struct global_cwq *gcwq = worker->pool->gcwq;
1671

1672 1673
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1674 1675 1676 1677

	spin_unlock_irq(&gcwq->lock);
}

1678 1679 1680 1681 1682 1683 1684
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
1685 1686 1687 1688
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1689
 *
1690 1691 1692 1693
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1694
 *
1695 1696 1697 1698
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1699 1700 1701 1702
 */
static void rebind_workers(struct global_cwq *gcwq)
{
	struct worker_pool *pool;
1703
	struct worker *worker, *n;
1704 1705 1706 1707 1708 1709
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
1710
		lockdep_assert_held(&pool->assoc_mutex);
1711

1712
	/* dequeue and kick idle ones */
1713
	for_each_worker_pool(pool, gcwq) {
1714 1715 1716 1717 1718 1719 1720
		list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
			/*
			 * idle workers should be off @pool->idle_list
			 * until rebind is complete to avoid receiving
			 * premature local wake-ups.
			 */
			list_del_init(&worker->entry);
1721

1722 1723 1724 1725
			/*
			 * worker_thread() will see the above dequeuing
			 * and call idle_worker_rebind().
			 */
1726 1727 1728
			wake_up_process(worker->task);
		}

1729 1730 1731 1732
		/* rebind busy workers */
		for_each_busy_worker(worker, i, pos, pool) {
			struct work_struct *rebind_work = &worker->rebind_work;
			struct workqueue_struct *wq;
1733

1734 1735 1736
			if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
					     work_data_bits(rebind_work)))
				continue;
1737

1738
			debug_work_activate(rebind_work);
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
			/*
			 * wq doesn't really matter but let's keep
			 * @worker->pool and @cwq->pool consistent for
			 * sanity.
			 */
			if (std_worker_pool_pri(worker->pool))
				wq = system_highpri_wq;
			else
				wq = system_wq;

			insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
				    worker->scheduled.next,
				    work_color_to_flags(WORK_NO_COLOR));
		}
1754
	}
1755 1756
}

T
Tejun Heo 已提交
1757 1758 1759 1760 1761
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1762 1763
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1764
		INIT_LIST_HEAD(&worker->scheduled);
1765
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1766 1767
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1768
	}
T
Tejun Heo 已提交
1769 1770 1771 1772 1773
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1774
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1775
 *
1776
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1786
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1787
{
1788
	struct global_cwq *gcwq = pool->gcwq;
1789
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1790
	struct worker *worker = NULL;
1791
	int id = -1;
T
Tejun Heo 已提交
1792

1793
	spin_lock_irq(&gcwq->lock);
1794
	while (ida_get_new(&pool->worker_ida, &id)) {
1795
		spin_unlock_irq(&gcwq->lock);
1796
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1797
			goto fail;
1798
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1799
	}
1800
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1801 1802 1803 1804 1805

	worker = alloc_worker();
	if (!worker)
		goto fail;

1806
	worker->pool = pool;
T
Tejun Heo 已提交
1807 1808
	worker->id = id;

1809
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1810
		worker->task = kthread_create_on_node(worker_thread,
1811 1812
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1813 1814
	else
		worker->task = kthread_create(worker_thread, worker,
1815
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1816 1817 1818
	if (IS_ERR(worker->task))
		goto fail;

1819
	if (std_worker_pool_pri(pool))
1820 1821
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1822
	/*
1823
	 * Determine CPU binding of the new worker depending on
1824
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1825 1826 1827 1828 1829
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1830
	 */
1831
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1832
		kthread_bind(worker->task, gcwq->cpu);
1833
	} else {
1834
		worker->task->flags |= PF_THREAD_BOUND;
1835
		worker->flags |= WORKER_UNBOUND;
1836
	}
T
Tejun Heo 已提交
1837 1838 1839 1840

	return worker;
fail:
	if (id >= 0) {
1841
		spin_lock_irq(&gcwq->lock);
1842
		ida_remove(&pool->worker_ida, id);
1843
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1853
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1854 1855
 *
 * CONTEXT:
1856
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1857 1858 1859
 */
static void start_worker(struct worker *worker)
{
1860
	worker->flags |= WORKER_STARTED;
1861
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1862
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1863 1864 1865 1866 1867 1868 1869
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1870 1871 1872 1873
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1874 1875 1876
 */
static void destroy_worker(struct worker *worker)
{
1877 1878
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1879 1880 1881 1882
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1883
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1884

T
Tejun Heo 已提交
1885
	if (worker->flags & WORKER_STARTED)
1886
		pool->nr_workers--;
T
Tejun Heo 已提交
1887
	if (worker->flags & WORKER_IDLE)
1888
		pool->nr_idle--;
T
Tejun Heo 已提交
1889 1890

	list_del_init(&worker->entry);
1891
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1892 1893 1894

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1895 1896 1897
	kthread_stop(worker->task);
	kfree(worker);

1898
	spin_lock_irq(&gcwq->lock);
1899
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1900 1901
}

1902
static void idle_worker_timeout(unsigned long __pool)
1903
{
1904 1905
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1906 1907 1908

	spin_lock_irq(&gcwq->lock);

1909
	if (too_many_workers(pool)) {
1910 1911 1912 1913
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1914
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1915 1916 1917
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1918
			mod_timer(&pool->idle_timer, expires);
1919 1920
		else {
			/* it's been idle for too long, wake up manager */
1921
			pool->flags |= POOL_MANAGE_WORKERS;
1922
			wake_up_worker(pool);
1923
		}
1924 1925 1926 1927
	}

	spin_unlock_irq(&gcwq->lock);
}
1928

1929 1930 1931 1932
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1933
	unsigned int cpu;
1934 1935 1936 1937 1938

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1939
	cpu = cwq->pool->gcwq->cpu;
1940 1941 1942
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1943
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1944 1945 1946 1947
		wake_up_process(wq->rescuer->task);
	return true;
}

1948
static void gcwq_mayday_timeout(unsigned long __pool)
1949
{
1950 1951
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1952 1953 1954 1955
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1956
	if (need_to_create_worker(pool)) {
1957 1958 1959 1960 1961 1962
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1963
		list_for_each_entry(work, &pool->worklist, entry)
1964
			send_mayday(work);
L
Linus Torvalds 已提交
1965
	}
1966 1967 1968

	spin_unlock_irq(&gcwq->lock);

1969
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1970 1971
}

1972 1973
/**
 * maybe_create_worker - create a new worker if necessary
1974
 * @pool: pool to create a new worker for
1975
 *
1976
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1977 1978
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1979
 * sent to all rescuers with works scheduled on @pool to resolve
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1994
static bool maybe_create_worker(struct worker_pool *pool)
1995 1996
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1997
{
1998 1999 2000
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
2001 2002
		return false;
restart:
2003 2004
	spin_unlock_irq(&gcwq->lock);

2005
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2006
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2007 2008 2009 2010

	while (true) {
		struct worker *worker;

2011
		worker = create_worker(pool);
2012
		if (worker) {
2013
			del_timer_sync(&pool->mayday_timer);
2014 2015
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
2016
			BUG_ON(need_to_create_worker(pool));
2017 2018 2019
			return true;
		}

2020
		if (!need_to_create_worker(pool))
2021
			break;
L
Linus Torvalds 已提交
2022

2023 2024
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
2025

2026
		if (!need_to_create_worker(pool))
2027 2028 2029
			break;
	}

2030
	del_timer_sync(&pool->mayday_timer);
2031
	spin_lock_irq(&gcwq->lock);
2032
	if (need_to_create_worker(pool))
2033 2034 2035 2036 2037 2038
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2039
 * @pool: pool to destroy workers for
2040
 *
2041
 * Destroy @pool workers which have been idle for longer than
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2052
static bool maybe_destroy_workers(struct worker_pool *pool)
2053 2054
{
	bool ret = false;
L
Linus Torvalds 已提交
2055

2056
	while (too_many_workers(pool)) {
2057 2058
		struct worker *worker;
		unsigned long expires;
2059

2060
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2061
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2062

2063
		if (time_before(jiffies, expires)) {
2064
			mod_timer(&pool->idle_timer, expires);
2065
			break;
2066
		}
L
Linus Torvalds 已提交
2067

2068 2069
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2070
	}
2071

2072
	return ret;
2073 2074
}

2075
/**
2076 2077
 * manage_workers - manage worker pool
 * @worker: self
2078
 *
2079 2080 2081 2082 2083 2084 2085
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2086 2087
 *
 * CONTEXT:
2088 2089 2090 2091 2092 2093
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
2094
 */
2095
static bool manage_workers(struct worker *worker)
2096
{
2097
	struct worker_pool *pool = worker->pool;
2098
	bool ret = false;
2099

2100
	if (pool->flags & POOL_MANAGING_WORKERS)
2101
		return ret;
2102

2103
	pool->flags |= POOL_MANAGING_WORKERS;
2104

2105 2106 2107 2108 2109 2110
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2111
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2112 2113
	 * manager against CPU hotplug.
	 *
2114
	 * assoc_mutex would always be free unless CPU hotplug is in
2115 2116
	 * progress.  trylock first without dropping @gcwq->lock.
	 */
2117
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2118
		spin_unlock_irq(&pool->gcwq->lock);
2119
		mutex_lock(&pool->assoc_mutex);
2120 2121
		/*
		 * CPU hotplug could have happened while we were waiting
2122
		 * for assoc_mutex.  Hotplug itself can't handle us
2123 2124 2125
		 * because manager isn't either on idle or busy list, and
		 * @gcwq's state and ours could have deviated.
		 *
2126
		 * As hotplug is now excluded via assoc_mutex, we can
2127 2128 2129 2130 2131 2132 2133 2134
		 * simply try to bind.  It will succeed or fail depending
		 * on @gcwq's current state.  Try it and adjust
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2135

2136 2137
		ret = true;
	}
2138

2139
	pool->flags &= ~POOL_MANAGE_WORKERS;
2140 2141

	/*
2142 2143
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2144
	 */
2145 2146
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2147

2148
	pool->flags &= ~POOL_MANAGING_WORKERS;
2149
	mutex_unlock(&pool->assoc_mutex);
2150
	return ret;
2151 2152
}

2153 2154
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2155
 * @worker: self
2156 2157 2158 2159 2160 2161 2162 2163 2164
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2165
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2166
 */
T
Tejun Heo 已提交
2167
static void process_one_work(struct worker *worker, struct work_struct *work)
2168 2169
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
2170
{
2171
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2172 2173
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
2174
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2175
	int work_color;
2176
	struct worker *collision;
2177 2178 2179 2180 2181 2182 2183 2184
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2185 2186 2187
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2188
#endif
2189 2190 2191
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2192
	 * unbound or a disassociated pool.
2193
	 */
2194
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2195
		     !(pool->flags & POOL_DISASSOCIATED) &&
2196 2197
		     raw_smp_processor_id() != gcwq->cpu);

2198 2199 2200 2201 2202 2203
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2204
	collision = find_worker_executing_work(pool, work);
2205 2206 2207 2208 2209
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2210
	/* claim and dequeue */
2211
	debug_work_deactivate(work);
2212
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2213
	worker->current_work = work;
2214
	worker->current_func = work->func;
2215
	worker->current_cwq = cwq;
2216
	work_color = get_work_color(work);
2217

2218 2219
	list_del_init(&work->entry);

2220 2221 2222 2223 2224 2225 2226
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2227 2228 2229 2230
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2231 2232
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2233

2234
	/*
2235
	 * Record the last pool and clear PENDING which should be the last
2236 2237 2238
	 * update to @work.  Also, do this inside @gcwq->lock so that
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2239
	 */
2240
	set_work_pool_and_clear_pending(work, pool->id);
2241

2242
	spin_unlock_irq(&gcwq->lock);
2243

2244
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2245
	lock_map_acquire(&lockdep_map);
2246
	trace_workqueue_execute_start(work);
2247
	worker->current_func(work);
2248 2249 2250 2251 2252
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2253 2254 2255 2256
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2257 2258
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2259 2260
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2261 2262 2263 2264
		debug_show_held_locks(current);
		dump_stack();
	}

2265
	spin_lock_irq(&gcwq->lock);
2266

2267 2268 2269 2270
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2271
	/* we're done with it, release */
2272
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2273
	worker->current_work = NULL;
2274
	worker->current_func = NULL;
2275
	worker->current_cwq = NULL;
2276
	cwq_dec_nr_in_flight(cwq, work_color);
2277 2278
}

2279 2280 2281 2282 2283 2284 2285 2286 2287
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2288
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2289 2290 2291
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2292
{
2293 2294
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2295
						struct work_struct, entry);
T
Tejun Heo 已提交
2296
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2297 2298 2299
	}
}

T
Tejun Heo 已提交
2300 2301
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2302
 * @__worker: self
T
Tejun Heo 已提交
2303
 *
2304 2305 2306 2307 2308
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2309
 */
T
Tejun Heo 已提交
2310
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2311
{
T
Tejun Heo 已提交
2312
	struct worker *worker = __worker;
2313 2314
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2315

2316 2317
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2318 2319
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2320

2321 2322
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
T
Tejun Heo 已提交
2323
		spin_unlock_irq(&gcwq->lock);
2324

2325
		/* if DIE is set, destruction is requested */
2326 2327 2328 2329 2330
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2331
		/* otherwise, rebind */
2332 2333
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2334
	}
2335

T
Tejun Heo 已提交
2336
	worker_leave_idle(worker);
2337
recheck:
2338
	/* no more worker necessary? */
2339
	if (!need_more_worker(pool))
2340 2341 2342
		goto sleep;

	/* do we need to manage? */
2343
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2344 2345
		goto recheck;

T
Tejun Heo 已提交
2346 2347 2348 2349 2350 2351 2352
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2353 2354 2355 2356 2357 2358 2359 2360
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2361
		struct work_struct *work =
2362
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2363 2364 2365 2366 2367 2368
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2369
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2370 2371 2372
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2373
		}
2374
	} while (keep_working(pool));
2375 2376

	worker_set_flags(worker, WORKER_PREP, false);
2377
sleep:
2378
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2379
		goto recheck;
2380

T
Tejun Heo 已提交
2381
	/*
2382 2383 2384 2385 2386
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2387 2388 2389 2390 2391 2392
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2393 2394
}

2395 2396
/**
 * rescuer_thread - the rescuer thread function
2397
 * @__rescuer: self
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2414
static int rescuer_thread(void *__rescuer)
2415
{
2416 2417
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2418
	struct list_head *scheduled = &rescuer->scheduled;
2419
	bool is_unbound = wq->flags & WQ_UNBOUND;
2420 2421 2422
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2423 2424 2425 2426 2427 2428

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2429 2430 2431
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2432 2433
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2434
		rescuer->task->flags &= ~PF_WQ_WORKER;
2435
		return 0;
2436
	}
2437

2438 2439 2440 2441
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2442
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2443 2444
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2445 2446
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2447 2448 2449
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2450
		mayday_clear_cpu(cpu, wq->mayday_mask);
2451 2452

		/* migrate to the target cpu if possible */
2453
		rescuer->pool = pool;
2454 2455 2456 2457 2458 2459 2460
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2461
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2462 2463 2464 2465
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2466 2467 2468 2469 2470 2471

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2472 2473
		if (keep_working(pool))
			wake_up_worker(pool);
2474

2475 2476 2477
		spin_unlock_irq(&gcwq->lock);
	}

2478 2479
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2480 2481
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2482 2483
}

O
Oleg Nesterov 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2495 2496 2497 2498
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2499 2500
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2501
 *
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2515 2516
 *
 * CONTEXT:
2517
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2518
 */
2519
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2520 2521
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2522
{
2523 2524 2525
	struct list_head *head;
	unsigned int linked = 0;

2526
	/*
2527
	 * debugobject calls are safe here even with gcwq->lock locked
2528 2529 2530 2531
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2532
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2533
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2534
	init_completion(&barr->done);
2535

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2551
	debug_work_activate(&barr->work);
2552 2553
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2554 2555
}

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2589
{
2590 2591
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2592

2593 2594 2595
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2596
	}
2597

2598
	for_each_cwq_cpu(cpu, wq) {
2599
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2600
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2601

2602
		spin_lock_irq(&gcwq->lock);
2603

2604 2605
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2606

2607 2608 2609 2610 2611 2612
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2613

2614 2615 2616 2617
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2618

2619
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2620
	}
2621

2622 2623
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2624

2625
	return wait;
L
Linus Torvalds 已提交
2626 2627
}

2628
/**
L
Linus Torvalds 已提交
2629
 * flush_workqueue - ensure that any scheduled work has run to completion.
2630
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2631 2632 2633 2634
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2635 2636
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2637
 */
2638
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2639
{
2640 2641 2642 2643 2644 2645
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2646

2647 2648
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2710 2711 2712 2713
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2781
}
2782
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2783

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2814
		bool drained;
2815

2816
		spin_lock_irq(&cwq->pool->gcwq->lock);
2817
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2818
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2819 2820

		if (drained)
2821 2822 2823 2824
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2825 2826
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2837
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2838
{
2839
	struct worker *worker = NULL;
2840
	struct worker_pool *pool;
2841
	struct global_cwq *gcwq;
2842 2843 2844
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2845 2846
	pool = get_work_pool(work);
	if (!pool)
2847
		return false;
2848
	gcwq = pool->gcwq;
2849

2850
	spin_lock_irq(&gcwq->lock);
2851 2852 2853
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2854 2855
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2856 2857
		 */
		smp_rmb();
2858
		cwq = get_work_cwq(work);
2859
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2860
			goto already_gone;
2861
	} else {
2862
		worker = find_worker_executing_work(pool, work);
2863
		if (!worker)
T
Tejun Heo 已提交
2864
			goto already_gone;
2865
		cwq = worker->current_cwq;
2866
	}
2867

2868
	insert_wq_barrier(cwq, barr, work, worker);
2869
	spin_unlock_irq(&gcwq->lock);
2870

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2881
	lock_map_release(&cwq->wq->lockdep_map);
2882

2883
	return true;
T
Tejun Heo 已提交
2884
already_gone:
2885
	spin_unlock_irq(&gcwq->lock);
2886
	return false;
2887
}
2888 2889 2890 2891 2892

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2893 2894
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2895 2896 2897 2898 2899 2900 2901 2902 2903
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2904 2905 2906
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2907
	if (start_flush_work(work, &barr)) {
2908 2909 2910
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2911
	} else {
2912
		return false;
2913 2914
	}
}
2915
EXPORT_SYMBOL_GPL(flush_work);
2916

2917
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2918
{
2919
	unsigned long flags;
2920 2921 2922
	int ret;

	do {
2923 2924 2925 2926 2927 2928
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2929
			flush_work(work);
2930 2931
	} while (unlikely(ret < 0));

2932 2933 2934 2935
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2936
	flush_work(work);
2937
	clear_work_data(work);
2938 2939 2940
	return ret;
}

2941
/**
2942 2943
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2944
 *
2945 2946 2947 2948
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2949
 *
2950 2951
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2952
 *
2953
 * The caller must ensure that the workqueue on which @work was last
2954
 * queued can't be destroyed before this function returns.
2955 2956 2957
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2958
 */
2959
bool cancel_work_sync(struct work_struct *work)
2960
{
2961
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2962
}
2963
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2964

2965
/**
2966 2967
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2968
 *
2969 2970 2971
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2972
 *
2973 2974 2975
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2976
 */
2977 2978
bool flush_delayed_work(struct delayed_work *dwork)
{
2979
	local_irq_disable();
2980
	if (del_timer_sync(&dwork->timer))
2981
		__queue_work(dwork->cpu,
2982
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2983
	local_irq_enable();
2984 2985 2986 2987
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2988
/**
2989 2990
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2991
 *
2992 2993 2994 2995 2996
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2997
 *
2998
 * This function is safe to call from any context including IRQ handler.
2999
 */
3000
bool cancel_delayed_work(struct delayed_work *dwork)
3001
{
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

3012 3013
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
3014
	local_irq_restore(flags);
3015
	return ret;
3016
}
3017
EXPORT_SYMBOL(cancel_delayed_work);
3018

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3029
{
3030
	return __cancel_work_timer(&dwork->work, true);
3031
}
3032
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3033

3034
/**
3035 3036 3037 3038 3039 3040
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3041
bool schedule_work_on(int cpu, struct work_struct *work)
3042
{
3043
	return queue_work_on(cpu, system_wq, work);
3044 3045 3046
}
EXPORT_SYMBOL(schedule_work_on);

3047 3048 3049 3050
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3051 3052
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3053 3054 3055 3056
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3057
 */
3058
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3059
{
3060
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3061
}
3062
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3063

3064 3065 3066
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3067
 * @dwork: job to be done
3068 3069 3070 3071 3072
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3073 3074
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3075
{
3076
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3077
}
3078
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3079

3080 3081
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3082 3083
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3084 3085 3086 3087
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3088
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3089
{
3090
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3091
}
3092
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3093

3094
/**
3095
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3096 3097
 * @func: the function to call
 *
3098 3099
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3100
 * schedule_on_each_cpu() is very slow.
3101 3102 3103
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3104
 */
3105
int schedule_on_each_cpu(work_func_t func)
3106 3107
{
	int cpu;
3108
	struct work_struct __percpu *works;
3109

3110 3111
	works = alloc_percpu(struct work_struct);
	if (!works)
3112
		return -ENOMEM;
3113

3114 3115
	get_online_cpus();

3116
	for_each_online_cpu(cpu) {
3117 3118 3119
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3120
		schedule_work_on(cpu, work);
3121
	}
3122 3123 3124 3125

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3126
	put_online_cpus();
3127
	free_percpu(works);
3128 3129 3130
	return 0;
}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3155 3156
void flush_scheduled_work(void)
{
3157
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3158
}
3159
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3160

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3173
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3174 3175
{
	if (!in_interrupt()) {
3176
		fn(&ew->work);
3177 3178 3179
		return 0;
	}

3180
	INIT_WORK(&ew->work, fn);
3181 3182 3183 3184 3185 3186
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3187 3188
int keventd_up(void)
{
3189
	return system_wq != NULL;
L
Linus Torvalds 已提交
3190 3191
}

3192
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3193
{
3194
	/*
T
Tejun Heo 已提交
3195 3196 3197
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3198
	 */
T
Tejun Heo 已提交
3199 3200 3201
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3202

3203
	if (!(wq->flags & WQ_UNBOUND))
3204
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3205
	else {
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3218
	}
3219

3220
	/* just in case, make sure it's actually aligned */
3221 3222
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3223 3224
}

3225
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3226
{
3227
	if (!(wq->flags & WQ_UNBOUND))
3228 3229 3230
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3231
		kfree(*(void **)(wq->cpu_wq.single + 1));
3232
	}
T
Tejun Heo 已提交
3233 3234
}

3235 3236
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3237
{
3238 3239 3240
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3241 3242
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3243

3244
	return clamp_val(max_active, 1, lim);
3245 3246
}

3247
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3248 3249 3250
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3251
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3252
{
3253
	va_list args, args1;
L
Linus Torvalds 已提交
3254
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3255
	unsigned int cpu;
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3270

3271 3272 3273 3274 3275 3276 3277
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3278
	max_active = max_active ?: WQ_DFL_ACTIVE;
3279
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3280

3281
	/* init wq */
3282
	wq->flags = flags;
3283
	wq->saved_max_active = max_active;
3284 3285 3286 3287
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3288

3289
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3290
	INIT_LIST_HEAD(&wq->list);
3291

3292 3293 3294
	if (alloc_cwqs(wq) < 0)
		goto err;

3295
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3296
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3297
		struct global_cwq *gcwq = get_gcwq(cpu);
3298
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3299

T
Tejun Heo 已提交
3300
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3301
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3302
		cwq->wq = wq;
3303
		cwq->flush_color = -1;
3304 3305
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3306
	}
T
Tejun Heo 已提交
3307

3308 3309 3310
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3311
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3312 3313 3314 3315 3316 3317
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3318 3319
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3320
					       wq->name);
3321 3322 3323 3324 3325
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3326 3327
	}

3328 3329 3330 3331 3332
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3333
	spin_lock(&workqueue_lock);
3334

3335
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3336
		for_each_cwq_cpu(cpu, wq)
3337 3338
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3339
	list_add(&wq->list, &workqueues);
3340

T
Tejun Heo 已提交
3341 3342
	spin_unlock(&workqueue_lock);

3343
	return wq;
T
Tejun Heo 已提交
3344 3345
err:
	if (wq) {
3346
		free_cwqs(wq);
3347
		free_mayday_mask(wq->mayday_mask);
3348
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3349 3350 3351
		kfree(wq);
	}
	return NULL;
3352
}
3353
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3354

3355 3356 3357 3358 3359 3360 3361 3362
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3363
	unsigned int cpu;
3364

3365 3366
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3367

3368 3369 3370 3371
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3372
	spin_lock(&workqueue_lock);
3373
	list_del(&wq->list);
3374
	spin_unlock(&workqueue_lock);
3375

3376
	/* sanity check */
3377
	for_each_cwq_cpu(cpu, wq) {
3378 3379 3380 3381 3382
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3383 3384
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3385
	}
3386

3387 3388
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3389
		free_mayday_mask(wq->mayday_mask);
3390
		kfree(wq->rescuer);
3391 3392
	}

3393
	free_cwqs(wq);
3394 3395 3396 3397
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3432
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3433 3434 3435 3436 3437

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3438
	for_each_cwq_cpu(cpu, wq) {
3439 3440 3441
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
3442 3443 3444

		spin_lock_irq(&gcwq->lock);

3445
		if (!(wq->flags & WQ_FREEZABLE) ||
3446 3447
		    !(pool->flags & POOL_FREEZING))
			cwq_set_max_active(cwq, max_active);
3448

3449
		spin_unlock_irq(&gcwq->lock);
3450
	}
3451

3452
	spin_unlock(&workqueue_lock);
3453
}
3454
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3455

3456
/**
3457 3458 3459
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3460
 *
3461 3462 3463
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3464
 *
3465 3466
 * RETURNS:
 * %true if congested, %false otherwise.
3467
 */
3468
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3469
{
3470 3471 3472
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3473
}
3474
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3475

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3490
{
3491 3492
	struct worker_pool *pool = get_work_pool(work);
	struct global_cwq *gcwq;
3493 3494
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3495

3496
	if (!pool)
3497
		return 0;
3498
	gcwq = pool->gcwq;
L
Linus Torvalds 已提交
3499

3500
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3501

3502 3503
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
3504
	if (find_worker_executing_work(pool, work))
3505
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3506

3507
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3508

3509
	return ret;
L
Linus Torvalds 已提交
3510
}
3511
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3512

3513 3514 3515
/*
 * CPU hotplug.
 *
3516 3517 3518 3519 3520 3521 3522
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3523
 * This is solved by allowing the pools to be disassociated from the CPU
3524 3525
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3526
 */
L
Linus Torvalds 已提交
3527

3528
/* claim manager positions of all pools */
3529
static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3530 3531 3532 3533
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
3534
		mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3535
	spin_lock_irq(&gcwq->lock);
3536 3537 3538
}

/* release manager positions */
3539
static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3540 3541 3542
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3543
	spin_unlock_irq(&gcwq->lock);
3544
	for_each_worker_pool(pool, gcwq)
3545
		mutex_unlock(&pool->assoc_mutex);
3546 3547
}

3548
static void gcwq_unbind_fn(struct work_struct *work)
3549
{
3550
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3551
	struct worker_pool *pool;
3552 3553 3554
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3555

3556 3557
	BUG_ON(gcwq->cpu != smp_processor_id());

3558
	gcwq_claim_assoc_and_lock(gcwq);
3559

3560 3561 3562 3563 3564 3565
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3566
	for_each_worker_pool(pool, gcwq) {
3567
		list_for_each_entry(worker, &pool->idle_list, entry)
3568
			worker->flags |= WORKER_UNBOUND;
3569

3570 3571
		for_each_busy_worker(worker, i, pos, pool)
			worker->flags |= WORKER_UNBOUND;
3572

3573
		pool->flags |= POOL_DISASSOCIATED;
3574
	}
3575

3576
	gcwq_release_assoc_and_unlock(gcwq);
3577

3578
	/*
3579
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3580 3581
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3582 3583
	 */
	schedule();
3584

3585
	/*
3586 3587 3588 3589 3590 3591 3592 3593 3594
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3595
	 */
3596 3597
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3598 3599
}

T
Tejun Heo 已提交
3600 3601 3602 3603
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3604
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3605 3606
					       unsigned long action,
					       void *hcpu)
3607 3608
{
	unsigned int cpu = (unsigned long)hcpu;
3609
	struct global_cwq *gcwq = get_gcwq(cpu);
3610
	struct worker_pool *pool;
3611

T
Tejun Heo 已提交
3612
	switch (action & ~CPU_TASKS_FROZEN) {
3613
	case CPU_UP_PREPARE:
3614
		for_each_worker_pool(pool, gcwq) {
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3627
		}
T
Tejun Heo 已提交
3628
		break;
3629

3630 3631
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3632
		gcwq_claim_assoc_and_lock(gcwq);
3633 3634
		for_each_worker_pool(pool, gcwq)
			pool->flags &= ~POOL_DISASSOCIATED;
3635
		rebind_workers(gcwq);
3636
		gcwq_release_assoc_and_unlock(gcwq);
3637
		break;
3638
	}
3639 3640 3641 3642 3643 3644 3645
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3646
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3647 3648 3649
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3650 3651 3652
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3653 3654
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3655 3656
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3657
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3658 3659
		flush_work(&unbind_work);
		break;
3660 3661 3662 3663
	}
	return NOTIFY_OK;
}

3664
#ifdef CONFIG_SMP
3665

3666
struct work_for_cpu {
3667
	struct work_struct work;
3668 3669 3670 3671 3672
	long (*fn)(void *);
	void *arg;
	long ret;
};

3673
static void work_for_cpu_fn(struct work_struct *work)
3674
{
3675 3676
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3677 3678 3679 3680 3681 3682 3683 3684 3685
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3686 3687
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3688
 * The caller must not hold any locks which would prevent @fn from completing.
3689 3690 3691
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3692
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3693

3694 3695 3696
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3697 3698 3699 3700 3701
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3702 3703 3704 3705 3706
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3707 3708 3709
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3710 3711
 *
 * CONTEXT:
3712
 * Grabs and releases workqueue_lock and gcwq->lock's.
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3723
	for_each_gcwq_cpu(cpu) {
3724
		struct global_cwq *gcwq = get_gcwq(cpu);
3725
		struct worker_pool *pool;
3726
		struct workqueue_struct *wq;
3727 3728 3729

		spin_lock_irq(&gcwq->lock);

3730 3731 3732 3733
		for_each_worker_pool(pool, gcwq) {
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
		}
3734

3735 3736 3737
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3738
			if (cwq && wq->flags & WQ_FREEZABLE)
3739 3740
				cwq->max_active = 0;
		}
3741 3742

		spin_unlock_irq(&gcwq->lock);
3743 3744 3745 3746 3747 3748
	}

	spin_unlock(&workqueue_lock);
}

/**
3749
 * freeze_workqueues_busy - are freezable workqueues still busy?
3750 3751 3752 3753 3754 3755 3756 3757
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3758 3759
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3770
	for_each_gcwq_cpu(cpu) {
3771
		struct workqueue_struct *wq;
3772 3773 3774 3775 3776 3777 3778
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3779
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3798
 * frozen works are transferred to their respective gcwq worklists.
3799 3800
 *
 * CONTEXT:
3801
 * Grabs and releases workqueue_lock and gcwq->lock's.
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3812
	for_each_gcwq_cpu(cpu) {
3813
		struct global_cwq *gcwq = get_gcwq(cpu);
3814
		struct worker_pool *pool;
3815
		struct workqueue_struct *wq;
3816 3817 3818

		spin_lock_irq(&gcwq->lock);

3819 3820 3821 3822
		for_each_worker_pool(pool, gcwq) {
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
		}
3823

3824 3825 3826
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3827
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3828 3829 3830
				continue;

			/* restore max_active and repopulate worklist */
3831
			cwq_set_max_active(cwq, wq->saved_max_active);
3832
		}
3833

3834 3835
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3836

3837
		spin_unlock_irq(&gcwq->lock);
3838 3839 3840 3841 3842 3843 3844 3845
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3846
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3847
{
T
Tejun Heo 已提交
3848 3849
	unsigned int cpu;

3850 3851 3852
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
		     WORK_CPU_LAST * NR_STD_WORKER_POOLS);
3853

3854
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3855
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3856 3857

	/* initialize gcwqs */
3858
	for_each_gcwq_cpu(cpu) {
3859
		struct global_cwq *gcwq = get_gcwq(cpu);
3860
		struct worker_pool *pool;
3861 3862 3863 3864

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;

3865 3866
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
3867
			pool->flags |= POOL_DISASSOCIATED;
3868 3869
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3870
			hash_init(pool->busy_hash);
3871

3872 3873 3874
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3875

3876 3877 3878
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3879
			mutex_init(&pool->assoc_mutex);
3880
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3881 3882 3883

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3884
		}
3885 3886
	}

3887
	/* create the initial worker */
3888
	for_each_online_gcwq_cpu(cpu) {
3889
		struct global_cwq *gcwq = get_gcwq(cpu);
3890
		struct worker_pool *pool;
3891

3892 3893 3894
		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3895 3896 3897
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3898
			worker = create_worker(pool);
3899 3900 3901 3902 3903
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3904 3905
	}

3906
	system_wq = alloc_workqueue("events", 0, 0);
3907
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3908
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3909 3910
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3911 3912
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3913
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3914
	       !system_unbound_wq || !system_freezable_wq);
3915
	return 0;
L
Linus Torvalds 已提交
3916
}
3917
early_initcall(init_workqueues);