workqueue.c 140.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
73

T
Tejun Heo 已提交
74 75 76
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
77
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81

82 83
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
84

85
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86

87
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
88
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89

90 91 92
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

93 94 95
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
96 97 98 99 100 101 102 103
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
104
	HIGHPRI_NICE_LEVEL	= -20,
105 106

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
107
};
L
Linus Torvalds 已提交
108 109

/*
T
Tejun Heo 已提交
110 111
 * Structure fields follow one of the following exclusion rules.
 *
112 113
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
114
 *
115 116 117
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
118
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
119
 *
120 121 122 123
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
124
 *
125
 * M: pool->manager_mutex protected.
126
 *
127
 * PL: wq_pool_mutex protected.
128
 *
129
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
130
 *
131 132
 * WQ: wq->mutex protected.
 *
133
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
134 135
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
136 137
 */

138
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
139

140
struct worker_pool {
141
	spinlock_t		lock;		/* the pool lock */
142
	int			cpu;		/* I: the associated cpu */
143
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
144
	int			id;		/* I: pool ID */
145
	unsigned int		flags;		/* X: flags */
146 147 148

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
149 150

	/* nr_idle includes the ones off idle_list for rebinding */
151 152 153 154 155 156
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

157
	/* a workers is either on busy_hash or idle_list, or the manager */
158 159 160
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

161
	/* see manage_workers() for details on the two manager mutexes */
162
	struct mutex		manager_arb;	/* manager arbitration */
163
	struct mutex		manager_mutex;	/* manager exclusion */
164 165
	struct idr		worker_idr;	/* M: worker IDs */
	struct list_head	workers;	/* M: attached workers */
166
	struct completion	*detach_completion; /* all workers detached */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270 271
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

272 273 274
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

275 276 277 278 279 280 281 282 283
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

284 285
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

286 287 288
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

289
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291

292 293
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 295 296 297 298

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

299
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300

301
/* PL: hash of all unbound pools keyed by pool->attrs */
302 303
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

304
/* I: attributes used when instantiating standard unbound pools on demand */
305 306
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

307 308 309
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

310
struct workqueue_struct *system_wq __read_mostly;
311
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
312
struct workqueue_struct *system_highpri_wq __read_mostly;
313
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
314
struct workqueue_struct *system_long_wq __read_mostly;
315
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
316
struct workqueue_struct *system_unbound_wq __read_mostly;
317
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
318
struct workqueue_struct *system_freezable_wq __read_mostly;
319
EXPORT_SYMBOL_GPL(system_freezable_wq);
320 321 322 323
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324

325 326 327 328
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

329 330 331
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

332
#define assert_rcu_or_pool_mutex()					\
333
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
334 335
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
336

337
#define assert_rcu_or_wq_mutex(wq)					\
338
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
339
			   lockdep_is_held(&wq->mutex),			\
340
			   "sched RCU or wq->mutex should be held")
341

342 343 344
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345
	     (pool)++)
346

T
Tejun Heo 已提交
347 348 349
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
350
 * @pi: integer used for iteration
351
 *
352 353 354
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
355 356 357
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
358
 */
359 360
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
361
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
362
		else
T
Tejun Heo 已提交
363

364 365 366 367 368
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
369
 * This must be called with @pool->manager_mutex.
370 371 372 373
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
374 375
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
376
		if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
377 378
		else

379 380 381 382
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
383
 *
384
 * This must be called either with wq->mutex held or sched RCU read locked.
385 386
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
387 388 389
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
390 391
 */
#define for_each_pwq(pwq, wq)						\
392
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
393
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
394
		else
395

396 397 398 399
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

400 401 402 403 404
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
440
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
476
	.debug_hint	= work_debug_hint,
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

507 508 509 510 511 512 513
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

514 515 516 517 518
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

519 520 521 522 523 524 525
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
526 527 528 529
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

530
	lockdep_assert_held(&wq_pool_mutex);
531

532 533
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
534
	if (ret >= 0) {
T
Tejun Heo 已提交
535
		pool->id = ret;
536 537
		return 0;
	}
538
	return ret;
539 540
}

541 542 543 544 545 546 547 548
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
549 550
 *
 * Return: The unbound pool_workqueue for @node.
551 552 553 554 555 556 557 558
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
574

575
/*
576 577
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
578
 * is cleared and the high bits contain OFFQ flags and pool ID.
579
 *
580 581
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
582 583
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
584
 *
585
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586
 * corresponding to a work.  Pool is available once the work has been
587
 * queued anywhere after initialization until it is sync canceled.  pwq is
588
 * available only while the work item is queued.
589
 *
590 591 592 593
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
594
 */
595 596
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
597
{
598
	WARN_ON_ONCE(!work_pending(work));
599 600
	atomic_long_set(&work->data, data | flags | work_static(work));
}
601

602
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 604
			 unsigned long extra_flags)
{
605 606
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 608
}

609 610 611 612 613 614 615
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

616 617
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
618
{
619 620 621 622 623 624 625
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
626
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627
}
628

629
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
630
{
631 632
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
633 634
}

635
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636
{
637
	unsigned long data = atomic_long_read(&work->data);
638

639
	if (data & WORK_STRUCT_PWQ)
640 641 642
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
643 644
}

645 646 647 648
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
649 650 651
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
652 653 654 655 656
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
657 658
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
659 660
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
661
{
662
	unsigned long data = atomic_long_read(&work->data);
663
	int pool_id;
664

665
	assert_rcu_or_pool_mutex();
666

667 668
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
669
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670

671 672
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
673 674
		return NULL;

675
	return idr_find(&worker_pool_idr, pool_id);
676 677 678 679 680 681
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
682
 * Return: The worker_pool ID @work was last associated with.
683 684 685 686
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
687 688
	unsigned long data = atomic_long_read(&work->data);

689 690
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
691
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692

693
	return data >> WORK_OFFQ_POOL_SHIFT;
694 695
}

696 697
static void mark_work_canceling(struct work_struct *work)
{
698
	unsigned long pool_id = get_work_pool_id(work);
699

700 701
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 703 704 705 706 707
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

708
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 710
}

711
/*
712 713
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
714
 * they're being called with pool->lock held.
715 716
 */

717
static bool __need_more_worker(struct worker_pool *pool)
718
{
719
	return !atomic_read(&pool->nr_running);
720 721
}

722
/*
723 724
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
725 726
 *
 * Note that, because unbound workers never contribute to nr_running, this
727
 * function will always return %true for unbound pools as long as the
728
 * worklist isn't empty.
729
 */
730
static bool need_more_worker(struct worker_pool *pool)
731
{
732
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
733
}
734

735
/* Can I start working?  Called from busy but !running workers. */
736
static bool may_start_working(struct worker_pool *pool)
737
{
738
	return pool->nr_idle;
739 740 741
}

/* Do I need to keep working?  Called from currently running workers. */
742
static bool keep_working(struct worker_pool *pool)
743
{
744 745
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
746 747 748
}

/* Do we need a new worker?  Called from manager. */
749
static bool need_to_create_worker(struct worker_pool *pool)
750
{
751
	return need_more_worker(pool) && !may_start_working(pool);
752
}
753

754
/* Do we have too many workers and should some go away? */
755
static bool too_many_workers(struct worker_pool *pool)
756
{
757
	bool managing = mutex_is_locked(&pool->manager_arb);
758 759
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
760

761 762 763 764 765 766 767
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

768
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
769 770
}

771
/*
772 773 774
 * Wake up functions.
 */

775
/* Return the first worker.  Safe with preemption disabled */
776
static struct worker *first_worker(struct worker_pool *pool)
777
{
778
	if (unlikely(list_empty(&pool->idle_list)))
779 780
		return NULL;

781
	return list_first_entry(&pool->idle_list, struct worker, entry);
782 783 784 785
}

/**
 * wake_up_worker - wake up an idle worker
786
 * @pool: worker pool to wake worker from
787
 *
788
 * Wake up the first idle worker of @pool.
789 790
 *
 * CONTEXT:
791
 * spin_lock_irq(pool->lock).
792
 */
793
static void wake_up_worker(struct worker_pool *pool)
794
{
795
	struct worker *worker = first_worker(pool);
796 797 798 799 800

	if (likely(worker))
		wake_up_process(worker->task);
}

801
/**
802 803 804 805 806 807 808 809 810 811
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
812
void wq_worker_waking_up(struct task_struct *task, int cpu)
813 814 815
{
	struct worker *worker = kthread_data(task);

816
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
817
		WARN_ON_ONCE(worker->pool->cpu != cpu);
818
		atomic_inc(&worker->pool->nr_running);
819
	}
820 821 822 823 824 825 826 827 828 829 830 831 832 833
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
834
 * Return:
835 836
 * Worker task on @cpu to wake up, %NULL if none.
 */
837
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
838 839
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
840
	struct worker_pool *pool;
841

842 843 844 845 846
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
847
	if (worker->flags & WORKER_NOT_RUNNING)
848 849
		return NULL;

850 851
	pool = worker->pool;

852
	/* this can only happen on the local cpu */
853 854
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
855 856 857 858 859 860

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
861 862 863
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
864
	 * manipulating idle_list, so dereferencing idle_list without pool
865
	 * lock is safe.
866
	 */
867 868
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
869
		to_wakeup = first_worker(pool);
870 871 872 873 874
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
875
 * @worker: self
876 877 878
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
879 880 881
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
882
 *
883
 * CONTEXT:
884
 * spin_lock_irq(pool->lock)
885 886 887 888
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
889
	struct worker_pool *pool = worker->pool;
890

891 892
	WARN_ON_ONCE(worker->task != current);

893 894 895 896 897 898 899 900
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
901
			if (atomic_dec_and_test(&pool->nr_running) &&
902
			    !list_empty(&pool->worklist))
903
				wake_up_worker(pool);
904
		} else
905
			atomic_dec(&pool->nr_running);
906 907
	}

908 909 910 911
	worker->flags |= flags;
}

/**
912
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
913
 * @worker: self
914 915
 * @flags: flags to clear
 *
916
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
917
 *
918
 * CONTEXT:
919
 * spin_lock_irq(pool->lock)
920 921 922
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
923
	struct worker_pool *pool = worker->pool;
924 925
	unsigned int oflags = worker->flags;

926 927
	WARN_ON_ONCE(worker->task != current);

928
	worker->flags &= ~flags;
929

930 931 932 933 934
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
935 936
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
937
			atomic_inc(&pool->nr_running);
938 939
}

940 941
/**
 * find_worker_executing_work - find worker which is executing a work
942
 * @pool: pool of interest
943 944
 * @work: work to find worker for
 *
945 946
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
947 948 949 950 951 952 953 954 955 956 957 958
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
959 960 961 962 963 964
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
965 966
 *
 * CONTEXT:
967
 * spin_lock_irq(pool->lock).
968
 *
969 970
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
971
 * otherwise.
972
 */
973
static struct worker *find_worker_executing_work(struct worker_pool *pool,
974
						 struct work_struct *work)
975
{
976 977
	struct worker *worker;

978
	hash_for_each_possible(pool->busy_hash, worker, hentry,
979 980 981
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
982 983 984
			return worker;

	return NULL;
985 986
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1002
 * spin_lock_irq(pool->lock).
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1086
static void pwq_activate_delayed_work(struct work_struct *work)
1087
{
1088
	struct pool_workqueue *pwq = get_work_pwq(work);
1089 1090

	trace_workqueue_activate_work(work);
1091
	move_linked_works(work, &pwq->pool->worklist, NULL);
1092
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1093
	pwq->nr_active++;
1094 1095
}

1096
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1097
{
1098
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1099 1100
						    struct work_struct, entry);

1101
	pwq_activate_delayed_work(work);
1102 1103
}

1104
/**
1105 1106
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1107 1108 1109
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1110
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1111 1112
 *
 * CONTEXT:
1113
 * spin_lock_irq(pool->lock).
1114
 */
1115
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1116
{
T
Tejun Heo 已提交
1117
	/* uncolored work items don't participate in flushing or nr_active */
1118
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1119
		goto out_put;
1120

1121
	pwq->nr_in_flight[color]--;
1122

1123 1124
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1125
		/* one down, submit a delayed one */
1126 1127
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1128 1129 1130
	}

	/* is flush in progress and are we at the flushing tip? */
1131
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1132
		goto out_put;
1133 1134

	/* are there still in-flight works? */
1135
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1136
		goto out_put;
1137

1138 1139
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1140 1141

	/*
1142
	 * If this was the last pwq, wake up the first flusher.  It
1143 1144
	 * will handle the rest.
	 */
1145 1146
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1147 1148
out_put:
	put_pwq(pwq);
1149 1150
}

1151
/**
1152
 * try_to_grab_pending - steal work item from worklist and disable irq
1153 1154
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1155
 * @flags: place to store irq state
1156 1157
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1158
 * stable state - idle, on timer or on worklist.
1159
 *
1160
 * Return:
1161 1162 1163
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1164 1165
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1166
 *
1167
 * Note:
1168
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1169 1170 1171
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1172 1173 1174 1175
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1176
 * This function is safe to call from any context including IRQ handler.
1177
 */
1178 1179
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1180
{
1181
	struct worker_pool *pool;
1182
	struct pool_workqueue *pwq;
1183

1184 1185
	local_irq_save(*flags);

1186 1187 1188 1189
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1190 1191 1192 1193 1194
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1195 1196 1197 1198 1199
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1200 1201 1202 1203 1204 1205 1206
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1207 1208
	pool = get_work_pool(work);
	if (!pool)
1209
		goto fail;
1210

1211
	spin_lock(&pool->lock);
1212
	/*
1213 1214 1215 1216 1217
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1218 1219
	 * item is currently queued on that pool.
	 */
1220 1221
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1222 1223 1224 1225 1226
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1227
		 * on the delayed_list, will confuse pwq->nr_active
1228 1229 1230 1231
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1232
			pwq_activate_delayed_work(work);
1233 1234

		list_del_init(&work->entry);
1235
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1236

1237
		/* work->data points to pwq iff queued, point to pool */
1238 1239 1240 1241
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1242
	}
1243
	spin_unlock(&pool->lock);
1244 1245 1246 1247 1248
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1249
	return -EAGAIN;
1250 1251
}

T
Tejun Heo 已提交
1252
/**
1253
 * insert_work - insert a work into a pool
1254
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1255 1256 1257 1258
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1259
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1260
 * work_struct flags.
T
Tejun Heo 已提交
1261 1262
 *
 * CONTEXT:
1263
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1264
 */
1265 1266
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1267
{
1268
	struct worker_pool *pool = pwq->pool;
1269

T
Tejun Heo 已提交
1270
	/* we own @work, set data and link */
1271
	set_work_pwq(work, pwq, extra_flags);
1272
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1273
	get_pwq(pwq);
1274 1275

	/*
1276 1277 1278
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1279 1280 1281
	 */
	smp_mb();

1282 1283
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1284 1285
}

1286 1287
/*
 * Test whether @work is being queued from another work executing on the
1288
 * same workqueue.
1289 1290 1291
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1292 1293 1294 1295 1296 1297 1298
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1299
	return worker && worker->current_pwq->wq == wq;
1300 1301
}

1302
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1303 1304
			 struct work_struct *work)
{
1305
	struct pool_workqueue *pwq;
1306
	struct worker_pool *last_pool;
1307
	struct list_head *worklist;
1308
	unsigned int work_flags;
1309
	unsigned int req_cpu = cpu;
1310 1311 1312 1313 1314 1315 1316 1317

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1318

1319
	debug_work_activate(work);
1320

1321
	/* if draining, only works from the same workqueue are allowed */
1322
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1323
	    WARN_ON_ONCE(!is_chained_work(wq)))
1324
		return;
1325
retry:
1326 1327 1328
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1329
	/* pwq which will be used unless @work is executing elsewhere */
1330
	if (!(wq->flags & WQ_UNBOUND))
1331
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1332 1333
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1334

1335 1336 1337 1338 1339 1340 1341 1342
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1343

1344
		spin_lock(&last_pool->lock);
1345

1346
		worker = find_worker_executing_work(last_pool, work);
1347

1348 1349
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1350
		} else {
1351 1352
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1353
			spin_lock(&pwq->pool->lock);
1354
		}
1355
	} else {
1356
		spin_lock(&pwq->pool->lock);
1357 1358
	}

1359 1360 1361 1362
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1363 1364
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1378 1379
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1380

1381
	if (WARN_ON(!list_empty(&work->entry))) {
1382
		spin_unlock(&pwq->pool->lock);
1383 1384
		return;
	}
1385

1386 1387
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1388

1389
	if (likely(pwq->nr_active < pwq->max_active)) {
1390
		trace_workqueue_activate_work(work);
1391 1392
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1393 1394
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1395
		worklist = &pwq->delayed_works;
1396
	}
1397

1398
	insert_work(pwq, work, worklist, work_flags);
1399

1400
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1401 1402
}

1403
/**
1404 1405
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1406 1407 1408
 * @wq: workqueue to use
 * @work: work to queue
 *
1409 1410
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1411 1412
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1413
 */
1414 1415
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1416
{
1417
	bool ret = false;
1418
	unsigned long flags;
1419

1420
	local_irq_save(flags);
1421

1422
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1423
		__queue_work(cpu, wq, work);
1424
		ret = true;
1425
	}
1426

1427
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1428 1429
	return ret;
}
1430
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1431

1432
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1433
{
1434
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1435

1436
	/* should have been called from irqsafe timer with irq already off */
1437
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1438
}
1439
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1440

1441 1442
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1443
{
1444 1445 1446 1447 1448
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1449 1450
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1463
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1464

1465
	dwork->wq = wq;
1466
	dwork->cpu = cpu;
1467 1468 1469 1470 1471 1472
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1473 1474
}

1475 1476 1477 1478
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1479
 * @dwork: work to queue
1480 1481
 * @delay: number of jiffies to wait before queueing
 *
1482
 * Return: %false if @work was already on a queue, %true otherwise.  If
1483 1484
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1485
 */
1486 1487
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1488
{
1489
	struct work_struct *work = &dwork->work;
1490
	bool ret = false;
1491
	unsigned long flags;
1492

1493 1494
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1495

1496
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1497
		__queue_delayed_work(cpu, wq, dwork, delay);
1498
		ret = true;
1499
	}
1500

1501
	local_irq_restore(flags);
1502 1503
	return ret;
}
1504
EXPORT_SYMBOL(queue_delayed_work_on);
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1518
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1519 1520
 * pending and its timer was modified.
 *
1521
 * This function is safe to call from any context including IRQ handler.
1522 1523 1524 1525 1526 1527 1528
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1529

1530 1531 1532
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1533

1534 1535 1536
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1537
	}
1538 1539

	/* -ENOENT from try_to_grab_pending() becomes %true */
1540 1541
	return ret;
}
1542 1543
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1544 1545 1546 1547 1548 1549 1550 1551
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1552
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1553 1554
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1555
{
1556
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1557

1558 1559 1560 1561
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1562

1563 1564
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1565
	pool->nr_idle++;
1566
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1567 1568

	/* idle_list is LIFO */
1569
	list_add(&worker->entry, &pool->idle_list);
1570

1571 1572
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1573

1574
	/*
1575
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1576
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1577 1578
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1579
	 */
1580
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1581
		     pool->nr_workers == pool->nr_idle &&
1582
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1592
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1593 1594 1595
 */
static void worker_leave_idle(struct worker *worker)
{
1596
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1597

1598 1599
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1600
	worker_clr_flags(worker, WORKER_IDLE);
1601
	pool->nr_idle--;
T
Tejun Heo 已提交
1602 1603 1604
	list_del_init(&worker->entry);
}

1605
/**
1606 1607 1608 1609
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1610 1611 1612 1613 1614 1615
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1616
 * This function is to be used by unbound workers and rescuers to bind
1617 1618 1619
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1620
 * verbatim as it's best effort and blocking and pool may be
1621 1622
 * [dis]associated in the meantime.
 *
1623
 * This function tries set_cpus_allowed() and locks pool and verifies the
1624
 * binding against %POOL_DISASSOCIATED which is set during
1625 1626 1627
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1628 1629
 *
 * CONTEXT:
1630
 * Might sleep.  Called without any lock but returns with pool->lock
1631 1632
 * held.
 *
1633
 * Return:
1634
 * %true if the associated pool is online (@worker is successfully
1635 1636
 * bound), %false if offline.
 */
1637
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1638
__acquires(&pool->lock)
1639 1640
{
	while (true) {
1641
		/*
1642 1643 1644
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1645
		 * against POOL_DISASSOCIATED.
1646
		 */
1647
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1648
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1649

1650
		spin_lock_irq(&pool->lock);
1651
		if (pool->flags & POOL_DISASSOCIATED)
1652
			return false;
1653
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1654
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1655
			return true;
1656
		spin_unlock_irq(&pool->lock);
1657

1658 1659 1660 1661 1662 1663
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1664
		cpu_relax();
1665
		cond_resched();
1666 1667 1668
	}
}

T
Tejun Heo 已提交
1669 1670 1671 1672 1673
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1674 1675
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1676
		INIT_LIST_HEAD(&worker->scheduled);
1677
		INIT_LIST_HEAD(&worker->node);
1678 1679
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1680
	}
T
Tejun Heo 已提交
1681 1682 1683
	return worker;
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
 * Undo the attaching which had been done in create_worker().  The caller
 * worker shouldn't access to the pool after detached except it has other
 * reference to the pool.
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

	mutex_lock(&pool->manager_mutex);
	idr_remove(&pool->worker_idr, worker->id);
1700 1701
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1702 1703 1704 1705 1706 1707 1708
		detach_completion = pool->detach_completion;
	mutex_unlock(&pool->manager_mutex);

	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1709 1710
/**
 * create_worker - create a new workqueue worker
1711
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1712
 *
1713 1714
 * Create a new worker which is attached to @pool.  The new worker must be
 * started by start_worker().
T
Tejun Heo 已提交
1715 1716 1717 1718
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1719
 * Return:
T
Tejun Heo 已提交
1720 1721
 * Pointer to the newly created worker.
 */
1722
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1723 1724
{
	struct worker *worker = NULL;
1725
	int id = -1;
1726
	char id_buf[16];
T
Tejun Heo 已提交
1727

1728 1729
	lockdep_assert_held(&pool->manager_mutex);

1730 1731 1732 1733
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
1734
	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
1735 1736
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1737 1738 1739 1740 1741

	worker = alloc_worker();
	if (!worker)
		goto fail;

1742
	worker->pool = pool;
T
Tejun Heo 已提交
1743 1744
	worker->id = id;

1745
	if (pool->cpu >= 0)
1746 1747
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1748
	else
1749 1750
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1751
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1752
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1753 1754 1755
	if (IS_ERR(worker->task))
		goto fail;

1756 1757 1758 1759 1760
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1761 1762 1763 1764
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1765
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1766

T
Tejun Heo 已提交
1767 1768 1769 1770 1771 1772
	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1773
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1774

1775 1776
	/* successful, commit the pointer to idr */
	idr_replace(&pool->worker_idr, worker, worker->id);
1777 1778
	/* successful, attach the worker to the pool */
	list_add_tail(&worker->node, &pool->workers);
1779

T
Tejun Heo 已提交
1780
	return worker;
1781

T
Tejun Heo 已提交
1782
fail:
1783
	if (id >= 0)
1784
		idr_remove(&pool->worker_idr, id);
T
Tejun Heo 已提交
1785 1786 1787 1788 1789 1790 1791 1792
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1793
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1794 1795
 *
 * CONTEXT:
1796
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1797 1798 1799
 */
static void start_worker(struct worker *worker)
{
1800
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1801
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1802 1803 1804
	wake_up_process(worker->task);
}

1805 1806 1807 1808
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1809
 * Grab the managership of @pool and create and start a new worker for it.
1810 1811
 *
 * Return: 0 on success. A negative error code otherwise.
1812 1813 1814 1815 1816
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1817 1818
	mutex_lock(&pool->manager_mutex);

1819 1820 1821 1822 1823 1824 1825
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1826 1827
	mutex_unlock(&pool->manager_mutex);

1828 1829 1830
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1831 1832 1833 1834
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1835 1836
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1837 1838
 *
 * CONTEXT:
1839
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1840 1841 1842
 */
static void destroy_worker(struct worker *worker)
{
1843
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1844

1845 1846
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1847
	/* sanity check frenzy */
1848
	if (WARN_ON(worker->current_work) ||
1849 1850
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1851
		return;
T
Tejun Heo 已提交
1852

1853 1854
	pool->nr_workers--;
	pool->nr_idle--;
T
Tejun Heo 已提交
1855 1856

	list_del_init(&worker->entry);
1857
	worker->flags |= WORKER_DIE;
1858
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1859 1860
}

1861
static void idle_worker_timeout(unsigned long __pool)
1862
{
1863
	struct worker_pool *pool = (void *)__pool;
1864

1865
	spin_lock_irq(&pool->lock);
1866

1867
	while (too_many_workers(pool)) {
1868 1869 1870 1871
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1872
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1873 1874
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1875
		if (time_before(jiffies, expires)) {
1876
			mod_timer(&pool->idle_timer, expires);
1877
			break;
1878
		}
1879 1880

		destroy_worker(worker);
1881 1882
	}

1883
	spin_unlock_irq(&pool->lock);
1884
}
1885

1886
static void send_mayday(struct work_struct *work)
1887
{
1888 1889
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1890

1891
	lockdep_assert_held(&wq_mayday_lock);
1892

1893
	if (!wq->rescuer)
1894
		return;
1895 1896

	/* mayday mayday mayday */
1897
	if (list_empty(&pwq->mayday_node)) {
1898 1899 1900 1901 1902 1903
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1904
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1905
		wake_up_process(wq->rescuer->task);
1906
	}
1907 1908
}

1909
static void pool_mayday_timeout(unsigned long __pool)
1910
{
1911
	struct worker_pool *pool = (void *)__pool;
1912 1913
	struct work_struct *work;

1914
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1915
	spin_lock(&pool->lock);
1916

1917
	if (need_to_create_worker(pool)) {
1918 1919 1920 1921 1922 1923
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1924
		list_for_each_entry(work, &pool->worklist, entry)
1925
			send_mayday(work);
L
Linus Torvalds 已提交
1926
	}
1927

1928
	spin_unlock(&pool->lock);
1929
	spin_unlock_irq(&wq_mayday_lock);
1930

1931
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1932 1933
}

1934 1935
/**
 * maybe_create_worker - create a new worker if necessary
1936
 * @pool: pool to create a new worker for
1937
 *
1938
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1939 1940
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1941
 * sent to all rescuers with works scheduled on @pool to resolve
1942 1943
 * possible allocation deadlock.
 *
1944 1945
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1946 1947
 *
 * LOCKING:
1948
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1949 1950 1951
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1952
 * Return:
1953
 * %false if no action was taken and pool->lock stayed locked, %true
1954 1955
 * otherwise.
 */
1956
static bool maybe_create_worker(struct worker_pool *pool)
1957 1958
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1959
{
1960
	if (!need_to_create_worker(pool))
1961 1962
		return false;
restart:
1963
	spin_unlock_irq(&pool->lock);
1964

1965
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1966
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1967 1968 1969 1970

	while (true) {
		struct worker *worker;

1971
		worker = create_worker(pool);
1972
		if (worker) {
1973
			del_timer_sync(&pool->mayday_timer);
1974
			spin_lock_irq(&pool->lock);
1975
			start_worker(worker);
1976 1977
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1978 1979 1980
			return true;
		}

1981
		if (!need_to_create_worker(pool))
1982
			break;
L
Linus Torvalds 已提交
1983

1984 1985
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1986

1987
		if (!need_to_create_worker(pool))
1988 1989 1990
			break;
	}

1991
	del_timer_sync(&pool->mayday_timer);
1992
	spin_lock_irq(&pool->lock);
1993
	if (need_to_create_worker(pool))
1994 1995 1996 1997
		goto restart;
	return true;
}

1998
/**
1999 2000
 * manage_workers - manage worker pool
 * @worker: self
2001
 *
2002
 * Assume the manager role and manage the worker pool @worker belongs
2003
 * to.  At any given time, there can be only zero or one manager per
2004
 * pool.  The exclusion is handled automatically by this function.
2005 2006 2007 2008
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2009 2010
 *
 * CONTEXT:
2011
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2012 2013
 * multiple times.  Does GFP_KERNEL allocations.
 *
2014
 * Return:
2015 2016 2017 2018 2019
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2020
 */
2021
static bool manage_workers(struct worker *worker)
2022
{
2023
	struct worker_pool *pool = worker->pool;
2024
	bool ret = false;
2025

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2047
	if (!mutex_trylock(&pool->manager_arb))
2048
		return ret;
2049

2050
	/*
2051 2052
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2053
	 */
2054
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2055
		spin_unlock_irq(&pool->lock);
2056
		mutex_lock(&pool->manager_mutex);
2057
		spin_lock_irq(&pool->lock);
2058 2059
		ret = true;
	}
2060

2061
	ret |= maybe_create_worker(pool);
2062

2063
	mutex_unlock(&pool->manager_mutex);
2064
	mutex_unlock(&pool->manager_arb);
2065
	return ret;
2066 2067
}

2068 2069
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2070
 * @worker: self
2071 2072 2073 2074 2075 2076 2077 2078 2079
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2080
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2081
 */
T
Tejun Heo 已提交
2082
static void process_one_work(struct worker *worker, struct work_struct *work)
2083 2084
__releases(&pool->lock)
__acquires(&pool->lock)
2085
{
2086
	struct pool_workqueue *pwq = get_work_pwq(work);
2087
	struct worker_pool *pool = worker->pool;
2088
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2089
	int work_color;
2090
	struct worker *collision;
2091 2092 2093 2094 2095 2096 2097 2098
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2099 2100 2101
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2102
#endif
2103 2104 2105
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2106
	 * unbound or a disassociated pool.
2107
	 */
2108
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2109
		     !(pool->flags & POOL_DISASSOCIATED) &&
2110
		     raw_smp_processor_id() != pool->cpu);
2111

2112 2113 2114 2115 2116 2117
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2118
	collision = find_worker_executing_work(pool, work);
2119 2120 2121 2122 2123
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2124
	/* claim and dequeue */
2125
	debug_work_deactivate(work);
2126
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2127
	worker->current_work = work;
2128
	worker->current_func = work->func;
2129
	worker->current_pwq = pwq;
2130
	work_color = get_work_color(work);
2131

2132 2133
	list_del_init(&work->entry);

2134 2135 2136 2137 2138 2139 2140
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2141
	/*
2142
	 * Unbound pool isn't concurrency managed and work items should be
2143 2144
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2145 2146
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2147

2148
	/*
2149
	 * Record the last pool and clear PENDING which should be the last
2150
	 * update to @work.  Also, do this inside @pool->lock so that
2151 2152
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2153
	 */
2154
	set_work_pool_and_clear_pending(work, pool->id);
2155

2156
	spin_unlock_irq(&pool->lock);
2157

2158
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2159
	lock_map_acquire(&lockdep_map);
2160
	trace_workqueue_execute_start(work);
2161
	worker->current_func(work);
2162 2163 2164 2165 2166
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2167
	lock_map_release(&lockdep_map);
2168
	lock_map_release(&pwq->wq->lockdep_map);
2169 2170

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2171 2172
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2173 2174
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2175 2176 2177 2178
		debug_show_held_locks(current);
		dump_stack();
	}

2179 2180 2181 2182 2183 2184 2185 2186 2187
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2188
	spin_lock_irq(&pool->lock);
2189

2190 2191 2192 2193
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2194
	/* we're done with it, release */
2195
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2196
	worker->current_work = NULL;
2197
	worker->current_func = NULL;
2198
	worker->current_pwq = NULL;
2199
	worker->desc_valid = false;
2200
	pwq_dec_nr_in_flight(pwq, work_color);
2201 2202
}

2203 2204 2205 2206 2207 2208 2209 2210 2211
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2212
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2213 2214 2215
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2216
{
2217 2218
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2219
						struct work_struct, entry);
T
Tejun Heo 已提交
2220
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2221 2222 2223
	}
}

T
Tejun Heo 已提交
2224 2225
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2226
 * @__worker: self
T
Tejun Heo 已提交
2227
 *
2228 2229 2230 2231 2232
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2233 2234
 *
 * Return: 0
T
Tejun Heo 已提交
2235
 */
T
Tejun Heo 已提交
2236
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2237
{
T
Tejun Heo 已提交
2238
	struct worker *worker = __worker;
2239
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2240

2241 2242
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2243
woke_up:
2244
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2245

2246 2247
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2248
		spin_unlock_irq(&pool->lock);
2249 2250
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2251 2252 2253 2254

		set_task_comm(worker->task, "kworker/dying");
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2255
		return 0;
T
Tejun Heo 已提交
2256
	}
2257

T
Tejun Heo 已提交
2258
	worker_leave_idle(worker);
2259
recheck:
2260
	/* no more worker necessary? */
2261
	if (!need_more_worker(pool))
2262 2263 2264
		goto sleep;

	/* do we need to manage? */
2265
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2266 2267
		goto recheck;

T
Tejun Heo 已提交
2268 2269 2270 2271 2272
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2273
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2274

2275
	/*
2276 2277 2278 2279 2280
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2281
	 */
2282
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2283 2284

	do {
T
Tejun Heo 已提交
2285
		struct work_struct *work =
2286
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2287 2288 2289 2290 2291 2292
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2293
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2294 2295 2296
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2297
		}
2298
	} while (keep_working(pool));
2299 2300

	worker_set_flags(worker, WORKER_PREP, false);
2301
sleep:
T
Tejun Heo 已提交
2302
	/*
2303 2304 2305 2306 2307
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2308 2309 2310
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2311
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2312 2313
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2314 2315
}

2316 2317
/**
 * rescuer_thread - the rescuer thread function
2318
 * @__rescuer: self
2319 2320
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2321
 * workqueue which has WQ_MEM_RECLAIM set.
2322
 *
2323
 * Regular work processing on a pool may block trying to create a new
2324 2325 2326 2327 2328
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2329 2330
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2331 2332 2333
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2334 2335
 *
 * Return: 0
2336
 */
2337
static int rescuer_thread(void *__rescuer)
2338
{
2339 2340
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2341
	struct list_head *scheduled = &rescuer->scheduled;
2342
	bool should_stop;
2343 2344

	set_user_nice(current, RESCUER_NICE_LEVEL);
2345 2346 2347 2348 2349 2350

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2351 2352 2353
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2354 2355 2356 2357 2358 2359 2360 2361 2362
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2363

2364
	/* see whether any pwq is asking for help */
2365
	spin_lock_irq(&wq_mayday_lock);
2366 2367 2368 2369

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2370
		struct worker_pool *pool = pwq->pool;
2371 2372 2373
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2374 2375
		list_del_init(&pwq->mayday_node);

2376
		spin_unlock_irq(&wq_mayday_lock);
2377 2378

		/* migrate to the target cpu if possible */
2379
		worker_maybe_bind_and_lock(pool);
2380
		rescuer->pool = pool;
2381 2382 2383 2384 2385

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2386
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2387
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2388
			if (get_work_pwq(work) == pwq)
2389 2390 2391
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2392

2393 2394 2395 2396 2397 2398
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2399
		/*
2400
		 * Leave this pool.  If keep_working() is %true, notify a
2401 2402 2403
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2404 2405
		if (keep_working(pool))
			wake_up_worker(pool);
2406

2407
		rescuer->pool = NULL;
2408
		spin_unlock(&pool->lock);
2409
		spin_lock(&wq_mayday_lock);
2410 2411
	}

2412
	spin_unlock_irq(&wq_mayday_lock);
2413

2414 2415 2416 2417 2418 2419
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2420 2421
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2422 2423
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2424 2425
}

O
Oleg Nesterov 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2437 2438
/**
 * insert_wq_barrier - insert a barrier work
2439
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2440
 * @barr: wq_barrier to insert
2441 2442
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2443
 *
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2456
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2457 2458
 *
 * CONTEXT:
2459
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2460
 */
2461
static void insert_wq_barrier(struct pool_workqueue *pwq,
2462 2463
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2464
{
2465 2466 2467
	struct list_head *head;
	unsigned int linked = 0;

2468
	/*
2469
	 * debugobject calls are safe here even with pool->lock locked
2470 2471 2472 2473
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2474
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2475
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2476
	init_completion(&barr->done);
2477

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2493
	debug_work_activate(&barr->work);
2494
	insert_work(pwq, &barr->work, head,
2495
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2496 2497
}

2498
/**
2499
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2500 2501 2502 2503
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2504
 * Prepare pwqs for workqueue flushing.
2505
 *
2506 2507 2508 2509 2510
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2511 2512 2513 2514 2515 2516 2517
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2518
 * If @work_color is non-negative, all pwqs should have the same
2519 2520 2521 2522
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2523
 * mutex_lock(wq->mutex).
2524
 *
2525
 * Return:
2526 2527 2528
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2529
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2530
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2531
{
2532
	bool wait = false;
2533
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2534

2535
	if (flush_color >= 0) {
2536
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2537
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2538
	}
2539

2540
	for_each_pwq(pwq, wq) {
2541
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2542

2543
		spin_lock_irq(&pool->lock);
2544

2545
		if (flush_color >= 0) {
2546
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2547

2548 2549 2550
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2551 2552 2553
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2554

2555
		if (work_color >= 0) {
2556
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2557
			pwq->work_color = work_color;
2558
		}
L
Linus Torvalds 已提交
2559

2560
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2561
	}
2562

2563
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2564
		complete(&wq->first_flusher->done);
2565

2566
	return wait;
L
Linus Torvalds 已提交
2567 2568
}

2569
/**
L
Linus Torvalds 已提交
2570
 * flush_workqueue - ensure that any scheduled work has run to completion.
2571
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2572
 *
2573 2574
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2575
 */
2576
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2577
{
2578 2579 2580 2581 2582 2583
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2584

2585 2586
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2587

2588
	mutex_lock(&wq->mutex);
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2601
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2602 2603 2604 2605 2606
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2607
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2608 2609 2610

			wq->first_flusher = &this_flusher;

2611
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2612 2613 2614 2615 2616 2617 2618 2619
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2620
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2621
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2622
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2633
	mutex_unlock(&wq->mutex);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2646
	mutex_lock(&wq->mutex);
2647

2648 2649 2650 2651
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2652 2653
	wq->first_flusher = NULL;

2654 2655
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2668 2669
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2689
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2690 2691 2692
		}

		if (list_empty(&wq->flusher_queue)) {
2693
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2694 2695 2696 2697 2698
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2699
		 * the new first flusher and arm pwqs.
2700
		 */
2701 2702
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2703 2704 2705 2706

		list_del_init(&next->list);
		wq->first_flusher = next;

2707
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2718
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2719
}
2720
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2721

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2736
	struct pool_workqueue *pwq;
2737 2738 2739 2740

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2741
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2742
	 */
2743
	mutex_lock(&wq->mutex);
2744
	if (!wq->nr_drainers++)
2745
		wq->flags |= __WQ_DRAINING;
2746
	mutex_unlock(&wq->mutex);
2747 2748 2749
reflush:
	flush_workqueue(wq);

2750
	mutex_lock(&wq->mutex);
2751

2752
	for_each_pwq(pwq, wq) {
2753
		bool drained;
2754

2755
		spin_lock_irq(&pwq->pool->lock);
2756
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2757
		spin_unlock_irq(&pwq->pool->lock);
2758 2759

		if (drained)
2760 2761 2762 2763
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2764
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2765
				wq->name, flush_cnt);
2766

2767
		mutex_unlock(&wq->mutex);
2768 2769 2770 2771
		goto reflush;
	}

	if (!--wq->nr_drainers)
2772
		wq->flags &= ~__WQ_DRAINING;
2773
	mutex_unlock(&wq->mutex);
2774 2775 2776
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2777
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2778
{
2779
	struct worker *worker = NULL;
2780
	struct worker_pool *pool;
2781
	struct pool_workqueue *pwq;
2782 2783

	might_sleep();
2784 2785

	local_irq_disable();
2786
	pool = get_work_pool(work);
2787 2788
	if (!pool) {
		local_irq_enable();
2789
		return false;
2790
	}
2791

2792
	spin_lock(&pool->lock);
2793
	/* see the comment in try_to_grab_pending() with the same code */
2794 2795 2796
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2797
			goto already_gone;
2798
	} else {
2799
		worker = find_worker_executing_work(pool, work);
2800
		if (!worker)
T
Tejun Heo 已提交
2801
			goto already_gone;
2802
		pwq = worker->current_pwq;
2803
	}
2804

2805
	insert_wq_barrier(pwq, barr, work, worker);
2806
	spin_unlock_irq(&pool->lock);
2807

2808 2809 2810 2811 2812 2813
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2814
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2815
		lock_map_acquire(&pwq->wq->lockdep_map);
2816
	else
2817 2818
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2819

2820
	return true;
T
Tejun Heo 已提交
2821
already_gone:
2822
	spin_unlock_irq(&pool->lock);
2823
	return false;
2824
}
2825 2826 2827 2828 2829

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2830 2831
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2832
 *
2833
 * Return:
2834 2835 2836 2837 2838
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2839 2840
	struct wq_barrier barr;

2841 2842 2843
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2844 2845 2846 2847 2848 2849 2850
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2851
}
2852
EXPORT_SYMBOL_GPL(flush_work);
2853

2854
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2855
{
2856
	unsigned long flags;
2857 2858 2859
	int ret;

	do {
2860 2861 2862 2863 2864 2865
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2866
			flush_work(work);
2867 2868
	} while (unlikely(ret < 0));

2869 2870 2871 2872
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2873
	flush_work(work);
2874
	clear_work_data(work);
2875 2876 2877
	return ret;
}

2878
/**
2879 2880
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2881
 *
2882 2883 2884 2885
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2886
 *
2887 2888
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2889
 *
2890
 * The caller must ensure that the workqueue on which @work was last
2891
 * queued can't be destroyed before this function returns.
2892
 *
2893
 * Return:
2894
 * %true if @work was pending, %false otherwise.
2895
 */
2896
bool cancel_work_sync(struct work_struct *work)
2897
{
2898
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2899
}
2900
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2901

2902
/**
2903 2904
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2905
 *
2906 2907 2908
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2909
 *
2910
 * Return:
2911 2912
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2913
 */
2914 2915
bool flush_delayed_work(struct delayed_work *dwork)
{
2916
	local_irq_disable();
2917
	if (del_timer_sync(&dwork->timer))
2918
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2919
	local_irq_enable();
2920 2921 2922 2923
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2924
/**
2925 2926
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2927
 *
2928 2929 2930 2931 2932 2933 2934 2935 2936
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2937
 *
2938
 * This function is safe to call from any context including IRQ handler.
2939
 */
2940
bool cancel_delayed_work(struct delayed_work *dwork)
2941
{
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2952 2953
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2954
	local_irq_restore(flags);
2955
	return ret;
2956
}
2957
EXPORT_SYMBOL(cancel_delayed_work);
2958

2959 2960 2961 2962 2963 2964
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2965
 * Return:
2966 2967 2968
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2969
{
2970
	return __cancel_work_timer(&dwork->work, true);
2971
}
2972
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2973

2974
/**
2975
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2976 2977
 * @func: the function to call
 *
2978 2979
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2980
 * schedule_on_each_cpu() is very slow.
2981
 *
2982
 * Return:
2983
 * 0 on success, -errno on failure.
2984
 */
2985
int schedule_on_each_cpu(work_func_t func)
2986 2987
{
	int cpu;
2988
	struct work_struct __percpu *works;
2989

2990 2991
	works = alloc_percpu(struct work_struct);
	if (!works)
2992
		return -ENOMEM;
2993

2994 2995
	get_online_cpus();

2996
	for_each_online_cpu(cpu) {
2997 2998 2999
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3000
		schedule_work_on(cpu, work);
3001
	}
3002 3003 3004 3005

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3006
	put_online_cpus();
3007
	free_percpu(works);
3008 3009 3010
	return 0;
}

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3035 3036
void flush_scheduled_work(void)
{
3037
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3038
}
3039
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3040

3041 3042 3043 3044 3045 3046 3047 3048 3049
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3050
 * Return:	0 - function was executed
3051 3052
 *		1 - function was scheduled for execution
 */
3053
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3054 3055
{
	if (!in_interrupt()) {
3056
		fn(&ew->work);
3057 3058 3059
		return 0;
	}

3060
	INIT_WORK(&ew->work, fn);
3061 3062 3063 3064 3065 3066
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3094 3095
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3096 3097 3098 3099 3100
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3101
static DEVICE_ATTR_RO(per_cpu);
3102

3103 3104
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3105 3106 3107 3108 3109 3110
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3111 3112 3113
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3124
static DEVICE_ATTR_RW(max_active);
3125

3126 3127 3128 3129
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3130
};
3131
ATTRIBUTE_GROUPS(wq_sysfs);
3132

3133 3134
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3135 3136
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3137 3138
	const char *delim = "";
	int node, written = 0;
3139 3140

	rcu_read_lock_sched();
3141 3142 3143 3144 3145 3146 3147
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3159 3160 3161
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3175 3176 3177
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3193
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3208 3209 3210
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3271
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3272
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3273 3274
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3275
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3276 3277 3278 3279 3280
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3281
	.dev_groups			= wq_sysfs_groups,
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3310
 * Return: 0 on success, -errno on failure.
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3403 3404 3405
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3417
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3418 3419 3420 3421 3422 3423
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3424 3425 3426 3427 3428
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3429 3430 3431 3432 3433 3434
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3435 3436 3437 3438 3439 3440 3441 3442
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3443 3444
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3459 3460 3461 3462 3463
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3464 3465
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3466 3467
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3468 3469
 */
static int init_worker_pool(struct worker_pool *pool)
3470 3471
{
	spin_lock_init(&pool->lock);
3472 3473
	pool->id = -1;
	pool->cpu = -1;
3474
	pool->node = NUMA_NO_NODE;
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3488
	mutex_init(&pool->manager_mutex);
3489
	idr_init(&pool->worker_idr);
3490
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3491

3492 3493 3494 3495
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3496 3497 3498 3499
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3500 3501
}

3502 3503 3504 3505
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3506
	idr_destroy(&pool->worker_idr);
3507 3508 3509 3510 3511 3512 3513 3514 3515
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3516 3517 3518
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3519 3520
 *
 * Should be called with wq_pool_mutex held.
3521 3522 3523
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3524
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3525 3526
	struct worker *worker;

3527 3528 3529
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3530 3531 3532 3533
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3534
	    WARN_ON(!list_empty(&pool->worklist)))
3535 3536 3537 3538 3539 3540 3541
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3542 3543 3544 3545 3546
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3547 3548
	mutex_lock(&pool->manager_arb);

3549
	spin_lock_irq(&pool->lock);
3550 3551 3552 3553
	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3554 3555

	mutex_lock(&pool->manager_mutex);
3556
	if (!list_empty(&pool->workers))
3557
		pool->detach_completion = &detach_completion;
3558
	mutex_unlock(&pool->manager_mutex);
3559 3560 3561 3562

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3580
 * create a new one.
3581 3582
 *
 * Should be called with wq_pool_mutex held.
3583 3584 3585
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3586 3587 3588 3589 3590
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3591
	int node;
3592

3593
	lockdep_assert_held(&wq_pool_mutex);
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3608 3609 3610
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3611
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3612 3613
	copy_workqueue_attrs(pool->attrs, attrs);

3614 3615 3616 3617 3618 3619
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3631 3632 3633 3634
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3635
	if (create_and_start_worker(pool) < 0)
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3664
	bool is_last;
T
Tejun Heo 已提交
3665 3666 3667 3668

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3669
	/*
3670
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3671 3672 3673
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3674
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3675
	list_del_rcu(&pwq->pwqs_node);
3676
	is_last = list_empty(&wq->pwqs);
3677
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3678

3679
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3680
	put_unbound_pool(pool);
3681 3682
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3683 3684 3685 3686 3687 3688
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3689 3690
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3691
		kfree(wq);
3692
	}
T
Tejun Heo 已提交
3693 3694
}

3695
/**
3696
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3697 3698
 * @pwq: target pool_workqueue
 *
3699 3700 3701
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3702
 */
3703
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3704
{
3705 3706 3707 3708
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3709
	lockdep_assert_held(&wq->mutex);
3710 3711 3712 3713 3714

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3715
	spin_lock_irq(&pwq->pool->lock);
3716 3717 3718

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3719

3720 3721 3722
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3723 3724 3725 3726 3727 3728

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3729 3730 3731 3732
	} else {
		pwq->max_active = 0;
	}

3733
	spin_unlock_irq(&pwq->pool->lock);
3734 3735
}

3736
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3737 3738
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3739 3740 3741
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3742 3743
	memset(pwq, 0, sizeof(*pwq));

3744 3745 3746
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3747
	pwq->refcnt = 1;
3748
	INIT_LIST_HEAD(&pwq->delayed_works);
3749
	INIT_LIST_HEAD(&pwq->pwqs_node);
3750
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3751
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3752
}
3753

3754
/* sync @pwq with the current state of its associated wq and link it */
3755
static void link_pwq(struct pool_workqueue *pwq)
3756 3757 3758 3759
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3760

3761 3762 3763 3764
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3765 3766
	/*
	 * Set the matching work_color.  This is synchronized with
3767
	 * wq->mutex to avoid confusing flush_workqueue().
3768
	 */
3769
	pwq->work_color = wq->work_color;
3770 3771 3772 3773 3774

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3775
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3776
}
3777

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3791
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3792 3793 3794
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3795
	}
3796

3797 3798
	init_pwq(pwq, wq, pool);
	return pwq;
3799 3800
}

3801 3802 3803 3804 3805 3806 3807
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3808
		kmem_cache_free(pwq_cache, pwq);
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3821
 * calculation.  The result is stored in @cpumask.
3822 3823 3824 3825 3826 3827 3828 3829
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3830 3831 3832
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3833 3834 3835 3836
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3837
	if (!wq_numa_enabled || attrs->no_numa)
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3874 3875 3876 3877 3878
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3879 3880 3881 3882 3883 3884
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3885
 *
3886 3887 3888
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3889 3890 3891 3892
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3893 3894
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3895
	int node, ret;
3896

3897
	/* only unbound workqueues can change attributes */
3898 3899 3900
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3901 3902 3903 3904
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3905
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3906
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3907 3908
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3909 3910
		goto enomem;

3911
	/* make a copy of @attrs and sanitize it */
3912 3913 3914
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3929
	mutex_lock(&wq_pool_mutex);
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3951
	mutex_unlock(&wq_pool_mutex);
3952

3953
	/* all pwqs have been created successfully, let's install'em */
3954
	mutex_lock(&wq->mutex);
3955

3956
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3957 3958

	/* save the previous pwq and install the new one */
3959
	for_each_node(node)
3960 3961 3962 3963 3964
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3965 3966

	mutex_unlock(&wq->mutex);
3967

3968 3969 3970 3971 3972 3973
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3974 3975 3976
	ret = 0;
	/* fall through */
out_free:
3977
	free_workqueue_attrs(tmp_attrs);
3978
	free_workqueue_attrs(new_attrs);
3979
	kfree(pwq_tbl);
3980
	return ret;
3981

3982 3983 3984 3985 3986 3987 3988
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3989
enomem:
3990 3991
	ret = -ENOMEM;
	goto out_free;
3992 3993
}

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4039 4040
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4041 4042 4043 4044 4045 4046 4047 4048

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
4049
	 * wq's, the default pwq should be used.
4050 4051 4052 4053 4054
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
4055
		goto use_dfl_pwq;
4056 4057 4058 4059 4060 4061 4062
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
4063 4064
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
4065 4066
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4089
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4090
{
4091
	bool highpri = wq->flags & WQ_HIGHPRI;
4092
	int cpu, ret;
4093 4094

	if (!(wq->flags & WQ_UNBOUND)) {
4095 4096
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4097 4098 4099
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4100 4101
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4102
			struct worker_pool *cpu_pools =
4103
				per_cpu(cpu_worker_pools, cpu);
4104

4105 4106 4107
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4108
			link_pwq(pwq);
4109
			mutex_unlock(&wq->mutex);
4110
		}
4111
		return 0;
4112 4113 4114 4115 4116 4117 4118
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4119
	} else {
4120
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4121
	}
T
Tejun Heo 已提交
4122 4123
}

4124 4125
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4126
{
4127 4128 4129
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4130 4131
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4132

4133
	return clamp_val(max_active, 1, lim);
4134 4135
}

4136
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4137 4138 4139
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4140
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4141
{
4142
	size_t tbl_size = 0;
4143
	va_list args;
L
Linus Torvalds 已提交
4144
	struct workqueue_struct *wq;
4145
	struct pool_workqueue *pwq;
4146

4147 4148 4149 4150
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4151
	/* allocate wq and format name */
4152 4153 4154 4155
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4156
	if (!wq)
4157
		return NULL;
4158

4159 4160 4161 4162 4163 4164
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4165 4166
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4167
	va_end(args);
L
Linus Torvalds 已提交
4168

4169
	max_active = max_active ?: WQ_DFL_ACTIVE;
4170
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4171

4172
	/* init wq */
4173
	wq->flags = flags;
4174
	wq->saved_max_active = max_active;
4175
	mutex_init(&wq->mutex);
4176
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4177
	INIT_LIST_HEAD(&wq->pwqs);
4178 4179
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4180
	INIT_LIST_HEAD(&wq->maydays);
4181

4182
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4183
	INIT_LIST_HEAD(&wq->list);
4184

4185
	if (alloc_and_link_pwqs(wq) < 0)
4186
		goto err_free_wq;
T
Tejun Heo 已提交
4187

4188 4189 4190 4191 4192
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4193 4194
		struct worker *rescuer;

4195
		rescuer = alloc_worker();
4196
		if (!rescuer)
4197
			goto err_destroy;
4198

4199 4200
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4201
					       wq->name);
4202 4203 4204 4205
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4206

4207
		wq->rescuer = rescuer;
4208
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4209
		wake_up_process(rescuer->task);
4210 4211
	}

4212 4213 4214
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4215
	/*
4216 4217 4218
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4219
	 */
4220
	mutex_lock(&wq_pool_mutex);
4221

4222
	mutex_lock(&wq->mutex);
4223 4224
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4225
	mutex_unlock(&wq->mutex);
4226

T
Tejun Heo 已提交
4227
	list_add(&wq->list, &workqueues);
4228

4229
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4230

4231
	return wq;
4232 4233

err_free_wq:
4234
	free_workqueue_attrs(wq->unbound_attrs);
4235 4236 4237 4238
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4239
	return NULL;
4240
}
4241
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4242

4243 4244 4245 4246 4247 4248 4249 4250
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4251
	struct pool_workqueue *pwq;
4252
	int node;
4253

4254 4255
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4256

4257
	/* sanity checks */
4258
	mutex_lock(&wq->mutex);
4259
	for_each_pwq(pwq, wq) {
4260 4261
		int i;

4262 4263
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4264
				mutex_unlock(&wq->mutex);
4265
				return;
4266 4267 4268
			}
		}

4269
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4270
		    WARN_ON(pwq->nr_active) ||
4271
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4272
			mutex_unlock(&wq->mutex);
4273
			return;
4274
		}
4275
	}
4276
	mutex_unlock(&wq->mutex);
4277

4278 4279 4280 4281
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4282
	mutex_lock(&wq_pool_mutex);
4283
	list_del_init(&wq->list);
4284
	mutex_unlock(&wq_pool_mutex);
4285

4286 4287
	workqueue_sysfs_unregister(wq);

4288
	if (wq->rescuer) {
4289
		kthread_stop(wq->rescuer->task);
4290
		kfree(wq->rescuer);
4291
		wq->rescuer = NULL;
4292 4293
	}

T
Tejun Heo 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4304 4305
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4306
		 */
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4319
		put_pwq_unlocked(pwq);
4320
	}
4321 4322 4323
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4336
	struct pool_workqueue *pwq;
4337

4338 4339 4340 4341
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4342
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4343

4344
	mutex_lock(&wq->mutex);
4345 4346 4347

	wq->saved_max_active = max_active;

4348 4349
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4350

4351
	mutex_unlock(&wq->mutex);
4352
}
4353
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4354

4355 4356 4357 4358 4359
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4360 4361
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4362 4363 4364 4365 4366
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4367
	return worker && worker->rescue_wq;
4368 4369
}

4370
/**
4371 4372 4373
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4374
 *
4375 4376 4377
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4378
 *
4379 4380 4381 4382 4383 4384
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4385
 * Return:
4386
 * %true if congested, %false otherwise.
4387
 */
4388
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4389
{
4390
	struct pool_workqueue *pwq;
4391 4392
	bool ret;

4393
	rcu_read_lock_sched();
4394

4395 4396 4397
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4398 4399 4400
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4401
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4402

4403
	ret = !list_empty(&pwq->delayed_works);
4404
	rcu_read_unlock_sched();
4405 4406

	return ret;
L
Linus Torvalds 已提交
4407
}
4408
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4409

4410 4411 4412 4413 4414 4415 4416 4417
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4418
 * Return:
4419 4420 4421
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4422
{
4423
	struct worker_pool *pool;
4424 4425
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4426

4427 4428
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4429

4430 4431
	local_irq_save(flags);
	pool = get_work_pool(work);
4432
	if (pool) {
4433
		spin_lock(&pool->lock);
4434 4435
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4436
		spin_unlock(&pool->lock);
4437
	}
4438
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4439

4440
	return ret;
L
Linus Torvalds 已提交
4441
}
4442
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4443

4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
4514
		pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
4515 4516 4517 4518 4519 4520
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4521 4522 4523
/*
 * CPU hotplug.
 *
4524
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4525
 * are a lot of assumptions on strong associations among work, pwq and
4526
 * pool which make migrating pending and scheduled works very
4527
 * difficult to implement without impacting hot paths.  Secondly,
4528
 * worker pools serve mix of short, long and very long running works making
4529 4530
 * blocked draining impractical.
 *
4531
 * This is solved by allowing the pools to be disassociated from the CPU
4532 4533
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4534
 */
L
Linus Torvalds 已提交
4535

4536
static void wq_unbind_fn(struct work_struct *work)
4537
{
4538
	int cpu = smp_processor_id();
4539
	struct worker_pool *pool;
4540
	struct worker *worker;
4541

4542
	for_each_cpu_worker_pool(pool, cpu) {
4543
		WARN_ON_ONCE(cpu != smp_processor_id());
4544

4545
		mutex_lock(&pool->manager_mutex);
4546
		spin_lock_irq(&pool->lock);
4547

4548
		/*
4549
		 * We've blocked all manager operations.  Make all workers
4550 4551 4552 4553 4554
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4555
		for_each_pool_worker(worker, pool)
4556
			worker->flags |= WORKER_UNBOUND;
4557

4558
		pool->flags |= POOL_DISASSOCIATED;
4559

4560
		spin_unlock_irq(&pool->lock);
4561
		mutex_unlock(&pool->manager_mutex);
4562

4563 4564 4565 4566 4567 4568 4569
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4570

4571 4572 4573 4574 4575 4576 4577 4578
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4579
		atomic_set(&pool->nr_running, 0);
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4590 4591
}

T
Tejun Heo 已提交
4592 4593 4594 4595
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4596
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4597 4598 4599
 */
static void rebind_workers(struct worker_pool *pool)
{
4600
	struct worker *worker;
T
Tejun Heo 已提交
4601 4602 4603

	lockdep_assert_held(&pool->manager_mutex);

4604 4605 4606 4607 4608 4609 4610
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4611
	for_each_pool_worker(worker, pool)
4612 4613
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4614

4615
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4616

4617
	for_each_pool_worker(worker, pool) {
4618
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4619 4620

		/*
4621 4622 4623 4624 4625 4626
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4627
		 */
4628 4629
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4630

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4650
	}
4651 4652

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4653 4654
}

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4682
	for_each_pool_worker(worker, pool)
4683 4684 4685 4686
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4687 4688 4689 4690
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4691
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4692 4693
					       unsigned long action,
					       void *hcpu)
4694
{
4695
	int cpu = (unsigned long)hcpu;
4696
	struct worker_pool *pool;
4697
	struct workqueue_struct *wq;
4698
	int pi;
4699

T
Tejun Heo 已提交
4700
	switch (action & ~CPU_TASKS_FROZEN) {
4701
	case CPU_UP_PREPARE:
4702
		for_each_cpu_worker_pool(pool, cpu) {
4703 4704
			if (pool->nr_workers)
				continue;
4705
			if (create_and_start_worker(pool) < 0)
4706
				return NOTIFY_BAD;
4707
		}
T
Tejun Heo 已提交
4708
		break;
4709

4710 4711
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4712
		mutex_lock(&wq_pool_mutex);
4713 4714

		for_each_pool(pool, pi) {
4715
			mutex_lock(&pool->manager_mutex);
4716

4717 4718 4719 4720
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4721

4722 4723 4724 4725
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4726

4727
			mutex_unlock(&pool->manager_mutex);
4728
		}
4729

4730 4731 4732 4733
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4734
		mutex_unlock(&wq_pool_mutex);
4735
		break;
4736
	}
4737 4738 4739 4740 4741 4742 4743
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4744
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4745 4746 4747
						 unsigned long action,
						 void *hcpu)
{
4748
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4749
	struct work_struct unbind_work;
4750
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4751

4752 4753
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4754
		/* unbinding per-cpu workers should happen on the local CPU */
4755
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4756
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4757 4758 4759 4760 4761 4762 4763 4764

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4765
		flush_work(&unbind_work);
4766
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4767
		break;
4768 4769 4770 4771
	}
	return NOTIFY_OK;
}

4772
#ifdef CONFIG_SMP
4773

4774
struct work_for_cpu {
4775
	struct work_struct work;
4776 4777 4778 4779 4780
	long (*fn)(void *);
	void *arg;
	long ret;
};

4781
static void work_for_cpu_fn(struct work_struct *work)
4782
{
4783 4784
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4785 4786 4787 4788 4789 4790 4791 4792 4793
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4794
 * It is up to the caller to ensure that the cpu doesn't go offline.
4795
 * The caller must not hold any locks which would prevent @fn from completing.
4796 4797
 *
 * Return: The value @fn returns.
4798
 */
4799
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4800
{
4801
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4802

4803 4804
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4805
	flush_work(&wfc.work);
4806
	destroy_work_on_stack(&wfc.work);
4807 4808 4809 4810 4811
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4812 4813 4814 4815 4816
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4817
 * Start freezing workqueues.  After this function returns, all freezable
4818
 * workqueues will queue new works to their delayed_works list instead of
4819
 * pool->worklist.
4820 4821
 *
 * CONTEXT:
4822
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4823 4824 4825
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4826
	struct worker_pool *pool;
4827 4828
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4829
	int pi;
4830

4831
	mutex_lock(&wq_pool_mutex);
4832

4833
	WARN_ON_ONCE(workqueue_freezing);
4834 4835
	workqueue_freezing = true;

4836
	/* set FREEZING */
4837
	for_each_pool(pool, pi) {
4838
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4839 4840
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4841
		spin_unlock_irq(&pool->lock);
4842
	}
4843

4844
	list_for_each_entry(wq, &workqueues, list) {
4845
		mutex_lock(&wq->mutex);
4846 4847
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4848
		mutex_unlock(&wq->mutex);
4849
	}
4850

4851
	mutex_unlock(&wq_pool_mutex);
4852 4853 4854
}

/**
4855
 * freeze_workqueues_busy - are freezable workqueues still busy?
4856 4857 4858 4859 4860
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4861
 * Grabs and releases wq_pool_mutex.
4862
 *
4863
 * Return:
4864 4865
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4866 4867 4868 4869
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4870 4871
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4872

4873
	mutex_lock(&wq_pool_mutex);
4874

4875
	WARN_ON_ONCE(!workqueue_freezing);
4876

4877 4878 4879
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4880 4881 4882 4883
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4884
		rcu_read_lock_sched();
4885
		for_each_pwq(pwq, wq) {
4886
			WARN_ON_ONCE(pwq->nr_active < 0);
4887
			if (pwq->nr_active) {
4888
				busy = true;
4889
				rcu_read_unlock_sched();
4890 4891 4892
				goto out_unlock;
			}
		}
4893
		rcu_read_unlock_sched();
4894 4895
	}
out_unlock:
4896
	mutex_unlock(&wq_pool_mutex);
4897 4898 4899 4900 4901 4902 4903
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4904
 * frozen works are transferred to their respective pool worklists.
4905 4906
 *
 * CONTEXT:
4907
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4908 4909 4910
 */
void thaw_workqueues(void)
{
4911 4912 4913
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4914
	int pi;
4915

4916
	mutex_lock(&wq_pool_mutex);
4917 4918 4919 4920

	if (!workqueue_freezing)
		goto out_unlock;

4921
	/* clear FREEZING */
4922
	for_each_pool(pool, pi) {
4923
		spin_lock_irq(&pool->lock);
4924 4925
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4926
		spin_unlock_irq(&pool->lock);
4927
	}
4928

4929 4930
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4931
		mutex_lock(&wq->mutex);
4932 4933
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4934
		mutex_unlock(&wq->mutex);
4935 4936 4937 4938
	}

	workqueue_freezing = false;
out_unlock:
4939
	mutex_unlock(&wq_pool_mutex);
4940 4941 4942
}
#endif /* CONFIG_FREEZER */

4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4955 4956 4957 4958 4959
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4960 4961 4962
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4963 4964 4965 4966 4967 4968 4969 4970 4971
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4972 4973
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4989
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4990
{
T
Tejun Heo 已提交
4991 4992
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4993

4994 4995 4996 4997
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4998
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4999
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5000

5001 5002
	wq_numa_init();

5003
	/* initialize CPU pools */
5004
	for_each_possible_cpu(cpu) {
5005
		struct worker_pool *pool;
5006

T
Tejun Heo 已提交
5007
		i = 0;
5008
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5009
			BUG_ON(init_worker_pool(pool));
5010
			pool->cpu = cpu;
5011
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5012
			pool->attrs->nice = std_nice[i++];
5013
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5014

T
Tejun Heo 已提交
5015
			/* alloc pool ID */
5016
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5017
			BUG_ON(worker_pool_assign_id(pool));
5018
			mutex_unlock(&wq_pool_mutex);
5019
		}
5020 5021
	}

5022
	/* create the initial worker */
5023
	for_each_online_cpu(cpu) {
5024
		struct worker_pool *pool;
5025

5026
		for_each_cpu_worker_pool(pool, cpu) {
5027
			pool->flags &= ~POOL_DISASSOCIATED;
5028
			BUG_ON(create_and_start_worker(pool) < 0);
5029
		}
5030 5031
	}

5032
	/* create default unbound and ordered wq attrs */
5033 5034 5035 5036 5037 5038
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5049 5050
	}

5051
	system_wq = alloc_workqueue("events", 0, 0);
5052
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5053
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5054 5055
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5056 5057
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5058 5059 5060 5061 5062
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5063
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5064 5065 5066
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5067
	return 0;
L
Linus Torvalds 已提交
5068
}
5069
early_initcall(init_workqueues);