sched_rt.c 46.0 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#include "sched.h"

#include <linux/slab.h>

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

87
#ifdef CONFIG_RT_GROUP_SCHED
88 89 90 91
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
92 93 94

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

95 96
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
97 98 99
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
100 101 102 103 104 105 106 107 108 109 110 111 112
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

198 199
#else /* CONFIG_RT_GROUP_SCHED */

200 201
#define rt_entity_is_task(rt_se) (1)

202 203 204 205 206
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

207 208 209 210 211 212 213 214 215 216 217 218 219
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

220 221 222 223 224 225
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
226 227
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
228
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
229

230
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
231
{
232
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
233
}
I
Ingo Molnar 已提交
234

S
Steven Rostedt 已提交
235 236
static inline void rt_set_overload(struct rq *rq)
{
237 238 239
	if (!rq->online)
		return;

240
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
241 242 243 244 245 246 247 248
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
249
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
250
}
I
Ingo Molnar 已提交
251

S
Steven Rostedt 已提交
252 253
static inline void rt_clear_overload(struct rq *rq)
{
254 255 256
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
257
	/* the order here really doesn't matter */
258
	atomic_dec(&rq->rd->rto_count);
259
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
260
}
261

262
static void update_rt_migration(struct rt_rq *rt_rq)
263
{
264
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265 266 267
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
268
		}
269 270 271
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
272
	}
273
}
S
Steven Rostedt 已提交
274

275 276
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
277 278 279 280 281 282
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
283 284 285 286 287 288 289 290
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
291 292 293 294 295 296
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
297 298 299 300 301 302
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

303 304 305 306 307
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

308 309 310 311 312
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
313 314 315 316

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
317 318 319 320 321 322
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

323 324 325 326 327 328 329
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
330 331
}

332 333
#else

334
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
335
{
P
Peter Zijlstra 已提交
336 337
}

338 339 340 341
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

342
static inline
343 344 345 346
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

347
static inline
348 349 350
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
351

S
Steven Rostedt 已提交
352 353
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
354 355 356 357 358
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

359
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
360

P
Peter Zijlstra 已提交
361
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
362 363
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
364
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366 367 368 369 370 371
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
372 373
}

C
Cheng Xu 已提交
374 375
typedef struct task_group *rt_rq_iter_t;

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
393

394 395 396 397 398 399 400 401 402 403 404
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_add_rcu(&rt_rq->leaf_rt_rq_list,
			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_del_rcu(&rt_rq->leaf_rt_rq_list);
}

P
Peter Zijlstra 已提交
405
#define for_each_leaf_rt_rq(rt_rq, rq) \
406
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
407 408 409 410 411 412 413 414 415

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

416
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
417 418
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
419
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
420
{
421
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
422 423
	struct sched_rt_entity *rt_se;

424 425 426
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
427

428 429
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
430
			enqueue_rt_entity(rt_se, false);
431
		if (rt_rq->highest_prio.curr < curr->prio)
432
			resched_task(curr);
P
Peter Zijlstra 已提交
433 434 435
	}
}

P
Peter Zijlstra 已提交
436
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
437
{
438
	struct sched_rt_entity *rt_se;
439
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
440

441
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
442 443 444 445 446

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

464
#ifdef CONFIG_SMP
465
static inline const struct cpumask *sched_rt_period_mask(void)
466 467 468
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
469
#else
470
static inline const struct cpumask *sched_rt_period_mask(void)
471
{
472
	return cpu_online_mask;
473 474
}
#endif
P
Peter Zijlstra 已提交
475

476 477
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
478
{
479 480
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
481

P
Peter Zijlstra 已提交
482 483 484 485 486
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

487
#else /* !CONFIG_RT_GROUP_SCHED */
488 489 490

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
491 492 493 494 495 496
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
497 498
}

C
Cheng Xu 已提交
499 500 501 502 503
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

504 505 506 507 508 509 510 511
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

P
Peter Zijlstra 已提交
512 513 514 515 516 517 518 519 520 521 522
#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
523
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
524
{
525 526
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
527 528
}

P
Peter Zijlstra 已提交
529
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
530 531 532
{
}

P
Peter Zijlstra 已提交
533 534 535 536
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
537

538
static inline const struct cpumask *sched_rt_period_mask(void)
539
{
540
	return cpu_online_mask;
541 542 543 544 545 546 547 548
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
549 550 551 552 553
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

554
#endif /* CONFIG_RT_GROUP_SCHED */
555

P
Peter Zijlstra 已提交
556
#ifdef CONFIG_SMP
557 558 559
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
560
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
561 562 563 564 565 566
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

567
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
568

569
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
570
	rt_period = ktime_to_ns(rt_b->rt_period);
571
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
572 573 574 575 576 577
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

578
		raw_spin_lock(&iter->rt_runtime_lock);
579 580 581 582 583
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
584 585 586
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

587 588 589 590
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
591 592
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
593
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
594 595 596 597 598 599
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
600
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
601 602 603
				break;
			}
		}
P
Peter Zijlstra 已提交
604
next:
605
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
606
	}
607
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
608 609 610

	return more;
}
P
Peter Zijlstra 已提交
611

612 613 614
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
615 616 617
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
618
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
619 620 621 622 623
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
624
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
625 626 627 628
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

629 630
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
631 632 633 634 635
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
636 637 638
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
639
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
640

641 642 643 644 645
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
646 647
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

648 649 650
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
651
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
652 653 654
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

655 656 657
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
658
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
659 660
				continue;

661
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
662 663 664 665 666 667 668 669
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
670
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
671 672 673 674 675

			if (!want)
				break;
		}

676
		raw_spin_lock(&rt_rq->rt_runtime_lock);
677 678 679 680
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
681 682
		BUG_ON(want);
balanced:
683 684 685 686
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
687
		rt_rq->rt_runtime = RUNTIME_INF;
688 689
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
690 691 692 693 694 695 696
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

697
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
698
	__disable_runtime(rq);
699
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
700 701 702 703
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
704
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
705 706 707 708 709
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

710 711 712
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
713
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
714 715
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

716 717
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
718 719
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
720
		rt_rq->rt_throttled = 0;
721 722
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
723 724 725 726 727 728 729
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

730
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
731
	__enable_runtime(rq);
732
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
733 734
}

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		disable_runtime(cpu_rq(cpu));
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		enable_runtime(cpu_rq(cpu));
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}

757 758 759 760
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

761 762 763
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

764
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
765
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
766
		more = do_balance_runtime(rt_rq);
767
		raw_spin_lock(&rt_rq->rt_runtime_lock);
768 769 770 771
	}

	return more;
}
772
#else /* !CONFIG_SMP */
773 774 775 776
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
777
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
778

779 780 781
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
782
	const struct cpumask *span;
783

784
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
785 786 787
		return 1;

	span = sched_rt_period_mask();
788
	for_each_cpu(i, span) {
789 790 791 792
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

793
		raw_spin_lock(&rq->lock);
794 795 796
		if (rt_rq->rt_time) {
			u64 runtime;

797
			raw_spin_lock(&rt_rq->rt_runtime_lock);
798 799 800 801 802 803 804
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
805 806 807 808 809 810 811

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
812 813 814
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
815
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
816
		} else if (rt_rq->rt_nr_running) {
817
			idle = 0;
818 819 820
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
821 822 823

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
824
		raw_spin_unlock(&rq->lock);
825 826 827 828
	}

	return idle;
}
P
Peter Zijlstra 已提交
829

P
Peter Zijlstra 已提交
830 831
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
832
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
833 834 835
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
836
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
837 838 839 840 841
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
842
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
843
{
P
Peter Zijlstra 已提交
844
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
845 846

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
847
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
848

P
Peter Zijlstra 已提交
849 850 851
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

852 853 854 855
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
856

P
Peter Zijlstra 已提交
857
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
858
		rt_rq->rt_throttled = 1;
T
Thomas Gleixner 已提交
859
		printk_once(KERN_WARNING "sched: RT throttling activated\n");
P
Peter Zijlstra 已提交
860
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
861
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
862 863
			return 1;
		}
P
Peter Zijlstra 已提交
864 865 866 867 868
	}

	return 0;
}

I
Ingo Molnar 已提交
869 870 871 872
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
873
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
874 875
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
876 877
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
878 879
	u64 delta_exec;

P
Peter Zijlstra 已提交
880
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
881 882
		return;

883
	delta_exec = rq->clock_task - curr->se.exec_start;
I
Ingo Molnar 已提交
884 885
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
886

887
	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
888 889

	curr->se.sum_exec_runtime += delta_exec;
890 891
	account_group_exec_runtime(curr, delta_exec);

892
	curr->se.exec_start = rq->clock_task;
893
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
894

895 896
	sched_rt_avg_update(rq, delta_exec);

897 898 899
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
900 901 902
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

903
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
904
			raw_spin_lock(&rt_rq->rt_runtime_lock);
905 906 907
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
908
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
909
		}
D
Dhaval Giani 已提交
910
	}
I
Ingo Molnar 已提交
911 912
}

913
#if defined CONFIG_SMP
914

915 916
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
917
{
G
Gregory Haskins 已提交
918
	struct rq *rq = rq_of_rt_rq(rt_rq);
919

920 921
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
922
}
923

924 925 926 927
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
928

929 930
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
931 932
}

933 934
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
935
static inline
936 937 938 939 940
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
941

942
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
959
	if (rt_rq->rt_nr_running) {
960

961
		WARN_ON(prio < prev_prio);
962

963
		/*
964 965
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
966
		 */
967
		if (prio == prev_prio) {
968 969 970
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
971
				sched_find_first_bit(array->bitmap);
972 973
		}

974
	} else
975
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
976

977 978
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
979

980 981 982 983 984 985
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
986

987
#ifdef CONFIG_RT_GROUP_SCHED
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
1002 1003 1004 1005
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1044 1045
}

1046
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1047
{
P
Peter Zijlstra 已提交
1048 1049 1050
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1051
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1052

1053 1054 1055 1056 1057 1058 1059
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1060
		return;
1061

1062 1063 1064
	if (!rt_rq->rt_nr_running)
		list_add_leaf_rt_rq(rt_rq);

1065 1066 1067 1068
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1069
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1070

P
Peter Zijlstra 已提交
1071 1072 1073
	inc_rt_tasks(rt_se, rt_rq);
}

1074
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
1084 1085
	if (!rt_rq->rt_nr_running)
		list_del_leaf_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
1086 1087 1088 1089 1090 1091
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1092
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1093
{
1094
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1095

1096 1097 1098 1099 1100 1101 1102
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1103 1104 1105 1106
			__dequeue_rt_entity(rt_se);
	}
}

1107
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1108 1109 1110
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1111
		__enqueue_rt_entity(rt_se, head);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1122
			__enqueue_rt_entity(rt_se, false);
1123
	}
I
Ingo Molnar 已提交
1124 1125 1126 1127 1128
}

/*
 * Adding/removing a task to/from a priority array:
 */
1129
static void
1130
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1131 1132 1133
{
	struct sched_rt_entity *rt_se = &p->rt;

1134
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1135 1136
		rt_se->timeout = 0;

1137
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1138

1139 1140
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
1141 1142

	inc_nr_running(rq);
P
Peter Zijlstra 已提交
1143 1144
}

1145
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1146
{
P
Peter Zijlstra 已提交
1147
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1148

1149
	update_curr_rt(rq);
1150
	dequeue_rt_entity(rt_se);
1151

1152
	dequeue_pushable_task(rq, p);
1153 1154

	dec_nr_running(rq);
I
Ingo Molnar 已提交
1155 1156 1157
}

/*
1158 1159
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1160
 */
1161 1162
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1163
{
1164
	if (on_rt_rq(rt_se)) {
1165 1166 1167 1168 1169 1170 1171
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1172
	}
P
Peter Zijlstra 已提交
1173 1174
}

1175
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1176
{
P
Peter Zijlstra 已提交
1177 1178
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1179

P
Peter Zijlstra 已提交
1180 1181
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1182
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1183
	}
I
Ingo Molnar 已提交
1184 1185
}

P
Peter Zijlstra 已提交
1186
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1187
{
1188
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1189 1190
}

1191
#ifdef CONFIG_SMP
1192 1193
static int find_lowest_rq(struct task_struct *task);

1194
static int
1195
select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1196
{
1197 1198 1199 1200 1201
	struct task_struct *curr;
	struct rq *rq;
	int cpu;

	cpu = task_cpu(p);
1202 1203 1204 1205 1206

	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1207 1208 1209 1210 1211
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1212
	/*
1213
	 * If the current task on @p's runqueue is an RT task, then
1214 1215 1216 1217
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1218 1219 1220 1221 1222 1223 1224 1225 1226
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1227 1228 1229 1230 1231 1232
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1233
	 */
1234 1235
	if (curr && unlikely(rt_task(curr)) &&
	    (curr->rt.nr_cpus_allowed < 2 ||
1236
	     curr->prio <= p->prio) &&
P
Peter Zijlstra 已提交
1237
	    (p->rt.nr_cpus_allowed > 1)) {
1238
		int target = find_lowest_rq(p);
1239

1240 1241
		if (target != -1)
			cpu = target;
1242
	}
1243
	rcu_read_unlock();
1244

1245
out:
1246
	return cpu;
1247
}
1248 1249 1250 1251 1252 1253

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

1254
	if (p->rt.nr_cpus_allowed != 1
1255 1256
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1257

1258 1259
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1270 1271
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1272 1273 1274
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1275
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1276
{
1277
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1278
		resched_task(rq->curr);
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1295
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1296
		check_preempt_equal_prio(rq, p);
1297
#endif
I
Ingo Molnar 已提交
1298 1299
}

P
Peter Zijlstra 已提交
1300 1301
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1302
{
P
Peter Zijlstra 已提交
1303 1304
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1305 1306 1307 1308
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1309
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1310 1311

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1312
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1313

P
Peter Zijlstra 已提交
1314 1315
	return next;
}
I
Ingo Molnar 已提交
1316

1317
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1318 1319 1320 1321
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1322

P
Peter Zijlstra 已提交
1323 1324
	rt_rq = &rq->rt;

1325
	if (!rt_rq->rt_nr_running)
P
Peter Zijlstra 已提交
1326 1327
		return NULL;

P
Peter Zijlstra 已提交
1328
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1329 1330 1331 1332
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1333
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1334 1335 1336 1337
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1338
	p->se.exec_start = rq->clock_task;
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1351
#ifdef CONFIG_SMP
1352 1353 1354 1355 1356
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1357
#endif
1358

P
Peter Zijlstra 已提交
1359
	return p;
I
Ingo Molnar 已提交
1360 1361
}

1362
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1363
{
1364
	update_curr_rt(rq);
1365 1366 1367 1368 1369

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
P
Peter Zijlstra 已提交
1370
	if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1371
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1372 1373
}

1374
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1375

S
Steven Rostedt 已提交
1376 1377 1378
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1379 1380 1381
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1382
	    (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
P
Peter Zijlstra 已提交
1383
	    (p->rt.nr_cpus_allowed > 1))
1384 1385 1386 1387
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1388
/* Return the second highest RT task, NULL otherwise */
1389
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1390
{
P
Peter Zijlstra 已提交
1391 1392 1393 1394
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1395 1396
	int idx;

P
Peter Zijlstra 已提交
1397 1398 1399
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1400
next_idx:
P
Peter Zijlstra 已提交
1401 1402 1403 1404 1405
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1406 1407 1408 1409 1410 1411
			struct task_struct *p;

			if (!rt_entity_is_task(rt_se))
				continue;

			p = rt_task_of(rt_se);
P
Peter Zijlstra 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1421 1422
	}

S
Steven Rostedt 已提交
1423 1424 1425
	return next;
}

1426
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1427

G
Gregory Haskins 已提交
1428 1429 1430
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1431
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1432 1433
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1434

1435 1436 1437 1438
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1439 1440
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1441

1442 1443
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1453
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1454 1455 1456 1457 1458 1459
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1460 1461
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1462

1463
	rcu_read_lock();
R
Rusty Russell 已提交
1464 1465 1466
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1467

R
Rusty Russell 已提交
1468 1469 1470 1471 1472
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1473 1474
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1475
				return this_cpu;
1476
			}
R
Rusty Russell 已提交
1477 1478 1479

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1480 1481
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1482
				return best_cpu;
1483
			}
G
Gregory Haskins 已提交
1484 1485
		}
	}
1486
	rcu_read_unlock();
G
Gregory Haskins 已提交
1487 1488 1489 1490 1491 1492

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1493 1494 1495 1496 1497 1498 1499
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1500 1501 1502
}

/* Will lock the rq it finds */
1503
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1504 1505 1506
{
	struct rq *lowest_rq = NULL;
	int tries;
1507
	int cpu;
S
Steven Rostedt 已提交
1508

1509 1510 1511
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1512
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1513 1514
			break;

1515 1516
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1517
		/* if the prio of this runqueue changed, try again */
1518
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1519 1520 1521 1522 1523 1524
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1525
			if (unlikely(task_rq(task) != rq ||
1526
				     !cpumask_test_cpu(lowest_rq->cpu,
1527
						       tsk_cpus_allowed(task)) ||
1528
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1529
				     !task->on_rq)) {
1530

1531
				raw_spin_unlock(&lowest_rq->lock);
S
Steven Rostedt 已提交
1532 1533 1534 1535 1536 1537
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1538
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1539 1540 1541
			break;

		/* try again */
1542
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1543 1544 1545 1546 1547 1548
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

P
Peter Zijlstra 已提交
1563
	BUG_ON(!p->on_rq);
1564 1565 1566 1567 1568
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1569 1570 1571 1572 1573
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1574
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1575 1576 1577
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1578
	int ret = 0;
S
Steven Rostedt 已提交
1579

G
Gregory Haskins 已提交
1580 1581 1582
	if (!rq->rt.overloaded)
		return 0;

1583
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1584 1585 1586
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1587
retry:
1588
	if (unlikely(next_task == rq->curr)) {
1589
		WARN_ON(1);
S
Steven Rostedt 已提交
1590
		return 0;
1591
	}
S
Steven Rostedt 已提交
1592 1593 1594 1595 1596 1597

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1598 1599
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1600 1601 1602
		return 0;
	}

1603
	/* We might release rq lock */
S
Steven Rostedt 已提交
1604 1605 1606
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1607
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1608 1609 1610
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1611
		 * find_lock_lowest_rq releases rq->lock
1612 1613 1614 1615 1616
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1617
		 */
1618
		task = pick_next_pushable_task(rq);
1619 1620
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1621 1622 1623 1624
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1625 1626
			 */
			goto out;
S
Steven Rostedt 已提交
1627
		}
1628

1629 1630 1631 1632
		if (!task)
			/* No more tasks, just exit */
			goto out;

1633
		/*
1634
		 * Something has shifted, try again.
1635
		 */
1636 1637 1638
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1639 1640
	}

1641
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1642 1643
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1644
	ret = 1;
S
Steven Rostedt 已提交
1645 1646 1647

	resched_task(lowest_rq->curr);

1648
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1649 1650 1651 1652

out:
	put_task_struct(next_task);

1653
	return ret;
S
Steven Rostedt 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1663 1664
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1665
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1666
	struct task_struct *p;
1667 1668
	struct rq *src_rq;

1669
	if (likely(!rt_overloaded(this_rq)))
1670 1671
		return 0;

1672
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1673 1674 1675 1676
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1689 1690 1691
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1692
		 * alter this_rq
1693
		 */
1694
		double_lock_balance(this_rq, src_rq);
1695 1696 1697 1698

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1699 1700
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1701 1702 1703 1704 1705 1706 1707

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1708
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1709
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1710
			WARN_ON(!p->on_rq);
1711 1712 1713 1714 1715 1716 1717

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1718
			 * current task on the run queue
1719
			 */
1720
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1721
				goto skip;
1722 1723 1724 1725 1726 1727 1728 1729 1730

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1731
			 * in another runqueue. (low likelihood
1732 1733 1734
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1735
skip:
1736
		double_unlock_balance(this_rq, src_rq);
1737 1738 1739 1740 1741
	}

	return ret;
}

1742
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1743 1744
{
	/* Try to pull RT tasks here if we lower this rq's prio */
Y
Yong Zhang 已提交
1745
	if (rq->rt.highest_prio.curr > prev->prio)
1746 1747 1748
		pull_rt_task(rq);
}

1749
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1750
{
1751
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1752 1753
}

1754 1755 1756 1757
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1758
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1759
{
1760
	if (!task_running(rq, p) &&
1761
	    !test_tsk_need_resched(rq->curr) &&
1762
	    has_pushable_tasks(rq) &&
1763
	    p->rt.nr_cpus_allowed > 1 &&
1764
	    rt_task(rq->curr) &&
1765
	    (rq->curr->rt.nr_cpus_allowed < 2 ||
1766
	     rq->curr->prio <= p->prio))
1767 1768 1769
		push_rt_tasks(rq);
}

1770
static void set_cpus_allowed_rt(struct task_struct *p,
1771
				const struct cpumask *new_mask)
1772
{
1773
	int weight = cpumask_weight(new_mask);
1774 1775 1776 1777 1778 1779 1780

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1781
	if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1782 1783
		struct rq *rq = task_rq(p);

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1802
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1803
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1804
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1805 1806 1807 1808
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1809
		update_rt_migration(&rq->rt);
1810 1811
	}
}
1812

1813
/* Assumes rq->lock is held */
1814
static void rq_online_rt(struct rq *rq)
1815 1816 1817
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1818

P
Peter Zijlstra 已提交
1819 1820
	__enable_runtime(rq);

1821
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1822 1823 1824
}

/* Assumes rq->lock is held */
1825
static void rq_offline_rt(struct rq *rq)
1826 1827 1828
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1829

P
Peter Zijlstra 已提交
1830 1831
	__disable_runtime(rq);

1832
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1833
}
1834 1835 1836 1837 1838

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1839
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1840 1841 1842 1843 1844 1845 1846 1847
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
P
Peter Zijlstra 已提交
1848
	if (p->on_rq && !rq->rt.rt_nr_running)
1849 1850
		pull_rt_task(rq);
}
1851

1852
void init_sched_rt_class(void)
1853 1854 1855
{
	unsigned int i;

1856
	for_each_possible_cpu(i) {
1857
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1858
					GFP_KERNEL, cpu_to_node(i));
1859
	}
1860
}
1861 1862 1863 1864 1865 1866 1867
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1868
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1879
	if (p->on_rq && rq->curr != p) {
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1895 1896
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1897
{
P
Peter Zijlstra 已提交
1898
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1899 1900 1901
		return;

	if (rq->curr == p) {
1902 1903 1904 1905 1906 1907 1908 1909 1910
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1911 1912 1913
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1914
		 */
1915
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1916 1917 1918 1919 1920
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1921
#endif /* CONFIG_SMP */
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1933 1934 1935 1936
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1937 1938 1939
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1940 1941 1942 1943 1944 1945

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1946
		if (p->rt.timeout > next)
1947
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1948 1949
	}
}
I
Ingo Molnar 已提交
1950

P
Peter Zijlstra 已提交
1951
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1952
{
1953 1954
	update_curr_rt(rq);

1955 1956
	watchdog(rq, p);

I
Ingo Molnar 已提交
1957 1958 1959 1960 1961 1962 1963
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1964
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1965 1966
		return;

P
Peter Zijlstra 已提交
1967
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1968

1969 1970 1971 1972
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1973
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1974
		requeue_task_rt(rq, p, 0);
1975 1976
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1977 1978
}

1979 1980 1981 1982
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

1983
	p->se.exec_start = rq->clock_task;
1984 1985 1986

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1987 1988
}

1989
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
		return DEF_TIMESLICE;
	else
		return 0;
}

2000
const struct sched_class rt_sched_class = {
2001
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

2011
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2012 2013
	.select_task_rq		= select_task_rq_rt,

2014
	.set_cpus_allowed       = set_cpus_allowed_rt,
2015 2016
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
2017 2018
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
2019
	.task_woken		= task_woken_rt,
2020
	.switched_from		= switched_from_rt,
2021
#endif
I
Ingo Molnar 已提交
2022

2023
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
2024
	.task_tick		= task_tick_rt,
2025

2026 2027
	.get_rr_interval	= get_rr_interval_rt,

2028 2029
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
2030
};
2031 2032 2033 2034

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2035
void print_rt_stats(struct seq_file *m, int cpu)
2036
{
C
Cheng Xu 已提交
2037
	rt_rq_iter_t iter;
2038 2039 2040
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2041
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2042 2043 2044
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2045
#endif /* CONFIG_SCHED_DEBUG */