sched_rt.c 34.4 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15 16 17
	if (!rq->online)
		return;

18
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
19 20 21 22 23 24 25 26
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
27
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
28
}
I
Ingo Molnar 已提交
29

S
Steven Rostedt 已提交
30 31
static inline void rt_clear_overload(struct rq *rq)
{
32 33 34
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
35
	/* the order here really doesn't matter */
36 37
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
38
}
39 40 41

static void update_rt_migration(struct rq *rq)
{
42
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 44 45 46 47
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
48
		rt_clear_overload(rq);
49 50
		rq->rt.overloaded = 0;
	}
51
}
S
Steven Rostedt 已提交
52 53
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
54
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
55
{
P
Peter Zijlstra 已提交
56 57 58 59 60 61 62 63
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

64
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
65

P
Peter Zijlstra 已提交
66
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
67 68
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
69
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
70

P
Peter Zijlstra 已提交
71 72 73 74 75 76
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
103
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
104 105 106 107
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108 109
		struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;

P
Peter Zijlstra 已提交
110
		enqueue_rt_entity(rt_se);
111 112
		if (rt_rq->highest_prio < curr->prio)
			resched_task(curr);
P
Peter Zijlstra 已提交
113 114 115
	}
}

P
Peter Zijlstra 已提交
116
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
117 118 119 120 121 122 123
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

141 142 143 144 145
#ifdef CONFIG_SMP
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
146
#else
147 148 149 150 151
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}
#endif
P
Peter Zijlstra 已提交
152

153 154
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
155
{
156 157
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
158

P
Peter Zijlstra 已提交
159 160 161 162 163
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

164
#else /* !CONFIG_RT_GROUP_SCHED */
165 166 167

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
168 169 170 171 172 173
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
200
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
201
{
202 203
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
204 205
}

P
Peter Zijlstra 已提交
206
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
207 208 209
{
}

P
Peter Zijlstra 已提交
210 211 212 213
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
214 215 216 217 218 219 220 221 222 223 224 225

static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
226 227 228 229 230
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

231
#endif /* CONFIG_RT_GROUP_SCHED */
232

P
Peter Zijlstra 已提交
233
#ifdef CONFIG_SMP
234
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
235 236 237 238 239 240 241 242 243 244
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

	weight = cpus_weight(rd->span);

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
245
	for_each_cpu_mask_nr(i, rd->span) {
P
Peter Zijlstra 已提交
246 247 248 249 250 251 252
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
253 254 255
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

P
Peter Zijlstra 已提交
256 257
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
258
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
269
next:
P
Peter Zijlstra 已提交
270 271 272 273 274 275
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

		want = rt_b->rt_runtime - rt_rq->rt_runtime;

		for_each_cpu_mask(i, rd->span) {
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

303
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
		BUG_ON(want);
balanced:
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
353
		rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

368 369 370 371 372 373 374 375 376 377 378 379
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
		more = do_balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);
	}

	return more;
}
380
#else /* !CONFIG_SMP */
381 382 383 384
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
385
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
386

387 388 389 390 391
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
	cpumask_t span;

392
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
		return 1;

	span = sched_rt_period_mask();
	for_each_cpu_mask(i, span) {
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
			u64 runtime;

			spin_lock(&rt_rq->rt_runtime_lock);
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
			spin_unlock(&rt_rq->rt_runtime_lock);
417 418
		} else if (rt_rq->rt_nr_running)
			idle = 0;
419 420 421 422 423 424 425 426

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}
P
Peter Zijlstra 已提交
427

P
Peter Zijlstra 已提交
428 429
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
430
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
431 432 433 434 435 436 437 438 439
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
		return rt_rq->highest_prio;
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
440
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
441
{
P
Peter Zijlstra 已提交
442
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
443 444

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
445
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
446

P
Peter Zijlstra 已提交
447 448 449
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

450 451 452 453
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
454

P
Peter Zijlstra 已提交
455
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
456
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
457
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
458
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
459 460
			return 1;
		}
P
Peter Zijlstra 已提交
461 462 463 464 465
	}

	return 0;
}

I
Ingo Molnar 已提交
466 467 468 469
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
470
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
471 472
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
473 474
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
475 476 477 478 479
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

480
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
481 482
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
483 484

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
485 486

	curr->se.sum_exec_runtime += delta_exec;
487
	curr->se.exec_start = rq->clock;
488
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
489

490 491 492
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
493 494 495 496
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

		spin_lock(&rt_rq->rt_runtime_lock);
497 498 499 500 501
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
		}
D
Dhaval Giani 已提交
502 503
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
I
Ingo Molnar 已提交
504 505
}

P
Peter Zijlstra 已提交
506 507
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
508
{
P
Peter Zijlstra 已提交
509 510
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	rt_rq->rt_nr_running++;
511
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
512
	if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
513
#ifdef CONFIG_SMP
514
		struct rq *rq = rq_of_rt_rq(rt_rq);
515
#endif
516

P
Peter Zijlstra 已提交
517
		rt_rq->highest_prio = rt_se_prio(rt_se);
I
Ingo Molnar 已提交
518
#ifdef CONFIG_SMP
519 520 521
		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_se_prio(rt_se));
I
Ingo Molnar 已提交
522
#endif
523
	}
P
Peter Zijlstra 已提交
524
#endif
525
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
526 527
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
I
Ingo Molnar 已提交
528

529
		rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
530
	}
531

P
Peter Zijlstra 已提交
532 533
	update_rt_migration(rq_of_rt_rq(rt_rq));
#endif
534
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
535 536
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
537 538 539 540 541

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
#else
	start_rt_bandwidth(&def_rt_bandwidth);
P
Peter Zijlstra 已提交
542
#endif
543 544
}

P
Peter Zijlstra 已提交
545 546
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
547
{
548 549 550 551
#ifdef CONFIG_SMP
	int highest_prio = rt_rq->highest_prio;
#endif

P
Peter Zijlstra 已提交
552 553 554
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
555
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
556
	if (rt_rq->rt_nr_running) {
557 558
		struct rt_prio_array *array;

P
Peter Zijlstra 已提交
559 560
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
561
			/* recalculate */
P
Peter Zijlstra 已提交
562 563
			array = &rt_rq->active;
			rt_rq->highest_prio =
564 565 566
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
P
Peter Zijlstra 已提交
567 568 569 570 571
		rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
572
		rq->rt.rt_nr_migratory--;
P
Peter Zijlstra 已提交
573
	}
574

575 576
	if (rt_rq->highest_prio != highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
577 578 579 580

		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_rq->highest_prio);
581 582
	}

P
Peter Zijlstra 已提交
583
	update_rt_migration(rq_of_rt_rq(rt_rq));
584
#endif /* CONFIG_SMP */
585
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
586 587 588 589 590
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
591 592
}

593
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
594
{
P
Peter Zijlstra 已提交
595 596 597
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
598
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
599

600 601 602 603 604 605 606
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
607
		return;
608

609
	list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
610
	__set_bit(rt_se_prio(rt_se), array->bitmap);
611

P
Peter Zijlstra 已提交
612 613 614
	inc_rt_tasks(rt_se, rt_rq);
}

615
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
631
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
632
{
633
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
634

635 636 637 638 639 640 641
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
			__dequeue_rt_entity(rt_se);
	}
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
		__enqueue_rt_entity(rt_se);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
			__enqueue_rt_entity(rt_se);
662
	}
I
Ingo Molnar 已提交
663 664 665 666 667
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
668 669 670 671 672 673 674
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

675
	enqueue_rt_entity(rt_se);
676 677

	inc_cpu_load(rq, p->se.load.weight);
P
Peter Zijlstra 已提交
678 679
}

680
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
681
{
P
Peter Zijlstra 已提交
682
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
683

684
	update_curr_rt(rq);
685
	dequeue_rt_entity(rt_se);
686 687

	dec_cpu_load(rq, p->se.load.weight);
I
Ingo Molnar 已提交
688 689 690 691 692 693
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
694 695
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
696
{
697
	if (on_rt_rq(rt_se)) {
698 699 700 701 702 703 704
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
705
	}
P
Peter Zijlstra 已提交
706 707
}

708
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
709
{
P
Peter Zijlstra 已提交
710 711
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
712

P
Peter Zijlstra 已提交
713 714
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
715
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
716
	}
I
Ingo Molnar 已提交
717 718
}

P
Peter Zijlstra 已提交
719
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
720
{
721
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
722 723
}

724
#ifdef CONFIG_SMP
725 726
static int find_lowest_rq(struct task_struct *task);

727 728
static int select_task_rq_rt(struct task_struct *p, int sync)
{
729 730 731
	struct rq *rq = task_rq(p);

	/*
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
747
	 */
748
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
749
	    (p->rt.nr_cpus_allowed > 1)) {
750 751 752 753 754 755 756 757 758
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
759 760
	return task_cpu(p);
}
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	cpumask_t mask;

	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

	if (p->rt.nr_cpus_allowed != 1
	    && cpupri_find(&rq->rd->cpupri, p, &mask))
		return;

	if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
		return;

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

785 786
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
787 788 789
/*
 * Preempt the current task with a newly woken task if needed:
 */
790
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
791
{
792
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
793
		resched_task(rq->curr);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
810 811
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
812
#endif
I
Ingo Molnar 已提交
813 814
}

P
Peter Zijlstra 已提交
815 816
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
817
{
P
Peter Zijlstra 已提交
818 819
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
820 821 822 823
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
824
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
825 826

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
827
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
828

P
Peter Zijlstra 已提交
829 830
	return next;
}
I
Ingo Molnar 已提交
831

P
Peter Zijlstra 已提交
832 833 834 835 836
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
837

P
Peter Zijlstra 已提交
838 839 840 841 842
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
843
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
844 845 846 847
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
848
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
849 850 851 852 853 854
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
855 856
}

857
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
858
{
859
	update_curr_rt(rq);
I
Ingo Molnar 已提交
860 861 862
	p->se.exec_start = 0;
}

863
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
864

S
Steven Rostedt 已提交
865 866 867 868
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
869 870
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);

S
Steven Rostedt 已提交
871 872
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

873 874 875
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
876
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
877
	    (p->rt.nr_cpus_allowed > 1))
878 879 880 881
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
882
/* Return the second highest RT task, NULL otherwise */
883
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
884
{
P
Peter Zijlstra 已提交
885 886 887 888
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
889 890
	int idx;

P
Peter Zijlstra 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
910 911
	}

S
Steven Rostedt 已提交
912 913 914 915 916
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
938

939 940
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
941

942 943
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
944

945 946 947 948 949 950 951
	/*
	 * Only consider CPUs that are usable for migration.
	 * I guess we might want to change cpupri_find() to ignore those
	 * in the first place.
	 */
	cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);

G
Gregory Haskins 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
990 991 992
}

/* Will lock the rq it finds */
993
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
994 995 996
{
	struct rq *lowest_rq = NULL;
	int tries;
997
	int cpu;
S
Steven Rostedt 已提交
998

999 1000 1001
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1002
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1003 1004
			break;

1005 1006
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1007
		/* if the prio of this runqueue changed, try again */
1008
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1009 1010 1011 1012 1013 1014
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1015
			if (unlikely(task_rq(task) != rq ||
1016 1017
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
1018
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1019
				     !task->se.on_rq)) {
1020

S
Steven Rostedt 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
1032
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1044
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1045 1046 1047 1048 1049 1050
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
1051 1052 1053
	if (!rq->rt.overloaded)
		return 0;

1054
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1055 1056 1057 1058
	if (!next_task)
		return 0;

 retry:
1059
	if (unlikely(next_task == rq->curr)) {
1060
		WARN_ON(1);
S
Steven Rostedt 已提交
1061
		return 0;
1062
	}
S
Steven Rostedt 已提交
1063 1064 1065 1066 1067 1068

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1069 1070
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1071 1072 1073
		return 0;
	}

1074
	/* We might release rq lock */
S
Steven Rostedt 已提交
1075 1076 1077
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1078
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1079 1080 1081
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1082
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
1083 1084 1085
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
1086
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1087 1088 1089 1090 1091 1092 1093 1094
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

1095
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1096 1097 1098 1099 1100
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1101
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1127 1128
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1129 1130
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
1131 1132
	struct rq *src_rq;

1133
	if (likely(!rt_overloaded(this_rq)))
1134 1135 1136 1137
		return 0;

	next = pick_next_task_rt(this_rq);

1138
	for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
1152

1153 1154 1155 1156 1157 1158 1159 1160
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1161 1162
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
M
Mike Galbraith 已提交
1186
				goto skip;
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
1198
			 *
1199 1200 1201 1202 1203 1204 1205
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
M
Mike Galbraith 已提交
1206
 skip:
1207
		double_unlock_balance(this_rq, src_rq);
1208 1209 1210 1211 1212
	}

	return ret;
}

1213
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1214 1215
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1216
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1217 1218 1219
		pull_rt_task(rq);
}

1220
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1221 1222 1223 1224 1225 1226 1227 1228
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
1229
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
1230 1231 1232 1233 1234 1235
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

1236 1237 1238 1239
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1240
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1241
{
1242
	if (!task_running(rq, p) &&
1243
	    !test_tsk_need_resched(rq->curr) &&
G
Gregory Haskins 已提交
1244
	    rq->rt.overloaded)
1245 1246 1247
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1248
static unsigned long
I
Ingo Molnar 已提交
1249
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1250 1251 1252
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1253
{
1254 1255
	/* don't touch RT tasks */
	return 0;
1256 1257 1258 1259 1260 1261
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1262 1263
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1264
}
1265

1266 1267
static void set_cpus_allowed_rt(struct task_struct *p,
				const cpumask_t *new_mask)
1268 1269 1270 1271 1272 1273 1274 1275 1276
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1277
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1278 1279
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
1280
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1281
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1282
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1283 1284 1285 1286 1287 1288 1289 1290
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
P
Peter Zijlstra 已提交
1291
	p->rt.nr_cpus_allowed = weight;
1292
}
1293

1294
/* Assumes rq->lock is held */
1295
static void rq_online_rt(struct rq *rq)
1296 1297 1298
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1299

P
Peter Zijlstra 已提交
1300 1301
	__enable_runtime(rq);

1302
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1303 1304 1305
}

/* Assumes rq->lock is held */
1306
static void rq_offline_rt(struct rq *rq)
1307 1308 1309
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1310

P
Peter Zijlstra 已提交
1311 1312
	__disable_runtime(rq);

1313
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1314
}
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1381 1382 1383
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1384
		 */
1385
		if (p->prio > rq->rt.highest_prio && rq->curr == p)
1386 1387 1388 1389 1390
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1391
#endif /* CONFIG_SMP */
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1418
		if (p->rt.timeout > next)
1419 1420 1421
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
1422

P
Peter Zijlstra 已提交
1423
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1424
{
1425 1426
	update_curr_rt(rq);

1427 1428
	watchdog(rq, p);

I
Ingo Molnar 已提交
1429 1430 1431 1432 1433 1434 1435
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1436
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1437 1438
		return;

P
Peter Zijlstra 已提交
1439
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1440

1441 1442 1443 1444
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1445
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1446
		requeue_task_rt(rq, p, 0);
1447 1448
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1449 1450
}

1451 1452 1453 1454 1455 1456 1457
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1458
static const struct sched_class rt_sched_class = {
1459
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1460 1461 1462
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
1463 1464 1465
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1466 1467 1468 1469 1470 1471

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1472
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1473
	.load_balance		= load_balance_rt,
1474
	.move_one_task		= move_one_task_rt,
1475
	.set_cpus_allowed       = set_cpus_allowed_rt,
1476 1477
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1478 1479 1480
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1481
	.switched_from		= switched_from_rt,
1482
#endif
I
Ingo Molnar 已提交
1483

1484
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1485
	.task_tick		= task_tick_rt,
1486 1487 1488

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1489
};
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1503
#endif /* CONFIG_SCHED_DEBUG */