sched_rt.c 20.0 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18
#ifdef CONFIG_SMP
static cpumask_t rt_overload_mask;
static atomic_t rto_count;
static inline int rt_overloaded(void)
{
	return atomic_read(&rto_count);
}
static inline cpumask_t *rt_overload(void)
{
	return &rt_overload_mask;
}
static inline void rt_set_overload(struct rq *rq)
{
G
Gregory Haskins 已提交
19
	rq->rt.overloaded = 1;
S
Steven Rostedt 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
	cpu_set(rq->cpu, rt_overload_mask);
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
	atomic_inc(&rto_count);
}
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
	atomic_dec(&rto_count);
	cpu_clear(rq->cpu, rt_overload_mask);
G
Gregory Haskins 已提交
36
	rq->rt.overloaded = 0;
S
Steven Rostedt 已提交
37
}
38 39 40 41 42 43 44 45

static void update_rt_migration(struct rq *rq)
{
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
		rt_set_overload(rq);
	else
		rt_clear_overload(rq);
}
S
Steven Rostedt 已提交
46 47
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
48 49 50 51
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
52
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
53 54 55 56 57 58 59
{
	struct task_struct *curr = rq->curr;
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

60
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
61 62
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
63 64

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
65 66

	curr->se.sum_exec_runtime += delta_exec;
67
	curr->se.exec_start = rq->clock;
68
	cpuacct_charge(curr, delta_exec);
I
Ingo Molnar 已提交
69 70
}

71 72 73 74
static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	rq->rt.rt_nr_running++;
75 76 77
#ifdef CONFIG_SMP
	if (p->prio < rq->rt.highest_prio)
		rq->rt.highest_prio = p->prio;
78 79 80 81
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory++;

	update_rt_migration(rq);
82
#endif /* CONFIG_SMP */
83 84 85 86 87 88 89
}

static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	WARN_ON(!rq->rt.rt_nr_running);
	rq->rt.rt_nr_running--;
90 91 92 93 94 95 96 97 98 99 100 101 102
#ifdef CONFIG_SMP
	if (rq->rt.rt_nr_running) {
		struct rt_prio_array *array;

		WARN_ON(p->prio < rq->rt.highest_prio);
		if (p->prio == rq->rt.highest_prio) {
			/* recalculate */
			array = &rq->rt.active;
			rq->rt.highest_prio =
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
		rq->rt.highest_prio = MAX_RT_PRIO;
103 104 105 106
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory--;

	update_rt_migration(rq);
107
#endif /* CONFIG_SMP */
108 109
}

110
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
I
Ingo Molnar 已提交
111 112 113 114 115
{
	struct rt_prio_array *array = &rq->rt.active;

	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
116
	inc_cpu_load(rq, p->se.load.weight);
117 118

	inc_rt_tasks(p, rq);
I
Ingo Molnar 已提交
119 120 121 122 123
}

/*
 * Adding/removing a task to/from a priority array:
 */
124
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
125 126 127
{
	struct rt_prio_array *array = &rq->rt.active;

128
	update_curr_rt(rq);
I
Ingo Molnar 已提交
129 130 131 132

	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
133
	dec_cpu_load(rq, p->se.load.weight);
134 135

	dec_rt_tasks(p, rq);
I
Ingo Molnar 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
	struct rt_prio_array *array = &rq->rt.active;

	list_move_tail(&p->run_list, array->queue + p->prio);
}

static void
150
yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
151
{
152
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
153 154
}

155
#ifdef CONFIG_SMP
156 157
static int find_lowest_rq(struct task_struct *task);

158 159
static int select_task_rq_rt(struct task_struct *p, int sync)
{
160 161 162
	struct rq *rq = task_rq(p);

	/*
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
178
	 */
179 180
	if (unlikely(rt_task(rq->curr)) &&
	    (p->nr_cpus_allowed > 1)) {
181 182 183 184 185 186 187 188 189
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
190 191 192 193
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
194 195 196 197 198 199 200 201 202
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
	if (p->prio < rq->curr->prio)
		resched_task(rq->curr);
}

203
static struct task_struct *pick_next_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
	if (idx >= MAX_RT_PRIO)
		return NULL;

	queue = array->queue + idx;
	next = list_entry(queue->next, struct task_struct, run_list);

217
	next->se.exec_start = rq->clock;
I
Ingo Molnar 已提交
218 219 220 221

	return next;
}

222
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
223
{
224
	update_curr_rt(rq);
I
Ingo Molnar 已提交
225 226 227
	p->se.exec_start = 0;
}

228
#ifdef CONFIG_SMP
S
Steven Rostedt 已提交
229 230 231 232 233 234
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

235 236 237
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
238 239
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
	    (p->nr_cpus_allowed > 1))
240 241 242 243
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
244
/* Return the second highest RT task, NULL otherwise */
245 246
static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
						     int cpu)
S
Steven Rostedt 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	assert_spin_locked(&rq->lock);

	if (likely(rq->rt.rt_nr_running < 2))
		return NULL;

	idx = sched_find_first_bit(array->bitmap);
	if (unlikely(idx >= MAX_RT_PRIO)) {
		WARN_ON(1); /* rt_nr_running is bad */
		return NULL;
	}

	queue = array->queue + idx;
265 266
	BUG_ON(list_empty(queue));

S
Steven Rostedt 已提交
267
	next = list_entry(queue->next, struct task_struct, run_list);
268 269
	if (unlikely(pick_rt_task(rq, next, cpu)))
		goto out;
S
Steven Rostedt 已提交
270 271 272 273

	if (queue->next->next != queue) {
		/* same prio task */
		next = list_entry(queue->next->next, struct task_struct, run_list);
274 275
		if (pick_rt_task(rq, next, cpu))
			goto out;
S
Steven Rostedt 已提交
276 277
	}

278
 retry:
S
Steven Rostedt 已提交
279 280
	/* slower, but more flexible */
	idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
281
	if (unlikely(idx >= MAX_RT_PRIO))
S
Steven Rostedt 已提交
282 283 284
		return NULL;

	queue = array->queue + idx;
285 286 287 288 289 290 291 292
	BUG_ON(list_empty(queue));

	list_for_each_entry(next, queue, run_list) {
		if (pick_rt_task(rq, next, cpu))
			goto out;
	}

	goto retry;
S
Steven Rostedt 已提交
293

294
 out:
S
Steven Rostedt 已提交
295 296 297 298 299
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
300
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
S
Steven Rostedt 已提交
301
{
G
Gregory Haskins 已提交
302
	int       lowest_prio = -1;
303
	int       lowest_cpu  = -1;
G
Gregory Haskins 已提交
304
	int       count       = 0;
305
	int       cpu;
S
Steven Rostedt 已提交
306

307
	cpus_and(*lowest_mask, cpu_online_map, task->cpus_allowed);
S
Steven Rostedt 已提交
308

309 310 311
	/*
	 * Scan each rq for the lowest prio.
	 */
312
	for_each_cpu_mask(cpu, *lowest_mask) {
313
		struct rq *rq = cpu_rq(cpu);
S
Steven Rostedt 已提交
314

315 316
		/* We look for lowest RT prio or non-rt CPU */
		if (rq->rt.highest_prio >= MAX_RT_PRIO) {
317 318 319 320 321 322 323 324 325
			/*
			 * if we already found a low RT queue
			 * and now we found this non-rt queue
			 * clear the mask and set our bit.
			 * Otherwise just return the queue as is
			 * and the count==1 will cause the algorithm
			 * to use the first bit found.
			 */
			if (lowest_cpu != -1) {
G
Gregory Haskins 已提交
326
				cpus_clear(*lowest_mask);
327 328
				cpu_set(rq->cpu, *lowest_mask);
			}
G
Gregory Haskins 已提交
329
			return 1;
330 331 332
		}

		/* no locking for now */
G
Gregory Haskins 已提交
333 334 335 336 337
		if ((rq->rt.highest_prio > task->prio)
		    && (rq->rt.highest_prio >= lowest_prio)) {
			if (rq->rt.highest_prio > lowest_prio) {
				/* new low - clear old data */
				lowest_prio = rq->rt.highest_prio;
338 339
				lowest_cpu = cpu;
				count = 0;
G
Gregory Haskins 已提交
340
			}
G
Gregory Haskins 已提交
341
			count++;
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
		} else
			cpu_clear(cpu, *lowest_mask);
	}

	/*
	 * Clear out all the set bits that represent
	 * runqueues that were of higher prio than
	 * the lowest_prio.
	 */
	if (lowest_cpu > 0) {
		/*
		 * Perhaps we could add another cpumask op to
		 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
		 * Then that could be optimized to use memset and such.
		 */
		for_each_cpu_mask(cpu, *lowest_mask) {
			if (cpu >= lowest_cpu)
				break;
			cpu_clear(cpu, *lowest_mask);
S
Steven Rostedt 已提交
361
		}
362 363
	}

G
Gregory Haskins 已提交
364
	return count;
G
Gregory Haskins 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
}

static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
388 389 390 391
	int count    = find_lowest_cpus(task, lowest_mask);

	if (!count)
		return -1; /* No targets found */
G
Gregory Haskins 已提交
392

G
Gregory Haskins 已提交
393 394 395 396 397 398
	/*
	 * There is no sense in performing an optimal search if only one
	 * target is found.
	 */
	if (count == 1)
		return first_cpu(*lowest_mask);
G
Gregory Haskins 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
438 439 440 441 442 443 444 445 446
}

/* Will lock the rq it finds */
static struct rq *find_lock_lowest_rq(struct task_struct *task,
				      struct rq *rq)
{
	struct rq *lowest_rq = NULL;
	int cpu;
	int tries;
S
Steven Rostedt 已提交
447

448 449 450
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

451
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
452 453
			break;

454 455
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
456
		/* if the prio of this runqueue changed, try again */
457
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
458 459 460 461 462 463
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
464
			if (unlikely(task_rq(task) != rq ||
S
Steven Rostedt 已提交
465
				     !cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
466
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
				     !task->se.on_rq)) {
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
491
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
492 493 494 495 496 497
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

498
	assert_spin_locked(&rq->lock);
S
Steven Rostedt 已提交
499

G
Gregory Haskins 已提交
500 501 502
	if (!rq->rt.overloaded)
		return 0;

503
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
504 505 506 507
	if (!next_task)
		return 0;

 retry:
508
	if (unlikely(next_task == rq->curr)) {
509
		WARN_ON(1);
S
Steven Rostedt 已提交
510
		return 0;
511
	}
S
Steven Rostedt 已提交
512 513 514 515 516 517

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
518 519
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
520 521 522
		return 0;
	}

523
	/* We might release rq lock */
S
Steven Rostedt 已提交
524 525 526
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
527
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
528 529 530
	if (!lowest_rq) {
		struct task_struct *task;
		/*
531
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
532 533 534
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
535
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
536 537 538 539 540 541 542 543 544 545
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

	assert_spin_locked(&lowest_rq->lock);

546
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
static int pull_rt_task(struct rq *this_rq)
{
	struct task_struct *next;
	struct task_struct *p;
	struct rq *src_rq;
	cpumask_t *rto_cpumask;
	int this_cpu = this_rq->cpu;
	int cpu;
	int ret = 0;

	assert_spin_locked(&this_rq->lock);

	/*
	 * If cpusets are used, and we have overlapping
	 * run queue cpusets, then this algorithm may not catch all.
	 * This is just the price you pay on trying to keep
	 * dirtying caches down on large SMP machines.
	 */
	if (likely(!rt_overloaded()))
		return 0;

	next = pick_next_task_rt(this_rq);

	rto_cpumask = rt_overload();

	for_each_cpu_mask(cpu, *rto_cpumask) {
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
			/*
			 * It is possible that overlapping cpusets
			 * will miss clearing a non overloaded runqueue.
			 * Clear it now.
			 */
			if (double_lock_balance(this_rq, src_rq)) {
				/* unlocked our runqueue lock */
				struct task_struct *old_next = next;
				next = pick_next_task_rt(this_rq);
				if (next != old_next)
					ret = 1;
			}
			if (likely(src_rq->rt.rt_nr_running <= 1))
				/*
				 * Small chance that this_rq->curr changed
				 * but it's really harmless here.
				 */
				rt_clear_overload(this_rq);
			else
				/*
				 * Heh, the src_rq is now overloaded, since
				 * we already have the src_rq lock, go straight
				 * to pulling tasks from it.
				 */
				goto try_pulling;
			spin_unlock(&src_rq->lock);
			continue;
		}

		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
		if (src_rq->rt.rt_nr_running <= 1) {
			spin_unlock(&src_rq->lock);
			continue;
		}

 try_pulling:
		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
				goto bail;

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */

			/*
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
 bail:
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

static void schedule_balance_rt(struct rq *rq,
				struct task_struct *prev)
{
	/* Try to pull RT tasks here if we lower this rq's prio */
	if (unlikely(rt_task(prev)) &&
	    rq->rt.highest_prio > prev->prio)
		pull_rt_task(rq);
}

S
Steven Rostedt 已提交
721 722 723 724 725 726 727 728 729
static void schedule_tail_balance_rt(struct rq *rq)
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
730
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
731 732 733 734 735 736
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

737 738 739 740 741

static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
{
	if (unlikely(rt_task(p)) &&
	    !task_running(rq, p) &&
G
Gregory Haskins 已提交
742 743
	    (p->prio >= rq->rt.highest_prio) &&
	    rq->rt.overloaded)
744 745 746
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
747
static unsigned long
I
Ingo Molnar 已提交
748
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
749 750 751
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
752
{
753 754
	/* don't touch RT tasks */
	return 0;
755 756 757 758 759 760
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
761 762
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
763
}
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
	if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
		struct rq *rq = task_rq(p);

		if ((p->nr_cpus_allowed <= 1) && (weight > 1))
			rq->rt.rt_nr_migratory++;
		else if((p->nr_cpus_allowed > 1) && (weight <= 1)) {
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
	p->nr_cpus_allowed = weight;
}
S
Steven Rostedt 已提交
790 791
#else /* CONFIG_SMP */
# define schedule_tail_balance_rt(rq)	do { } while (0)
792
# define schedule_balance_rt(rq, prev)	do { } while (0)
793
# define wakeup_balance_rt(rq, p)	do { } while (0)
S
Steven Rostedt 已提交
794
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
795 796 797

static void task_tick_rt(struct rq *rq, struct task_struct *p)
{
798 799
	update_curr_rt(rq);

I
Ingo Molnar 已提交
800 801 802 803 804 805 806 807 808 809
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

	if (--p->time_slice)
		return;

D
Dmitry Adamushko 已提交
810
	p->time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
811

812 813 814 815 816 817 818 819
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
	if (p->run_list.prev != p->run_list.next) {
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
820 821
}

822 823 824 825 826 827 828
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

829 830
const struct sched_class rt_sched_class = {
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
831 832 833
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
834 835 836
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
837 838 839 840 841 842

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

843
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
844
	.load_balance		= load_balance_rt,
845
	.move_one_task		= move_one_task_rt,
846
	.set_cpus_allowed       = set_cpus_allowed_rt,
847
#endif
I
Ingo Molnar 已提交
848

849
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
850 851
	.task_tick		= task_tick_rt,
};