sched_rt.c 30.6 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
16 17 18 19 20 21 22 23
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
24
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
25
}
I
Ingo Molnar 已提交
26

S
Steven Rostedt 已提交
27 28 29
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
30 31
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
32
}
33 34 35

static void update_rt_migration(struct rq *rq)
{
36
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 38 39 40 41
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
42
		rt_clear_overload(rq);
43 44
		rq->rt.overloaded = 0;
	}
45
}
S
Steven Rostedt 已提交
46 47
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
48
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
49
{
P
Peter Zijlstra 已提交
50 51 52 53 54 55 56 57
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

58
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
59

P
Peter Zijlstra 已提交
60
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
61 62
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
63
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
64

P
Peter Zijlstra 已提交
65 66 67 68 69 70
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
97
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
98 99 100 101
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
102 103
		struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;

P
Peter Zijlstra 已提交
104
		enqueue_rt_entity(rt_se);
105 106
		if (rt_rq->highest_prio < curr->prio)
			resched_task(curr);
P
Peter Zijlstra 已提交
107 108 109
	}
}

P
Peter Zijlstra 已提交
110
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
111 112 113 114 115 116 117
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

135 136 137 138 139
#ifdef CONFIG_SMP
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
140
#else
141 142 143 144 145
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}
#endif
P
Peter Zijlstra 已提交
146

147 148
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
149
{
150 151
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
152

P
Peter Zijlstra 已提交
153 154 155 156 157
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

158 159 160 161
#else

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
162 163 164 165 166 167
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
194
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
195 196 197
{
}

P
Peter Zijlstra 已提交
198
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
199 200 201
{
}

P
Peter Zijlstra 已提交
202 203 204 205
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
206 207 208 209 210 211 212 213 214 215 216 217

static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
218 219 220 221 222
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

P
Peter Zijlstra 已提交
223 224
#endif

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
	cpumask_t span;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return 1;

	span = sched_rt_period_mask();
	for_each_cpu_mask(i, span) {
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
P
Peter Zijlstra 已提交
241
			u64 runtime;
242

P
Peter Zijlstra 已提交
243 244
			spin_lock(&rt_rq->rt_runtime_lock);
			runtime = rt_rq->rt_runtime;
245 246 247 248 249 250 251
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
P
Peter Zijlstra 已提交
252
			spin_unlock(&rt_rq->rt_runtime_lock);
253 254 255 256 257 258 259 260 261 262
		}

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}

P
Peter Zijlstra 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
#ifdef CONFIG_SMP
static int balance_runtime(struct rt_rq *rt_rq)
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

	weight = cpus_weight(rd->span);

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
	for_each_cpu_mask(i, rd->span) {
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
			do_div(diff, weight);
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
#endif

P
Peter Zijlstra 已提交
304 305
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
306
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
307 308 309 310 311 312 313 314 315
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
		return rt_rq->highest_prio;
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
316
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
317
{
P
Peter Zijlstra 已提交
318
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
319

P
Peter Zijlstra 已提交
320
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
321 322 323
		return 0;

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
324
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
325

P
Peter Zijlstra 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

#ifdef CONFIG_SMP
	if (rt_rq->rt_time > runtime) {
		int more;

		spin_unlock(&rt_rq->rt_runtime_lock);
		more = balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);

		if (more)
			runtime = sched_rt_runtime(rt_rq);
	}
#endif

P
Peter Zijlstra 已提交
342
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
343
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
344
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
345
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
346 347
			return 1;
		}
P
Peter Zijlstra 已提交
348 349 350 351 352
	}

	return 0;
}

I
Ingo Molnar 已提交
353 354 355 356
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
357
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
358 359
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
360 361
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
362 363 364 365 366
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

367
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
368 369
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
370 371

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
372 373

	curr->se.sum_exec_runtime += delta_exec;
374
	curr->se.exec_start = rq->clock;
375
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
376

D
Dhaval Giani 已提交
377 378 379 380 381 382 383 384 385
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_time += delta_exec;
		if (sched_rt_runtime_exceeded(rt_rq))
			resched_task(curr);
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
I
Ingo Molnar 已提交
386 387
}

P
Peter Zijlstra 已提交
388 389
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
390
{
P
Peter Zijlstra 已提交
391 392
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	rt_rq->rt_nr_running++;
393
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
394 395 396
	if (rt_se_prio(rt_se) < rt_rq->highest_prio)
		rt_rq->highest_prio = rt_se_prio(rt_se);
#endif
397
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
398 399
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
400
		rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
401
	}
402

P
Peter Zijlstra 已提交
403 404
	update_rt_migration(rq_of_rt_rq(rt_rq));
#endif
405
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
406 407
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
408 409 410 411 412

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
#else
	start_rt_bandwidth(&def_rt_bandwidth);
P
Peter Zijlstra 已提交
413
#endif
414 415
}

P
Peter Zijlstra 已提交
416 417
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
418
{
P
Peter Zijlstra 已提交
419 420 421
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
422
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
423
	if (rt_rq->rt_nr_running) {
424 425
		struct rt_prio_array *array;

P
Peter Zijlstra 已提交
426 427
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
428
			/* recalculate */
P
Peter Zijlstra 已提交
429 430
			array = &rt_rq->active;
			rt_rq->highest_prio =
431 432 433
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
P
Peter Zijlstra 已提交
434 435 436 437 438
		rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
439
		rq->rt.rt_nr_migratory--;
P
Peter Zijlstra 已提交
440
	}
441

P
Peter Zijlstra 已提交
442
	update_rt_migration(rq_of_rt_rq(rt_rq));
443
#endif /* CONFIG_SMP */
444
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
445 446 447 448 449
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
450 451
}

P
Peter Zijlstra 已提交
452
static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
453
{
P
Peter Zijlstra 已提交
454 455 456
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
I
Ingo Molnar 已提交
457

P
Peter Zijlstra 已提交
458
	if (group_rq && rt_rq_throttled(group_rq))
P
Peter Zijlstra 已提交
459
		return;
460

P
Peter Zijlstra 已提交
461 462
	list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
	__set_bit(rt_se_prio(rt_se), array->bitmap);
463

P
Peter Zijlstra 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	inc_rt_tasks(rt_se, rt_rq);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
static void dequeue_rt_stack(struct task_struct *p)
{
485
	struct sched_rt_entity *rt_se, *back = NULL;
P
Peter Zijlstra 已提交
486

487 488 489 490 491 492 493 494 495 496
	rt_se = &p->rt;
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
			dequeue_rt_entity(rt_se);
	}
I
Ingo Molnar 已提交
497 498 499 500 501
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

	dequeue_rt_stack(p);

	/*
	 * enqueue everybody, bottom - up.
	 */
	for_each_sched_rt_entity(rt_se)
		enqueue_rt_entity(rt_se);
}

518
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
519
{
P
Peter Zijlstra 已提交
520 521
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
522

523
	update_curr_rt(rq);
I
Ingo Molnar 已提交
524

P
Peter Zijlstra 已提交
525 526 527 528 529 530 531 532 533 534
	dequeue_rt_stack(p);

	/*
	 * re-enqueue all non-empty rt_rq entities.
	 */
	for_each_sched_rt_entity(rt_se) {
		rt_rq = group_rt_rq(rt_se);
		if (rt_rq && rt_rq->rt_nr_running)
			enqueue_rt_entity(rt_se);
	}
I
Ingo Molnar 已提交
535 536 537 538 539 540
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
P
Peter Zijlstra 已提交
541 542 543 544 545 546 547 548
static
void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
	struct rt_prio_array *array = &rt_rq->active;

	list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
}

I
Ingo Molnar 已提交
549 550
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
551 552
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
553

P
Peter Zijlstra 已提交
554 555 556 557
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
		requeue_rt_entity(rt_rq, rt_se);
	}
I
Ingo Molnar 已提交
558 559
}

P
Peter Zijlstra 已提交
560
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
561
{
562
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
563 564
}

565
#ifdef CONFIG_SMP
566 567
static int find_lowest_rq(struct task_struct *task);

568 569
static int select_task_rq_rt(struct task_struct *p, int sync)
{
570 571 572
	struct rq *rq = task_rq(p);

	/*
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
588
	 */
589
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
590
	    (p->rt.nr_cpus_allowed > 1)) {
591 592 593 594 595 596 597 598 599
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
600 601 602 603
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
604 605 606 607 608 609 610 611 612
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
	if (p->prio < rq->curr->prio)
		resched_task(rq->curr);
}

P
Peter Zijlstra 已提交
613 614
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
615
{
P
Peter Zijlstra 已提交
616 617
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
618 619 620 621
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
622
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
623 624

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
625
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
626

P
Peter Zijlstra 已提交
627 628
	return next;
}
I
Ingo Molnar 已提交
629

P
Peter Zijlstra 已提交
630 631 632 633 634
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
635

P
Peter Zijlstra 已提交
636 637 638 639 640
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
641
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
642 643 644 645
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
646
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
647 648 649 650 651 652
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
653 654
}

655
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
656
{
657
	update_curr_rt(rq);
I
Ingo Molnar 已提交
658 659 660
	p->se.exec_start = 0;
}

661
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
662

S
Steven Rostedt 已提交
663 664 665 666 667 668
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

669 670 671
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
672
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
673
	    (p->rt.nr_cpus_allowed > 1))
674 675 676 677
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
678
/* Return the second highest RT task, NULL otherwise */
679
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
680
{
P
Peter Zijlstra 已提交
681 682 683 684
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
685 686
	int idx;

P
Peter Zijlstra 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
706 707
	}

S
Steven Rostedt 已提交
708 709 710 711 712
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
713
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
S
Steven Rostedt 已提交
714
{
G
Gregory Haskins 已提交
715
	int       lowest_prio = -1;
716
	int       lowest_cpu  = -1;
G
Gregory Haskins 已提交
717
	int       count       = 0;
718
	int       cpu;
S
Steven Rostedt 已提交
719

720
	cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
S
Steven Rostedt 已提交
721

722 723 724
	/*
	 * Scan each rq for the lowest prio.
	 */
725
	for_each_cpu_mask(cpu, *lowest_mask) {
726
		struct rq *rq = cpu_rq(cpu);
S
Steven Rostedt 已提交
727

728 729
		/* We look for lowest RT prio or non-rt CPU */
		if (rq->rt.highest_prio >= MAX_RT_PRIO) {
730 731 732 733 734 735 736 737 738
			/*
			 * if we already found a low RT queue
			 * and now we found this non-rt queue
			 * clear the mask and set our bit.
			 * Otherwise just return the queue as is
			 * and the count==1 will cause the algorithm
			 * to use the first bit found.
			 */
			if (lowest_cpu != -1) {
G
Gregory Haskins 已提交
739
				cpus_clear(*lowest_mask);
740 741
				cpu_set(rq->cpu, *lowest_mask);
			}
G
Gregory Haskins 已提交
742
			return 1;
743 744 745
		}

		/* no locking for now */
G
Gregory Haskins 已提交
746 747 748 749 750
		if ((rq->rt.highest_prio > task->prio)
		    && (rq->rt.highest_prio >= lowest_prio)) {
			if (rq->rt.highest_prio > lowest_prio) {
				/* new low - clear old data */
				lowest_prio = rq->rt.highest_prio;
751 752
				lowest_cpu = cpu;
				count = 0;
G
Gregory Haskins 已提交
753
			}
G
Gregory Haskins 已提交
754
			count++;
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
		} else
			cpu_clear(cpu, *lowest_mask);
	}

	/*
	 * Clear out all the set bits that represent
	 * runqueues that were of higher prio than
	 * the lowest_prio.
	 */
	if (lowest_cpu > 0) {
		/*
		 * Perhaps we could add another cpumask op to
		 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
		 * Then that could be optimized to use memset and such.
		 */
		for_each_cpu_mask(cpu, *lowest_mask) {
			if (cpu >= lowest_cpu)
				break;
			cpu_clear(cpu, *lowest_mask);
S
Steven Rostedt 已提交
774
		}
775 776
	}

G
Gregory Haskins 已提交
777
	return count;
G
Gregory Haskins 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
}

static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
801 802 803 804
	int count    = find_lowest_cpus(task, lowest_mask);

	if (!count)
		return -1; /* No targets found */
G
Gregory Haskins 已提交
805

G
Gregory Haskins 已提交
806 807 808 809 810 811
	/*
	 * There is no sense in performing an optimal search if only one
	 * target is found.
	 */
	if (count == 1)
		return first_cpu(*lowest_mask);
G
Gregory Haskins 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
851 852 853
}

/* Will lock the rq it finds */
854
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
855 856 857
{
	struct rq *lowest_rq = NULL;
	int tries;
858
	int cpu;
S
Steven Rostedt 已提交
859

860 861 862
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

863
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
864 865
			break;

866 867
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
868
		/* if the prio of this runqueue changed, try again */
869
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
870 871 872 873 874 875
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
876
			if (unlikely(task_rq(task) != rq ||
877 878
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
879
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
880
				     !task->se.on_rq)) {
881

S
Steven Rostedt 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
905
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
906 907 908 909 910 911
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
912 913 914
	if (!rq->rt.overloaded)
		return 0;

915
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
916 917 918 919
	if (!next_task)
		return 0;

 retry:
920
	if (unlikely(next_task == rq->curr)) {
921
		WARN_ON(1);
S
Steven Rostedt 已提交
922
		return 0;
923
	}
S
Steven Rostedt 已提交
924 925 926 927 928 929

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
930 931
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
932 933 934
		return 0;
	}

935
	/* We might release rq lock */
S
Steven Rostedt 已提交
936 937 938
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
939
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
940 941 942
	if (!lowest_rq) {
		struct task_struct *task;
		/*
943
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
944 945 946
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
947
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
948 949 950 951 952 953 954 955
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

956
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

988 989
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
990 991
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
992 993
	struct rq *src_rq;

994
	if (likely(!rt_overloaded(this_rq)))
995 996 997 998
		return 0;

	next = pick_next_task_rt(this_rq);

999
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
1013

1014 1015 1016 1017 1018 1019 1020 1021
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1022 1023
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
M
Mike Galbraith 已提交
1047
				goto skip;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
1059
			 *
1060 1061 1062 1063 1064 1065 1066
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
M
Mike Galbraith 已提交
1067
 skip:
1068 1069 1070 1071 1072 1073
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

1074
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1075 1076
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1077
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1078 1079 1080
		pull_rt_task(rq);
}

1081
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1082 1083 1084 1085 1086 1087 1088 1089
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
1090
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
1091 1092 1093 1094 1095 1096
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

1097 1098 1099 1100
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1101
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1102
{
1103
	if (!task_running(rq, p) &&
1104
	    !test_tsk_need_resched(rq->curr) &&
G
Gregory Haskins 已提交
1105
	    rq->rt.overloaded)
1106 1107 1108
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1109
static unsigned long
I
Ingo Molnar 已提交
1110
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1111 1112 1113
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1114
{
1115 1116
	/* don't touch RT tasks */
	return 0;
1117 1118 1119 1120 1121 1122
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1123 1124
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1125
}
1126

1127 1128
static void set_cpus_allowed_rt(struct task_struct *p,
				const cpumask_t *new_mask)
1129 1130 1131 1132 1133 1134 1135 1136 1137
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1138
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1139 1140
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
1141
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1142
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1143
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1144 1145 1146 1147 1148 1149 1150 1151
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
P
Peter Zijlstra 已提交
1152
	p->rt.nr_cpus_allowed = weight;
1153
}
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/* Assumes rq->lock is held */
static void join_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
}

/* Assumes rq->lock is held */
static void leave_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
}
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1234 1235 1236
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1237
		 */
1238
		if (p->prio > rq->rt.highest_prio && rq->curr == p)
1239 1240 1241 1242 1243
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1244
#endif /* CONFIG_SMP */
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1271
		if (p->rt.timeout > next)
1272 1273 1274
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
1275

P
Peter Zijlstra 已提交
1276
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1277
{
1278 1279
	update_curr_rt(rq);

1280 1281
	watchdog(rq, p);

I
Ingo Molnar 已提交
1282 1283 1284 1285 1286 1287 1288
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1289
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1290 1291
		return;

P
Peter Zijlstra 已提交
1292
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1293

1294 1295 1296 1297
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1298
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1299 1300 1301
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1302 1303
}

1304 1305 1306 1307 1308 1309 1310
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1311
static const struct sched_class rt_sched_class = {
1312
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1313 1314 1315
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
1316 1317 1318
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1319 1320 1321 1322 1323 1324

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1325
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1326
	.load_balance		= load_balance_rt,
1327
	.move_one_task		= move_one_task_rt,
1328
	.set_cpus_allowed       = set_cpus_allowed_rt,
1329 1330
	.join_domain            = join_domain_rt,
	.leave_domain           = leave_domain_rt,
1331 1332 1333
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1334
	.switched_from		= switched_from_rt,
1335
#endif
I
Ingo Molnar 已提交
1336

1337
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1338
	.task_tick		= task_tick_rt,
1339 1340 1341

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1342
};