sched_rt.c 42.4 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#ifdef CONFIG_RT_GROUP_SCHED

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

10 11
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
12 13 14
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

30 31
#define rt_entity_is_task(rt_se) (1)

32 33 34 35 36
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
52
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
53

54
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
55
{
56
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
57
}
I
Ingo Molnar 已提交
58

S
Steven Rostedt 已提交
59 60
static inline void rt_set_overload(struct rq *rq)
{
61 62 63
	if (!rq->online)
		return;

64
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
65 66 67 68 69 70 71 72
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
73
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
74
}
I
Ingo Molnar 已提交
75

S
Steven Rostedt 已提交
76 77
static inline void rt_clear_overload(struct rq *rq)
{
78 79 80
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
81
	/* the order here really doesn't matter */
82
	atomic_dec(&rq->rd->rto_count);
83
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
84
}
85

86
static void update_rt_migration(struct rt_rq *rt_rq)
87
{
88
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 90 91
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
92
		}
93 94 95
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
96
	}
97
}
S
Steven Rostedt 已提交
98

99 100
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
101 102 103 104 105 106
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
107 108 109 110 111 112 113 114
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
115 116 117 118 119 120
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
121 122 123 124 125 126
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

127 128 129 130 131 132 133 134 135 136 137 138
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

139 140 141 142 143
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

144 145
#else

146
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
147
{
P
Peter Zijlstra 已提交
148 149
}

150 151 152 153
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

154
static inline
155 156 157 158
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

159
static inline
160 161 162
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
163

S
Steven Rostedt 已提交
164 165
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
166 167 168 169 170
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

171
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
172

P
Peter Zijlstra 已提交
173
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
174 175
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
176
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
177

P
Peter Zijlstra 已提交
178 179 180 181 182 183
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
184 185
}

C
Cheng Xu 已提交
186 187
typedef struct task_group *rt_rq_iter_t;

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
205

206 207 208 209 210 211 212 213 214 215 216
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_add_rcu(&rt_rq->leaf_rt_rq_list,
			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_del_rcu(&rt_rq->leaf_rt_rq_list);
}

P
Peter Zijlstra 已提交
217
#define for_each_leaf_rt_rq(rt_rq, rq) \
218
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
219 220 221 222 223 224 225 226 227

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

228
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
229 230
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
231
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
232
{
233
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
234 235
	struct sched_rt_entity *rt_se;

236 237 238
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
239

240 241
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
242
			enqueue_rt_entity(rt_se, false);
243
		if (rt_rq->highest_prio.curr < curr->prio)
244
			resched_task(curr);
P
Peter Zijlstra 已提交
245 246 247
	}
}

P
Peter Zijlstra 已提交
248
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
249
{
250
	struct sched_rt_entity *rt_se;
251
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
252

253
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
254 255 256 257 258

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

276
#ifdef CONFIG_SMP
277
static inline const struct cpumask *sched_rt_period_mask(void)
278 279 280
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
281
#else
282
static inline const struct cpumask *sched_rt_period_mask(void)
283
{
284
	return cpu_online_mask;
285 286
}
#endif
P
Peter Zijlstra 已提交
287

288 289
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
290
{
291 292
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
293

P
Peter Zijlstra 已提交
294 295 296 297 298
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

299
#else /* !CONFIG_RT_GROUP_SCHED */
300 301 302

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
303 304 305 306 307 308
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
309 310
}

C
Cheng Xu 已提交
311 312 313 314 315
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

316 317 318 319 320 321 322 323
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

P
Peter Zijlstra 已提交
324 325 326 327 328 329 330 331 332 333 334
#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
335
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
336
{
337 338
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
339 340
}

P
Peter Zijlstra 已提交
341
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
342 343 344
{
}

P
Peter Zijlstra 已提交
345 346 347 348
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
349

350
static inline const struct cpumask *sched_rt_period_mask(void)
351
{
352
	return cpu_online_mask;
353 354 355 356 357 358 359 360
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
361 362 363 364 365
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

366
#endif /* CONFIG_RT_GROUP_SCHED */
367

P
Peter Zijlstra 已提交
368
#ifdef CONFIG_SMP
369 370 371
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
372
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
373 374 375 376 377 378
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

379
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
380

381
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
382
	rt_period = ktime_to_ns(rt_b->rt_period);
383
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
384 385 386 387 388 389
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

390
		raw_spin_lock(&iter->rt_runtime_lock);
391 392 393 394 395
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
396 397 398
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

399 400 401 402
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
403 404
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
405
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
406 407 408 409 410 411
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
412
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
413 414 415
				break;
			}
		}
P
Peter Zijlstra 已提交
416
next:
417
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
418
	}
419
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
420 421 422

	return more;
}
P
Peter Zijlstra 已提交
423

424 425 426
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
427 428 429
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
430
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
431 432 433 434 435
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
436
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
437 438 439 440
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

441 442
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
443 444 445 446 447
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
448 449 450
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
451
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
452

453 454 455 456 457
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
458 459
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

460 461 462
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
463
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
464 465 466
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

467 468 469
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
470
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
471 472
				continue;

473
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
474 475 476 477 478 479 480 481
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
482
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
483 484 485 486 487

			if (!want)
				break;
		}

488
		raw_spin_lock(&rt_rq->rt_runtime_lock);
489 490 491 492
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
493 494
		BUG_ON(want);
balanced:
495 496 497 498
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
499
		rt_rq->rt_runtime = RUNTIME_INF;
500 501
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
502 503 504 505 506 507 508
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

509
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
510
	__disable_runtime(rq);
511
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
512 513 514 515
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
516
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
517 518 519 520 521
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

522 523 524
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
525
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
526 527
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

528 529
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
530 531
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
532
		rt_rq->rt_throttled = 0;
533 534
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
535 536 537 538 539 540 541
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

542
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
543
	__enable_runtime(rq);
544
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
545 546
}

547 548 549 550 551
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
552
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
553
		more = do_balance_runtime(rt_rq);
554
		raw_spin_lock(&rt_rq->rt_runtime_lock);
555 556 557 558
	}

	return more;
}
559
#else /* !CONFIG_SMP */
560 561 562 563
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
564
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
565

566 567 568
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
569
	const struct cpumask *span;
570

571
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
572 573 574
		return 1;

	span = sched_rt_period_mask();
575
	for_each_cpu(i, span) {
576 577 578 579
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

580
		raw_spin_lock(&rq->lock);
581 582 583
		if (rt_rq->rt_time) {
			u64 runtime;

584
			raw_spin_lock(&rt_rq->rt_runtime_lock);
585 586 587 588 589 590 591
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
592 593 594 595 596 597 598

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
599 600 601
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
602
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
603
		} else if (rt_rq->rt_nr_running) {
604
			idle = 0;
605 606 607
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
608 609 610

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
611
		raw_spin_unlock(&rq->lock);
612 613 614 615
	}

	return idle;
}
P
Peter Zijlstra 已提交
616

P
Peter Zijlstra 已提交
617 618
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
619
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
620 621 622
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
623
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
624 625 626 627 628
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
629
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
630
{
P
Peter Zijlstra 已提交
631
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
632 633

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
634
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
635

P
Peter Zijlstra 已提交
636 637 638
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

639 640 641 642
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
643

P
Peter Zijlstra 已提交
644
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
645
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
646
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
647
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
648 649
			return 1;
		}
P
Peter Zijlstra 已提交
650 651 652 653 654
	}

	return 0;
}

I
Ingo Molnar 已提交
655 656 657 658
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
659
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
660 661
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
662 663
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
664 665
	u64 delta_exec;

P
Peter Zijlstra 已提交
666
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
667 668
		return;

669
	delta_exec = rq->clock_task - curr->se.exec_start;
I
Ingo Molnar 已提交
670 671
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
672

673
	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
674 675

	curr->se.sum_exec_runtime += delta_exec;
676 677
	account_group_exec_runtime(curr, delta_exec);

678
	curr->se.exec_start = rq->clock_task;
679
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
680

681 682
	sched_rt_avg_update(rq, delta_exec);

683 684 685
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
686 687 688
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

689
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
690
			raw_spin_lock(&rt_rq->rt_runtime_lock);
691 692 693
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
694
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
695
		}
D
Dhaval Giani 已提交
696
	}
I
Ingo Molnar 已提交
697 698
}

699
#if defined CONFIG_SMP
700 701 702 703

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
704
{
705 706
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

H
Hillf Danton 已提交
707
	if (next)
708 709 710 711 712
		return next->prio;
	else
		return MAX_RT_PRIO;
}

713 714
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
715
{
G
Gregory Haskins 已提交
716
	struct rq *rq = rq_of_rt_rq(rt_rq);
717

718
	if (prio < prev_prio) {
G
Gregory Haskins 已提交
719

720 721
		/*
		 * If the new task is higher in priority than anything on the
722 723
		 * run-queue, we know that the previous high becomes our
		 * next-highest.
724
		 */
725
		rt_rq->highest_prio.next = prev_prio;
726 727

		if (rq->online)
G
Gregory Haskins 已提交
728
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
I
Ingo Molnar 已提交
729

730 731 732 733 734 735 736 737 738 739 740 741
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
742
}
743

744 745 746 747
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
748

749 750 751 752 753
	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
		rt_rq->highest_prio.next = next_prio(rq);

	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
754 755
}

756 757
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
758
static inline
759 760 761 762 763
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
764

765
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
782
	if (rt_rq->rt_nr_running) {
783

784
		WARN_ON(prio < prev_prio);
785

786
		/*
787 788
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
789
		 */
790
		if (prio == prev_prio) {
791 792 793
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
794
				sched_find_first_bit(array->bitmap);
795 796
		}

797
	} else
798
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
799

800 801
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
802

803 804 805 806 807 808
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
809

810
#ifdef CONFIG_RT_GROUP_SCHED
811 812 813 814 815 816 817 818 819 820 821 822 823 824

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
825 826 827 828
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
867 868
}

869
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
870
{
P
Peter Zijlstra 已提交
871 872 873
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
874
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
875

876 877 878 879 880 881 882
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
883
		return;
884

885 886 887
	if (!rt_rq->rt_nr_running)
		list_add_leaf_rt_rq(rt_rq);

888 889 890 891
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
892
	__set_bit(rt_se_prio(rt_se), array->bitmap);
893

P
Peter Zijlstra 已提交
894 895 896
	inc_rt_tasks(rt_se, rt_rq);
}

897
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
898 899 900 901 902 903 904 905 906
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
907 908
	if (!rt_rq->rt_nr_running)
		list_del_leaf_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
909 910 911 912 913 914
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
915
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
916
{
917
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
918

919 920 921 922 923 924 925
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
926 927 928 929
			__dequeue_rt_entity(rt_se);
	}
}

930
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
931 932 933
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
934
		__enqueue_rt_entity(rt_se, head);
935 936 937 938 939 940 941 942 943 944
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
945
			__enqueue_rt_entity(rt_se, false);
946
	}
I
Ingo Molnar 已提交
947 948 949 950 951
}

/*
 * Adding/removing a task to/from a priority array:
 */
952
static void
953
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
954 955 956
{
	struct sched_rt_entity *rt_se = &p->rt;

957
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
958 959
		rt_se->timeout = 0;

960
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
961

962 963
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
P
Peter Zijlstra 已提交
964 965
}

966
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
967
{
P
Peter Zijlstra 已提交
968
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
969

970
	update_curr_rt(rq);
971
	dequeue_rt_entity(rt_se);
972

973
	dequeue_pushable_task(rq, p);
I
Ingo Molnar 已提交
974 975 976 977 978 979
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
980 981
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
982
{
983
	if (on_rt_rq(rt_se)) {
984 985 986 987 988 989 990
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
991
	}
P
Peter Zijlstra 已提交
992 993
}

994
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
995
{
P
Peter Zijlstra 已提交
996 997
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
998

P
Peter Zijlstra 已提交
999 1000
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1001
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1002
	}
I
Ingo Molnar 已提交
1003 1004
}

P
Peter Zijlstra 已提交
1005
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1006
{
1007
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1008 1009
}

1010
#ifdef CONFIG_SMP
1011 1012
static int find_lowest_rq(struct task_struct *task);

1013
static int
1014
select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1015
{
1016 1017 1018 1019 1020
	struct task_struct *curr;
	struct rq *rq;
	int cpu;

	cpu = task_cpu(p);
1021 1022 1023 1024 1025

	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1026 1027 1028 1029 1030
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1031
	/*
1032
	 * If the current task on @p's runqueue is an RT task, then
1033 1034 1035 1036
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1037 1038 1039 1040 1041 1042 1043 1044 1045
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1046 1047 1048 1049 1050 1051
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1052
	 */
1053 1054 1055
	if (curr && unlikely(rt_task(curr)) &&
	    (curr->rt.nr_cpus_allowed < 2 ||
	     curr->prio < p->prio) &&
P
Peter Zijlstra 已提交
1056
	    (p->rt.nr_cpus_allowed > 1)) {
1057
		int target = find_lowest_rq(p);
1058

1059 1060
		if (target != -1)
			cpu = target;
1061
	}
1062
	rcu_read_unlock();
1063

1064
out:
1065
	return cpu;
1066
}
1067 1068 1069 1070 1071 1072

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

1073
	if (p->rt.nr_cpus_allowed != 1
1074 1075
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1076

1077 1078
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1089 1090
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1091 1092 1093
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1094
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1095
{
1096
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1097
		resched_task(rq->curr);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1114
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1115
		check_preempt_equal_prio(rq, p);
1116
#endif
I
Ingo Molnar 已提交
1117 1118
}

P
Peter Zijlstra 已提交
1119 1120
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1121
{
P
Peter Zijlstra 已提交
1122 1123
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1124 1125 1126 1127
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1128
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1129 1130

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1131
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1132

P
Peter Zijlstra 已提交
1133 1134
	return next;
}
I
Ingo Molnar 已提交
1135

1136
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1137 1138 1139 1140
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1141

P
Peter Zijlstra 已提交
1142 1143
	rt_rq = &rq->rt;

1144
	if (!rt_rq->rt_nr_running)
P
Peter Zijlstra 已提交
1145 1146
		return NULL;

P
Peter Zijlstra 已提交
1147
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1148 1149 1150 1151
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1152
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1153 1154 1155 1156
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1157
	p->se.exec_start = rq->clock_task;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1170
#ifdef CONFIG_SMP
1171 1172 1173 1174 1175
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1176
#endif
1177

P
Peter Zijlstra 已提交
1178
	return p;
I
Ingo Molnar 已提交
1179 1180
}

1181
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1182
{
1183
	update_curr_rt(rq);
1184 1185 1186 1187 1188

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
P
Peter Zijlstra 已提交
1189
	if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1190
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1191 1192
}

1193
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1194

S
Steven Rostedt 已提交
1195 1196 1197 1198 1199
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1200 1201 1202
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1203
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
1204
	    (p->rt.nr_cpus_allowed > 1))
1205 1206 1207 1208
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1209
/* Return the second highest RT task, NULL otherwise */
1210
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1211
{
P
Peter Zijlstra 已提交
1212 1213 1214 1215
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1216 1217
	int idx;

P
Peter Zijlstra 已提交
1218 1219 1220
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1221
next_idx:
P
Peter Zijlstra 已提交
1222 1223 1224 1225 1226
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1227 1228 1229 1230 1231 1232
			struct task_struct *p;

			if (!rt_entity_is_task(rt_se))
				continue;

			p = rt_task_of(rt_se);
P
Peter Zijlstra 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1242 1243
	}

S
Steven Rostedt 已提交
1244 1245 1246
	return next;
}

1247
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1248

G
Gregory Haskins 已提交
1249 1250 1251
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1252
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1253 1254
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1255

1256 1257 1258 1259
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1260 1261
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1262

1263 1264
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1274
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1275 1276 1277 1278 1279 1280
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1281 1282
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1283

1284
	rcu_read_lock();
R
Rusty Russell 已提交
1285 1286 1287
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1288

R
Rusty Russell 已提交
1289 1290 1291 1292 1293
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1294 1295
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1296
				return this_cpu;
1297
			}
R
Rusty Russell 已提交
1298 1299 1300

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1301 1302
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1303
				return best_cpu;
1304
			}
G
Gregory Haskins 已提交
1305 1306
		}
	}
1307
	rcu_read_unlock();
G
Gregory Haskins 已提交
1308 1309 1310 1311 1312 1313

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1314 1315 1316 1317 1318 1319 1320
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1321 1322 1323
}

/* Will lock the rq it finds */
1324
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1325 1326 1327
{
	struct rq *lowest_rq = NULL;
	int tries;
1328
	int cpu;
S
Steven Rostedt 已提交
1329

1330 1331 1332
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1333
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1334 1335
			break;

1336 1337
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1338
		/* if the prio of this runqueue changed, try again */
1339
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1340 1341 1342 1343 1344 1345
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1346
			if (unlikely(task_rq(task) != rq ||
1347 1348
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1349
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1350
				     !task->on_rq)) {
1351

1352
				raw_spin_unlock(&lowest_rq->lock);
S
Steven Rostedt 已提交
1353 1354 1355 1356 1357 1358
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1359
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1360 1361 1362
			break;

		/* try again */
1363
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1364 1365 1366 1367 1368 1369
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

P
Peter Zijlstra 已提交
1384
	BUG_ON(!p->on_rq);
1385 1386 1387 1388 1389
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1390 1391 1392 1393 1394
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1395
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1396 1397 1398
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1399
	int ret = 0;
S
Steven Rostedt 已提交
1400

G
Gregory Haskins 已提交
1401 1402 1403
	if (!rq->rt.overloaded)
		return 0;

1404
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1405 1406 1407
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1408
retry:
1409
	if (unlikely(next_task == rq->curr)) {
1410
		WARN_ON(1);
S
Steven Rostedt 已提交
1411
		return 0;
1412
	}
S
Steven Rostedt 已提交
1413 1414 1415 1416 1417 1418

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1419 1420
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1421 1422 1423
		return 0;
	}

1424
	/* We might release rq lock */
S
Steven Rostedt 已提交
1425 1426 1427
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1428
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1429 1430 1431
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1432
		 * find_lock_lowest_rq releases rq->lock
1433 1434 1435 1436 1437
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1438
		 */
1439
		task = pick_next_pushable_task(rq);
1440 1441
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1442 1443 1444 1445
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1446 1447
			 */
			goto out;
S
Steven Rostedt 已提交
1448
		}
1449

1450 1451 1452 1453
		if (!task)
			/* No more tasks, just exit */
			goto out;

1454
		/*
1455
		 * Something has shifted, try again.
1456
		 */
1457 1458 1459
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1460 1461
	}

1462
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1463 1464
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1465
	ret = 1;
S
Steven Rostedt 已提交
1466 1467 1468

	resched_task(lowest_rq->curr);

1469
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1470 1471 1472 1473

out:
	put_task_struct(next_task);

1474
	return ret;
S
Steven Rostedt 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1484 1485
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1486
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1487
	struct task_struct *p;
1488 1489
	struct rq *src_rq;

1490
	if (likely(!rt_overloaded(this_rq)))
1491 1492
		return 0;

1493
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1494 1495 1496 1497
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1510 1511 1512
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1513
		 * alter this_rq
1514
		 */
1515
		double_lock_balance(this_rq, src_rq);
1516 1517 1518 1519

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1520 1521
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1522 1523 1524 1525 1526 1527 1528

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1529
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1530
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1531
			WARN_ON(!p->on_rq);
1532 1533 1534 1535 1536 1537 1538

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1539
			 * current task on the run queue
1540
			 */
1541
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1542
				goto skip;
1543 1544 1545 1546 1547 1548 1549 1550 1551

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1552
			 * in another runqueue. (low likelihood
1553 1554 1555
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1556
skip:
1557
		double_unlock_balance(this_rq, src_rq);
1558 1559 1560 1561 1562
	}

	return ret;
}

1563
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1564 1565
{
	/* Try to pull RT tasks here if we lower this rq's prio */
Y
Yong Zhang 已提交
1566
	if (rq->rt.highest_prio.curr > prev->prio)
1567 1568 1569
		pull_rt_task(rq);
}

1570
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1571
{
1572
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1573 1574
}

1575 1576 1577 1578
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1579
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1580
{
1581
	if (!task_running(rq, p) &&
1582
	    !test_tsk_need_resched(rq->curr) &&
1583
	    has_pushable_tasks(rq) &&
1584
	    p->rt.nr_cpus_allowed > 1 &&
1585
	    rt_task(rq->curr) &&
1586 1587
	    (rq->curr->rt.nr_cpus_allowed < 2 ||
	     rq->curr->prio < p->prio))
1588 1589 1590
		push_rt_tasks(rq);
}

1591
static void set_cpus_allowed_rt(struct task_struct *p,
1592
				const struct cpumask *new_mask)
1593
{
1594
	int weight = cpumask_weight(new_mask);
1595 1596 1597 1598 1599 1600 1601

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1602
	if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1603 1604
		struct rq *rq = task_rq(p);

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1623
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1624
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1625
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1626 1627 1628 1629
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1630
		update_rt_migration(&rq->rt);
1631 1632
	}

1633
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1634
	p->rt.nr_cpus_allowed = weight;
1635
}
1636

1637
/* Assumes rq->lock is held */
1638
static void rq_online_rt(struct rq *rq)
1639 1640 1641
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1642

P
Peter Zijlstra 已提交
1643 1644
	__enable_runtime(rq);

1645
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1646 1647 1648
}

/* Assumes rq->lock is held */
1649
static void rq_offline_rt(struct rq *rq)
1650 1651 1652
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1653

P
Peter Zijlstra 已提交
1654 1655
	__disable_runtime(rq);

1656
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1657
}
1658 1659 1660 1661 1662

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1663
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1664 1665 1666 1667 1668 1669 1670 1671
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
P
Peter Zijlstra 已提交
1672
	if (p->on_rq && !rq->rt.rt_nr_running)
1673 1674
		pull_rt_task(rq);
}
1675 1676 1677 1678 1679 1680

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1681
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1682
					GFP_KERNEL, cpu_to_node(i));
1683
}
1684 1685 1686 1687 1688 1689 1690
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1691
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1702
	if (p->on_rq && rq->curr != p) {
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1718 1719
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1720
{
P
Peter Zijlstra 已提交
1721
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1722 1723 1724
		return;

	if (rq->curr == p) {
1725 1726 1727 1728 1729 1730 1731 1732 1733
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1734 1735 1736
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1737
		 */
1738
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1739 1740 1741 1742 1743
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1744
#endif /* CONFIG_SMP */
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1756 1757 1758 1759
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1760 1761 1762
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1763 1764 1765 1766 1767 1768

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1769
		if (p->rt.timeout > next)
1770
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1771 1772
	}
}
I
Ingo Molnar 已提交
1773

P
Peter Zijlstra 已提交
1774
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1775
{
1776 1777
	update_curr_rt(rq);

1778 1779
	watchdog(rq, p);

I
Ingo Molnar 已提交
1780 1781 1782 1783 1784 1785 1786
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1787
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1788 1789
		return;

P
Peter Zijlstra 已提交
1790
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1791

1792 1793 1794 1795
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1796
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1797
		requeue_task_rt(rq, p, 0);
1798 1799
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1800 1801
}

1802 1803 1804 1805
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

1806
	p->se.exec_start = rq->clock_task;
1807 1808 1809

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1810 1811
}

1812
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
		return DEF_TIMESLICE;
	else
		return 0;
}

1823
static const struct sched_class rt_sched_class = {
1824
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1834
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1835 1836
	.select_task_rq		= select_task_rq_rt,

1837
	.set_cpus_allowed       = set_cpus_allowed_rt,
1838 1839
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1840 1841
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
1842
	.task_woken		= task_woken_rt,
1843
	.switched_from		= switched_from_rt,
1844
#endif
I
Ingo Molnar 已提交
1845

1846
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1847
	.task_tick		= task_tick_rt,
1848

1849 1850
	.get_rr_interval	= get_rr_interval_rt,

1851 1852
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1853
};
1854 1855 1856 1857 1858 1859

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
C
Cheng Xu 已提交
1860
	rt_rq_iter_t iter;
1861 1862 1863
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
1864
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1865 1866 1867
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1868
#endif /* CONFIG_SCHED_DEBUG */
1869