sched_rt.c 18.6 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_SMP
static cpumask_t rt_overload_mask;
static atomic_t rto_count;
static inline int rt_overloaded(void)
{
	return atomic_read(&rto_count);
}
static inline cpumask_t *rt_overload(void)
{
	return &rt_overload_mask;
}
static inline void rt_set_overload(struct rq *rq)
{
	cpu_set(rq->cpu, rt_overload_mask);
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
	atomic_inc(&rto_count);
}
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
	atomic_dec(&rto_count);
	cpu_clear(rq->cpu, rt_overload_mask);
}
36 37 38 39 40 41 42 43

static void update_rt_migration(struct rq *rq)
{
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
		rt_set_overload(rq);
	else
		rt_clear_overload(rq);
}
S
Steven Rostedt 已提交
44 45
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
46 47 48 49
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
50
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
51 52 53 54 55 56 57
{
	struct task_struct *curr = rq->curr;
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

58
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
59 60
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
61 62

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
63 64

	curr->se.sum_exec_runtime += delta_exec;
65
	curr->se.exec_start = rq->clock;
66
	cpuacct_charge(curr, delta_exec);
I
Ingo Molnar 已提交
67 68
}

69 70 71 72
static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	rq->rt.rt_nr_running++;
73 74 75
#ifdef CONFIG_SMP
	if (p->prio < rq->rt.highest_prio)
		rq->rt.highest_prio = p->prio;
76 77 78 79
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory++;

	update_rt_migration(rq);
80
#endif /* CONFIG_SMP */
81 82 83 84 85 86 87
}

static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	WARN_ON(!rq->rt.rt_nr_running);
	rq->rt.rt_nr_running--;
88 89 90 91 92 93 94 95 96 97 98 99 100
#ifdef CONFIG_SMP
	if (rq->rt.rt_nr_running) {
		struct rt_prio_array *array;

		WARN_ON(p->prio < rq->rt.highest_prio);
		if (p->prio == rq->rt.highest_prio) {
			/* recalculate */
			array = &rq->rt.active;
			rq->rt.highest_prio =
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
		rq->rt.highest_prio = MAX_RT_PRIO;
101 102 103 104
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory--;

	update_rt_migration(rq);
105
#endif /* CONFIG_SMP */
106 107
}

108
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
I
Ingo Molnar 已提交
109 110 111 112 113
{
	struct rt_prio_array *array = &rq->rt.active;

	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
114
	inc_cpu_load(rq, p->se.load.weight);
115 116

	inc_rt_tasks(p, rq);
I
Ingo Molnar 已提交
117 118 119 120 121
}

/*
 * Adding/removing a task to/from a priority array:
 */
122
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
123 124 125
{
	struct rt_prio_array *array = &rq->rt.active;

126
	update_curr_rt(rq);
I
Ingo Molnar 已提交
127 128 129 130

	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
131
	dec_cpu_load(rq, p->se.load.weight);
132 133

	dec_rt_tasks(p, rq);
I
Ingo Molnar 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
	struct rt_prio_array *array = &rq->rt.active;

	list_move_tail(&p->run_list, array->queue + p->prio);
}

static void
148
yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
149
{
150
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
151 152
}

153
#ifdef CONFIG_SMP
154 155
static int find_lowest_rq(struct task_struct *task);

156 157
static int select_task_rq_rt(struct task_struct *p, int sync)
{
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	struct rq *rq = task_rq(p);

	/*
	 * If the task will not preempt the RQ, try to find a better RQ
	 * before we even activate the task
	 */
	if ((p->prio >= rq->rt.highest_prio)
	    && (p->nr_cpus_allowed > 1)) {
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
175 176 177 178
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
179 180 181 182 183 184 185 186 187
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
	if (p->prio < rq->curr->prio)
		resched_task(rq->curr);
}

188
static struct task_struct *pick_next_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
	if (idx >= MAX_RT_PRIO)
		return NULL;

	queue = array->queue + idx;
	next = list_entry(queue->next, struct task_struct, run_list);

202
	next->se.exec_start = rq->clock;
I
Ingo Molnar 已提交
203 204 205 206

	return next;
}

207
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
208
{
209
	update_curr_rt(rq);
I
Ingo Molnar 已提交
210 211 212
	p->se.exec_start = 0;
}

213
#ifdef CONFIG_SMP
S
Steven Rostedt 已提交
214 215 216 217 218 219
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

220 221 222
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
223 224
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
	    (p->nr_cpus_allowed > 1))
225 226 227 228
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
229
/* Return the second highest RT task, NULL otherwise */
230 231
static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
						     int cpu)
S
Steven Rostedt 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	assert_spin_locked(&rq->lock);

	if (likely(rq->rt.rt_nr_running < 2))
		return NULL;

	idx = sched_find_first_bit(array->bitmap);
	if (unlikely(idx >= MAX_RT_PRIO)) {
		WARN_ON(1); /* rt_nr_running is bad */
		return NULL;
	}

	queue = array->queue + idx;
250 251
	BUG_ON(list_empty(queue));

S
Steven Rostedt 已提交
252
	next = list_entry(queue->next, struct task_struct, run_list);
253 254
	if (unlikely(pick_rt_task(rq, next, cpu)))
		goto out;
S
Steven Rostedt 已提交
255 256 257 258

	if (queue->next->next != queue) {
		/* same prio task */
		next = list_entry(queue->next->next, struct task_struct, run_list);
259 260
		if (pick_rt_task(rq, next, cpu))
			goto out;
S
Steven Rostedt 已提交
261 262
	}

263
 retry:
S
Steven Rostedt 已提交
264 265
	/* slower, but more flexible */
	idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
266
	if (unlikely(idx >= MAX_RT_PRIO))
S
Steven Rostedt 已提交
267 268 269
		return NULL;

	queue = array->queue + idx;
270 271 272 273 274 275 276 277
	BUG_ON(list_empty(queue));

	list_for_each_entry(next, queue, run_list) {
		if (pick_rt_task(rq, next, cpu))
			goto out;
	}

	goto retry;
S
Steven Rostedt 已提交
278

279
 out:
S
Steven Rostedt 已提交
280 281 282 283
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
G
Gregory Haskins 已提交
284
static DEFINE_PER_CPU(cpumask_t, valid_cpu_mask);
S
Steven Rostedt 已提交
285

G
Gregory Haskins 已提交
286
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
S
Steven Rostedt 已提交
287
{
G
Gregory Haskins 已提交
288 289 290 291
	int       cpu;
	cpumask_t *valid_mask = &__get_cpu_var(valid_cpu_mask);
	int       lowest_prio = -1;
	int       ret         = 0;
S
Steven Rostedt 已提交
292

G
Gregory Haskins 已提交
293 294
	cpus_clear(*lowest_mask);
	cpus_and(*valid_mask, cpu_online_map, task->cpus_allowed);
S
Steven Rostedt 已提交
295

296 297 298
	/*
	 * Scan each rq for the lowest prio.
	 */
G
Gregory Haskins 已提交
299
	for_each_cpu_mask(cpu, *valid_mask) {
300
		struct rq *rq = cpu_rq(cpu);
S
Steven Rostedt 已提交
301

302 303
		/* We look for lowest RT prio or non-rt CPU */
		if (rq->rt.highest_prio >= MAX_RT_PRIO) {
G
Gregory Haskins 已提交
304 305 306 307
			if (ret)
				cpus_clear(*lowest_mask);
			cpu_set(rq->cpu, *lowest_mask);
			return 1;
308 309 310
		}

		/* no locking for now */
G
Gregory Haskins 已提交
311 312 313 314 315 316 317 318 319
		if ((rq->rt.highest_prio > task->prio)
		    && (rq->rt.highest_prio >= lowest_prio)) {
			if (rq->rt.highest_prio > lowest_prio) {
				/* new low - clear old data */
				lowest_prio = rq->rt.highest_prio;
				cpus_clear(*lowest_mask);
			}
			cpu_set(rq->cpu, *lowest_mask);
			ret = 1;
S
Steven Rostedt 已提交
320
		}
321 322
	}

G
Gregory Haskins 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	return ret;
}

static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);

	if (!find_lowest_cpus(task, lowest_mask))
		return -1;

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
389 390 391 392 393 394 395 396 397
}

/* Will lock the rq it finds */
static struct rq *find_lock_lowest_rq(struct task_struct *task,
				      struct rq *rq)
{
	struct rq *lowest_rq = NULL;
	int cpu;
	int tries;
S
Steven Rostedt 已提交
398

399 400 401
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

402
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
403 404
			break;

405 406
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
407
		/* if the prio of this runqueue changed, try again */
408
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
409 410 411 412 413 414
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
415
			if (unlikely(task_rq(task) != rq ||
S
Steven Rostedt 已提交
416
				     !cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
417
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
				     !task->se.on_rq)) {
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
442
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
443 444 445 446 447 448
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

449
	assert_spin_locked(&rq->lock);
S
Steven Rostedt 已提交
450

451
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
452 453 454 455
	if (!next_task)
		return 0;

 retry:
456
	if (unlikely(next_task == rq->curr)) {
457
		WARN_ON(1);
S
Steven Rostedt 已提交
458
		return 0;
459
	}
S
Steven Rostedt 已提交
460 461 462 463 464 465

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
466 467
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
468 469 470
		return 0;
	}

471
	/* We might release rq lock */
S
Steven Rostedt 已提交
472 473 474
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
475
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
476 477 478
	if (!lowest_rq) {
		struct task_struct *task;
		/*
479
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
480 481 482
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
483
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
484 485 486 487 488 489 490 491 492 493
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

	assert_spin_locked(&lowest_rq->lock);

494
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
static int pull_rt_task(struct rq *this_rq)
{
	struct task_struct *next;
	struct task_struct *p;
	struct rq *src_rq;
	cpumask_t *rto_cpumask;
	int this_cpu = this_rq->cpu;
	int cpu;
	int ret = 0;

	assert_spin_locked(&this_rq->lock);

	/*
	 * If cpusets are used, and we have overlapping
	 * run queue cpusets, then this algorithm may not catch all.
	 * This is just the price you pay on trying to keep
	 * dirtying caches down on large SMP machines.
	 */
	if (likely(!rt_overloaded()))
		return 0;

	next = pick_next_task_rt(this_rq);

	rto_cpumask = rt_overload();

	for_each_cpu_mask(cpu, *rto_cpumask) {
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
			/*
			 * It is possible that overlapping cpusets
			 * will miss clearing a non overloaded runqueue.
			 * Clear it now.
			 */
			if (double_lock_balance(this_rq, src_rq)) {
				/* unlocked our runqueue lock */
				struct task_struct *old_next = next;
				next = pick_next_task_rt(this_rq);
				if (next != old_next)
					ret = 1;
			}
			if (likely(src_rq->rt.rt_nr_running <= 1))
				/*
				 * Small chance that this_rq->curr changed
				 * but it's really harmless here.
				 */
				rt_clear_overload(this_rq);
			else
				/*
				 * Heh, the src_rq is now overloaded, since
				 * we already have the src_rq lock, go straight
				 * to pulling tasks from it.
				 */
				goto try_pulling;
			spin_unlock(&src_rq->lock);
			continue;
		}

		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
		if (src_rq->rt.rt_nr_running <= 1) {
			spin_unlock(&src_rq->lock);
			continue;
		}

 try_pulling:
		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
				goto bail;

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */

			/*
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
 bail:
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

static void schedule_balance_rt(struct rq *rq,
				struct task_struct *prev)
{
	/* Try to pull RT tasks here if we lower this rq's prio */
	if (unlikely(rt_task(prev)) &&
	    rq->rt.highest_prio > prev->prio)
		pull_rt_task(rq);
}

S
Steven Rostedt 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
static void schedule_tail_balance_rt(struct rq *rq)
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
	if (unlikely(rq->rt.rt_nr_running > 1)) {
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

685 686 687 688 689 690 691 692 693

static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
{
	if (unlikely(rt_task(p)) &&
	    !task_running(rq, p) &&
	    (p->prio >= rq->curr->prio))
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
694
static unsigned long
I
Ingo Molnar 已提交
695
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
696 697 698
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
699
{
700 701
	/* don't touch RT tasks */
	return 0;
702 703 704 705 706 707
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
708 709
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
710
}
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
	if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
		struct rq *rq = task_rq(p);

		if ((p->nr_cpus_allowed <= 1) && (weight > 1))
			rq->rt.rt_nr_migratory++;
		else if((p->nr_cpus_allowed > 1) && (weight <= 1)) {
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
	p->nr_cpus_allowed = weight;
}
S
Steven Rostedt 已提交
737 738
#else /* CONFIG_SMP */
# define schedule_tail_balance_rt(rq)	do { } while (0)
739
# define schedule_balance_rt(rq, prev)	do { } while (0)
740
# define wakeup_balance_rt(rq, p)	do { } while (0)
S
Steven Rostedt 已提交
741
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
742 743 744

static void task_tick_rt(struct rq *rq, struct task_struct *p)
{
745 746
	update_curr_rt(rq);

I
Ingo Molnar 已提交
747 748 749 750 751 752 753 754 755 756
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

	if (--p->time_slice)
		return;

D
Dmitry Adamushko 已提交
757
	p->time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
758

759 760 761 762 763 764 765 766
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
	if (p->run_list.prev != p->run_list.next) {
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
767 768
}

769 770 771 772 773 774 775
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

776 777
const struct sched_class rt_sched_class = {
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
778 779 780
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
781 782 783
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
784 785 786 787 788 789

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

790
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
791
	.load_balance		= load_balance_rt,
792
	.move_one_task		= move_one_task_rt,
793
	.set_cpus_allowed       = set_cpus_allowed_rt,
794
#endif
I
Ingo Molnar 已提交
795

796
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
797 798
	.task_tick		= task_tick_rt,
};