sched_rt.c 38.7 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15 16 17
	if (!rq->online)
		return;

18
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
19 20 21 22 23 24 25 26
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
27
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
28
}
I
Ingo Molnar 已提交
29

S
Steven Rostedt 已提交
30 31
static inline void rt_clear_overload(struct rq *rq)
{
32 33 34
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
35
	/* the order here really doesn't matter */
36
	atomic_dec(&rq->rd->rto_count);
37
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
38
}
39 40 41

static void update_rt_migration(struct rq *rq)
{
42
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 44 45 46 47
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
48
		rt_clear_overload(rq);
49 50
		rq->rt.overloaded = 0;
	}
51
}
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

#else

#define enqueue_pushable_task(rq, p) do { } while (0)
#define dequeue_pushable_task(rq, p) do { } while (0)

S
Steven Rostedt 已提交
70 71
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
72
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
73
{
P
Peter Zijlstra 已提交
74 75 76 77 78 79 80 81
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

82
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
83

P
Peter Zijlstra 已提交
84
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
85 86
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
87
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
88

P
Peter Zijlstra 已提交
89 90 91 92 93 94
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
95 96 97
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
98
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
121
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
122
{
123
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
P
Peter Zijlstra 已提交
124 125
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

126 127 128
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
			enqueue_rt_entity(rt_se);
129
		if (rt_rq->highest_prio.curr < curr->prio)
130
			resched_task(curr);
P
Peter Zijlstra 已提交
131 132 133
	}
}

P
Peter Zijlstra 已提交
134
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
135 136 137 138 139 140 141
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

159
#ifdef CONFIG_SMP
160
static inline const struct cpumask *sched_rt_period_mask(void)
161 162 163
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
164
#else
165
static inline const struct cpumask *sched_rt_period_mask(void)
166
{
167
	return cpu_online_mask;
168 169
}
#endif
P
Peter Zijlstra 已提交
170

171 172
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
173
{
174 175
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
176

P
Peter Zijlstra 已提交
177 178 179 180 181
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

182
#else /* !CONFIG_RT_GROUP_SCHED */
183 184 185

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
186 187 188 189 190 191
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
218
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
219
{
220 221
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
222 223
}

P
Peter Zijlstra 已提交
224
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
225 226 227
{
}

P
Peter Zijlstra 已提交
228 229 230 231
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
232

233
static inline const struct cpumask *sched_rt_period_mask(void)
234
{
235
	return cpu_online_mask;
236 237 238 239 240 241 242 243
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
244 245 246 247 248
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

249
#endif /* CONFIG_RT_GROUP_SCHED */
250

P
Peter Zijlstra 已提交
251
#ifdef CONFIG_SMP
252 253 254
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
255
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
256 257 258 259 260 261
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

262
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
263 264 265

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
266
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
267 268 269 270 271 272 273
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
274 275 276 277 278
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
279 280 281
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

282 283 284 285
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
286 287
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
288
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
289 290 291 292 293 294 295 296 297 298
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
299
next:
P
Peter Zijlstra 已提交
300 301 302 303 304 305
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
306

307 308 309
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
325 326 327 328 329
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
330 331 332 333 334
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

335 336 337 338 339
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
340 341
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

342 343 344
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
345
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
346 347 348
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

349 350 351
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
352
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
371 372 373 374
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
375 376
		BUG_ON(want);
balanced:
377 378 379 380
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

403 404 405
	/*
	 * Reset each runqueue's bandwidth settings
	 */
P
Peter Zijlstra 已提交
406 407 408 409 410 411 412
	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
413
		rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

428 429 430 431 432 433 434 435 436 437 438 439
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
		more = do_balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);
	}

	return more;
}
440
#else /* !CONFIG_SMP */
441 442 443 444
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
445
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
446

447 448 449
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
450
	const struct cpumask *span;
451

452
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
453 454 455
		return 1;

	span = sched_rt_period_mask();
456
	for_each_cpu(i, span) {
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
			u64 runtime;

			spin_lock(&rt_rq->rt_runtime_lock);
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
			spin_unlock(&rt_rq->rt_runtime_lock);
477 478
		} else if (rt_rq->rt_nr_running)
			idle = 0;
479 480 481 482 483 484 485 486

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}
P
Peter Zijlstra 已提交
487

P
Peter Zijlstra 已提交
488 489
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
490
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
491 492 493
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
494
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
495 496 497 498 499
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
500
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
501
{
P
Peter Zijlstra 已提交
502
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
503 504

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
505
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
506

P
Peter Zijlstra 已提交
507 508 509
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

510 511 512 513
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
514

P
Peter Zijlstra 已提交
515
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
516
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
517
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
518
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
519 520
			return 1;
		}
P
Peter Zijlstra 已提交
521 522 523 524 525
	}

	return 0;
}

I
Ingo Molnar 已提交
526 527 528 529
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
530
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
531 532
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
533 534
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
535 536 537 538 539
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

540
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
541 542
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
543 544

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
545 546

	curr->se.sum_exec_runtime += delta_exec;
547 548
	account_group_exec_runtime(curr, delta_exec);

549
	curr->se.exec_start = rq->clock;
550
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
551

552 553 554
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
555 556 557
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

558
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
559
			spin_lock(&rt_rq->rt_runtime_lock);
560 561 562
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
563
			spin_unlock(&rt_rq->rt_runtime_lock);
564
		}
D
Dhaval Giani 已提交
565
	}
I
Ingo Molnar 已提交
566 567
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
{
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

	if (next && rt_prio(next->prio))
		return next->prio;
	else
		return MAX_RT_PRIO;
}
#endif

P
Peter Zijlstra 已提交
583 584
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
585
{
G
Gregory Haskins 已提交
586
	int prio = rt_se_prio(rt_se);
587
#ifdef CONFIG_SMP
G
Gregory Haskins 已提交
588
	struct rq *rq = rq_of_rt_rq(rt_rq);
589
#endif
590

G
Gregory Haskins 已提交
591 592 593
	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
594
	if (prio < rt_rq->highest_prio.curr) {
G
Gregory Haskins 已提交
595

596 597 598 599 600 601 602 603
		/*
		 * If the new task is higher in priority than anything on the
		 * run-queue, we have a new high that must be published to
		 * the world.  We also know that the previous high becomes
		 * our next-highest.
		 */
		rt_rq->highest_prio.next = rt_rq->highest_prio.curr;
		rt_rq->highest_prio.curr = prio;
I
Ingo Molnar 已提交
604
#ifdef CONFIG_SMP
605
		if (rq->online)
G
Gregory Haskins 已提交
606
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
I
Ingo Molnar 已提交
607
#endif
608 609 610 611 612 613 614 615 616 617 618 619
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
P
Peter Zijlstra 已提交
620
#endif
621
#ifdef CONFIG_SMP
G
Gregory Haskins 已提交
622
	if (rt_se->nr_cpus_allowed > 1)
623 624
		rq->rt.rt_nr_migratory++;

G
Gregory Haskins 已提交
625
	update_rt_migration(rq);
P
Peter Zijlstra 已提交
626
#endif
627
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
628 629
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
630 631 632 633 634

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
#else
	start_rt_bandwidth(&def_rt_bandwidth);
P
Peter Zijlstra 已提交
635
#endif
636 637
}

P
Peter Zijlstra 已提交
638 639
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
640
{
641
#ifdef CONFIG_SMP
G
Gregory Haskins 已提交
642
	struct rq *rq = rq_of_rt_rq(rt_rq);
643
	int highest_prio = rt_rq->highest_prio.curr;
644 645
#endif

P
Peter Zijlstra 已提交
646 647 648
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
649
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
650
	if (rt_rq->rt_nr_running) {
651
		int prio = rt_se_prio(rt_se);
652

653
		WARN_ON(prio < rt_rq->highest_prio.curr);
654

655 656 657 658 659 660 661 662
		/*
		 * This may have been our highest or next-highest priority
		 * task and therefore we may have some recomputation to do
		 */
		if (prio == rt_rq->highest_prio.curr) {
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
663
				sched_find_first_bit(array->bitmap);
664 665 666 667
		}

		if (prio <= rt_rq->highest_prio.next)
			rt_rq->highest_prio.next = next_prio(rq);
668
	} else
669
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
670 671
#endif
#ifdef CONFIG_SMP
G
Gregory Haskins 已提交
672
	if (rt_se->nr_cpus_allowed > 1)
673 674
		rq->rt.rt_nr_migratory--;

675 676
	if (rq->online && rt_rq->highest_prio.curr != highest_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
677

G
Gregory Haskins 已提交
678
	update_rt_migration(rq);
679
#endif /* CONFIG_SMP */
680
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
681 682 683 684 685
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
686 687
}

688
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
689
{
P
Peter Zijlstra 已提交
690 691 692
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
693
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
694

695 696 697 698 699 700 701
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
702
		return;
703

704
	list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
705
	__set_bit(rt_se_prio(rt_se), array->bitmap);
706

P
Peter Zijlstra 已提交
707 708 709
	inc_rt_tasks(rt_se, rt_rq);
}

710
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
726
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
727
{
728
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
729

730 731 732 733 734 735 736
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
			__dequeue_rt_entity(rt_se);
	}
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
		__enqueue_rt_entity(rt_se);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
			__enqueue_rt_entity(rt_se);
757
	}
I
Ingo Molnar 已提交
758 759 760 761 762
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
763 764 765 766 767 768 769
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

770
	enqueue_rt_entity(rt_se);
771

772 773 774
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);

775
	inc_cpu_load(rq, p->se.load.weight);
P
Peter Zijlstra 已提交
776 777
}

778
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
779
{
P
Peter Zijlstra 已提交
780
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
781

782
	update_curr_rt(rq);
783
	dequeue_rt_entity(rt_se);
784

785 786
	dequeue_pushable_task(rq, p);

787
	dec_cpu_load(rq, p->se.load.weight);
I
Ingo Molnar 已提交
788 789 790 791 792 793
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
794 795
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
796
{
797
	if (on_rt_rq(rt_se)) {
798 799 800 801 802 803 804
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
805
	}
P
Peter Zijlstra 已提交
806 807
}

808
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
809
{
P
Peter Zijlstra 已提交
810 811
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
812

P
Peter Zijlstra 已提交
813 814
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
815
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
816
	}
I
Ingo Molnar 已提交
817 818
}

P
Peter Zijlstra 已提交
819
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
820
{
821
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
822 823
}

824
#ifdef CONFIG_SMP
825 826
static int find_lowest_rq(struct task_struct *task);

827 828
static int select_task_rq_rt(struct task_struct *p, int sync)
{
829 830 831
	struct rq *rq = task_rq(p);

	/*
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
847
	 */
848
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
849
	    (p->rt.nr_cpus_allowed > 1)) {
850 851 852 853 854 855 856 857 858
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
859 860
	return task_cpu(p);
}
861 862 863

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
864
	cpumask_var_t mask;
865 866 867 868

	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

869
	if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
870 871
		return;

872 873 874 875 876 877
	if (p->rt.nr_cpus_allowed != 1
	    && cpupri_find(&rq->rd->cpupri, p, mask))
		goto free;

	if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
		goto free;
878 879 880 881 882 883 884 885

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
886 887
free:
	free_cpumask_var(mask);
888 889
}

890 891
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
892 893 894
/*
 * Preempt the current task with a newly woken task if needed:
 */
895
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
896
{
897
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
898
		resched_task(rq->curr);
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
915 916
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
917
#endif
I
Ingo Molnar 已提交
918 919
}

P
Peter Zijlstra 已提交
920 921
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
922
{
P
Peter Zijlstra 已提交
923 924
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
925 926 927 928
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
929
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
930 931

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
932
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
933

P
Peter Zijlstra 已提交
934 935
	return next;
}
I
Ingo Molnar 已提交
936

937
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
938 939 940 941
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
942

P
Peter Zijlstra 已提交
943 944 945 946 947
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
948
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
949 950 951 952
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
953
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
954 955 956 957 958
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
959 960 961 962 963 964 965 966 967 968 969 970

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

P
Peter Zijlstra 已提交
971
	return p;
I
Ingo Molnar 已提交
972 973
}

974
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
975
{
976
	update_curr_rt(rq);
I
Ingo Molnar 已提交
977
	p->se.exec_start = 0;
978 979 980 981 982 983 984

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
985 986
}

987
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
988

S
Steven Rostedt 已提交
989 990 991 992 993
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

994 995 996
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
997
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
998
	    (p->rt.nr_cpus_allowed > 1))
999 1000 1001 1002
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1003
/* Return the second highest RT task, NULL otherwise */
1004
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1005
{
P
Peter Zijlstra 已提交
1006 1007 1008 1009
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1010 1011
	int idx;

P
Peter Zijlstra 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1031 1032
	}

S
Steven Rostedt 已提交
1033 1034 1035
	return next;
}

1036
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1037

G
Gregory Haskins 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1056
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1057 1058
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1059

1060 1061
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1062

1063 1064
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1065

1066 1067 1068 1069 1070
	/*
	 * Only consider CPUs that are usable for migration.
	 * I guess we might want to change cpupri_find() to ignore those
	 * in the first place.
	 */
1071
	cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
1072

G
Gregory Haskins 已提交
1073 1074 1075 1076 1077 1078 1079 1080
	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1081
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

1096 1097
			cpumask_and(&domain_mask, sched_domain_span(sd),
				    lowest_mask);
G
Gregory Haskins 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
1112 1113 1114
}

/* Will lock the rq it finds */
1115
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1116 1117 1118
{
	struct rq *lowest_rq = NULL;
	int tries;
1119
	int cpu;
S
Steven Rostedt 已提交
1120

1121 1122 1123
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1124
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1125 1126
			break;

1127 1128
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1129
		/* if the prio of this runqueue changed, try again */
1130
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1131 1132 1133 1134 1135 1136
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1137
			if (unlikely(task_rq(task) != rq ||
1138 1139
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1140
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1141
				     !task->se.on_rq)) {
1142

S
Steven Rostedt 已提交
1143 1144 1145 1146 1147 1148 1149
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1150
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1151 1152 1153
			break;

		/* try again */
1154
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1155 1156 1157 1158 1159 1160
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

	BUG_ON(!p->se.on_rq);
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1186 1187 1188 1189 1190
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1191
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1192 1193 1194 1195
{
	struct task_struct *next_task;
	struct rq *lowest_rq;

G
Gregory Haskins 已提交
1196 1197 1198
	if (!rq->rt.overloaded)
		return 0;

1199
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1200 1201 1202 1203
	if (!next_task)
		return 0;

 retry:
1204
	if (unlikely(next_task == rq->curr)) {
1205
		WARN_ON(1);
S
Steven Rostedt 已提交
1206
		return 0;
1207
	}
S
Steven Rostedt 已提交
1208 1209 1210 1211 1212 1213

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1214 1215
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1216 1217 1218
		return 0;
	}

1219
	/* We might release rq lock */
S
Steven Rostedt 已提交
1220 1221 1222
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1223
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1224 1225 1226
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1227
		 * find lock_lowest_rq releases rq->lock
1228 1229 1230 1231 1232
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1233
		 */
1234
		task = pick_next_pushable_task(rq);
1235 1236 1237 1238 1239 1240 1241 1242 1243
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
			 * If we get here, the task hasnt moved at all, but
			 * it has failed to push.  We will not try again,
			 * since the other cpus will pull from us when they
			 * are ready.
			 */
			dequeue_pushable_task(rq, next_task);
			goto out;
S
Steven Rostedt 已提交
1244
		}
1245

1246 1247 1248 1249
		if (!task)
			/* No more tasks, just exit */
			goto out;

1250
		/*
1251
		 * Something has shifted, try again.
1252
		 */
1253 1254 1255
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1256 1257
	}

1258
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1259 1260 1261 1262 1263
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1264
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1265 1266 1267 1268

out:
	put_task_struct(next_task);

1269
	return 1;
S
Steven Rostedt 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1279 1280
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1281
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1282
	struct task_struct *p;
1283 1284
	struct rq *src_rq;

1285
	if (likely(!rt_overloaded(this_rq)))
1286 1287
		return 0;

1288
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1289 1290 1291 1292
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1305 1306 1307
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1308
		 * alter this_rq
1309
		 */
1310
		double_lock_balance(this_rq, src_rq);
1311 1312 1313 1314

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1315 1316
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1317 1318 1319 1320 1321 1322 1323

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1324
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1325 1326 1327 1328 1329 1330 1331 1332 1333
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1334
			 * current task on the run queue
1335
			 */
1336
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1337
				goto skip;
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */
		}
M
Mike Galbraith 已提交
1351
 skip:
1352
		double_unlock_balance(this_rq, src_rq);
1353 1354 1355 1356 1357
	}

	return ret;
}

1358
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1359 1360
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1361
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1362 1363 1364
		pull_rt_task(rq);
}

1365 1366 1367 1368 1369
/*
 * assumes rq->lock is held
 */
static int needs_post_schedule_rt(struct rq *rq)
{
1370
	return has_pushable_tasks(rq);
1371 1372
}

1373
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1374 1375
{
	/*
1376 1377
	 * This is only called if needs_post_schedule_rt() indicates that
	 * we need to push tasks away
S
Steven Rostedt 已提交
1378
	 */
1379 1380 1381
	spin_lock_irq(&rq->lock);
	push_rt_tasks(rq);
	spin_unlock_irq(&rq->lock);
S
Steven Rostedt 已提交
1382 1383
}

1384 1385 1386 1387
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1388
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1389
{
1390
	if (!task_running(rq, p) &&
1391
	    !test_tsk_need_resched(rq->curr) &&
1392
	    has_pushable_tasks(rq) &&
1393
	    p->rt.nr_cpus_allowed > 1)
1394 1395 1396
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1397
static unsigned long
I
Ingo Molnar 已提交
1398
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1399 1400 1401
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1402
{
1403 1404
	/* don't touch RT tasks */
	return 0;
1405 1406 1407 1408 1409 1410
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1411 1412
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1413
}
1414

1415
static void set_cpus_allowed_rt(struct task_struct *p,
1416
				const struct cpumask *new_mask)
1417
{
1418
	int weight = cpumask_weight(new_mask);
1419 1420 1421 1422 1423 1424 1425

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1426
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1427 1428
		struct rq *rq = task_rq(p);

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1447
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1448
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1449
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1450 1451 1452 1453 1454 1455 1456
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

1457
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1458
	p->rt.nr_cpus_allowed = weight;
1459
}
1460

1461
/* Assumes rq->lock is held */
1462
static void rq_online_rt(struct rq *rq)
1463 1464 1465
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1466

P
Peter Zijlstra 已提交
1467 1468
	__enable_runtime(rq);

1469
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1470 1471 1472
}

/* Assumes rq->lock is held */
1473
static void rq_offline_rt(struct rq *rq)
1474 1475 1476
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1477

P
Peter Zijlstra 已提交
1478 1479
	__disable_runtime(rq);

1480
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1481
}
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
1500 1501 1502 1503 1504 1505

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1506 1507
		alloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
					GFP_KERNEL, cpu_to_node(i));
1508
}
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1557 1558 1559
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1560
		 */
1561
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1562 1563 1564 1565 1566
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1567
#endif /* CONFIG_SMP */
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1594
		if (p->rt.timeout > next)
1595
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1596 1597
	}
}
I
Ingo Molnar 已提交
1598

P
Peter Zijlstra 已提交
1599
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1600
{
1601 1602
	update_curr_rt(rq);

1603 1604
	watchdog(rq, p);

I
Ingo Molnar 已提交
1605 1606 1607 1608 1609 1610 1611
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1612
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1613 1614
		return;

P
Peter Zijlstra 已提交
1615
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1616

1617 1618 1619 1620
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1621
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1622
		requeue_task_rt(rq, p, 0);
1623 1624
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1625 1626
}

1627 1628 1629 1630 1631
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
1632 1633 1634

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1635 1636
}

1637
static const struct sched_class rt_sched_class = {
1638
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1648
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1649 1650
	.select_task_rq		= select_task_rq_rt,

I
Ingo Molnar 已提交
1651
	.load_balance		= load_balance_rt,
1652
	.move_one_task		= move_one_task_rt,
1653
	.set_cpus_allowed       = set_cpus_allowed_rt,
1654 1655
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1656
	.pre_schedule		= pre_schedule_rt,
1657
	.needs_post_schedule	= needs_post_schedule_rt,
1658 1659
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1660
	.switched_from		= switched_from_rt,
1661
#endif
I
Ingo Molnar 已提交
1662

1663
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1664
	.task_tick		= task_tick_rt,
1665 1666 1667

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1668
};
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1682
#endif /* CONFIG_SCHED_DEBUG */
1683