sched_rt.c 40.3 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

#ifdef CONFIG_RT_GROUP_SCHED

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
40
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
41

42
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
43
{
44
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
45
}
I
Ingo Molnar 已提交
46

S
Steven Rostedt 已提交
47 48
static inline void rt_set_overload(struct rq *rq)
{
49 50 51
	if (!rq->online)
		return;

52
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
53 54 55 56 57 58 59 60
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
61
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
62
}
I
Ingo Molnar 已提交
63

S
Steven Rostedt 已提交
64 65
static inline void rt_clear_overload(struct rq *rq)
{
66 67 68
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
69
	/* the order here really doesn't matter */
70
	atomic_dec(&rq->rd->rto_count);
71
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
72
}
73

74
static void update_rt_migration(struct rt_rq *rt_rq)
75
{
76 77 78 79
	if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) {
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
80
		}
81 82 83
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
84
	}
85
}
S
Steven Rostedt 已提交
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

#else

117
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
118
{
P
Peter Zijlstra 已提交
119 120
}

121 122 123 124
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

125
static inline
126 127 128 129
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

130
static inline
131 132 133
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
134

S
Steven Rostedt 已提交
135 136
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
137 138 139 140 141
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

142
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
143

P
Peter Zijlstra 已提交
144
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
145 146
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
147
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
148

P
Peter Zijlstra 已提交
149 150 151 152 153 154
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
155 156 157
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
158
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
159 160 161 162 163 164 165 166 167 168 169 170

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
171
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
172
{
173
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
P
Peter Zijlstra 已提交
174 175
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

176 177 178
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
			enqueue_rt_entity(rt_se);
179
		if (rt_rq->highest_prio.curr < curr->prio)
180
			resched_task(curr);
P
Peter Zijlstra 已提交
181 182 183
	}
}

P
Peter Zijlstra 已提交
184
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
185 186 187 188 189 190 191
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

209
#ifdef CONFIG_SMP
210
static inline const struct cpumask *sched_rt_period_mask(void)
211 212 213
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
214
#else
215
static inline const struct cpumask *sched_rt_period_mask(void)
216
{
217
	return cpu_online_mask;
218 219
}
#endif
P
Peter Zijlstra 已提交
220

221 222
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
223
{
224 225
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
226

P
Peter Zijlstra 已提交
227 228 229 230 231
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

232
#else /* !CONFIG_RT_GROUP_SCHED */
233 234 235

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
236 237 238 239 240 241
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
255
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
256
{
257 258
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
259 260
}

P
Peter Zijlstra 已提交
261
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
262 263 264
{
}

P
Peter Zijlstra 已提交
265 266 267 268
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
269

270
static inline const struct cpumask *sched_rt_period_mask(void)
271
{
272
	return cpu_online_mask;
273 274 275 276 277 278 279 280
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
281 282 283 284 285
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

286
#endif /* CONFIG_RT_GROUP_SCHED */
287

P
Peter Zijlstra 已提交
288
#ifdef CONFIG_SMP
289 290 291
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
292
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
293 294 295 296 297 298
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

299
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
300 301 302

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
303
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
304 305 306 307 308 309 310
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
311 312 313 314 315
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
316 317 318
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

319 320 321 322
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
323 324
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
325
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
326 327 328 329 330 331 332 333 334 335
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
336
next:
P
Peter Zijlstra 已提交
337 338 339 340 341 342
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
343

344 345 346
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
362 363 364 365 366
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
367 368 369 370 371
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

372 373 374 375 376
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
377 378
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

379 380 381
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
382
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
383 384 385
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

386 387 388
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
389
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
408 409 410 411
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
412 413
		BUG_ON(want);
balanced:
414 415 416 417
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

440 441 442
	/*
	 * Reset each runqueue's bandwidth settings
	 */
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449
	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
450
		rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

465 466 467 468 469 470 471 472 473 474 475 476
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
		more = do_balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);
	}

	return more;
}
477
#else /* !CONFIG_SMP */
478 479 480 481
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
482
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
483

484 485 486
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
487
	const struct cpumask *span;
488

489
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
490 491 492
		return 1;

	span = sched_rt_period_mask();
493
	for_each_cpu(i, span) {
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
			u64 runtime;

			spin_lock(&rt_rq->rt_runtime_lock);
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
			spin_unlock(&rt_rq->rt_runtime_lock);
514 515
		} else if (rt_rq->rt_nr_running)
			idle = 0;
516 517 518 519 520 521 522 523

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}
P
Peter Zijlstra 已提交
524

P
Peter Zijlstra 已提交
525 526
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
527
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
528 529 530
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
531
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
532 533 534 535 536
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
537
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
538
{
P
Peter Zijlstra 已提交
539
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
540 541

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
542
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
543

P
Peter Zijlstra 已提交
544 545 546
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

547 548 549 550
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
551

P
Peter Zijlstra 已提交
552
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
553
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
554
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
555
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
556 557
			return 1;
		}
P
Peter Zijlstra 已提交
558 559 560 561 562
	}

	return 0;
}

I
Ingo Molnar 已提交
563 564 565 566
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
567
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
568 569
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
570 571
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
572 573 574 575 576
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

577
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
578 579
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
580 581

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
582 583

	curr->se.sum_exec_runtime += delta_exec;
584 585
	account_group_exec_runtime(curr, delta_exec);

586
	curr->se.exec_start = rq->clock;
587
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
588

589 590 591
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
592 593 594
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

595
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
596
			spin_lock(&rt_rq->rt_runtime_lock);
597 598 599
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
600
			spin_unlock(&rt_rq->rt_runtime_lock);
601
		}
D
Dhaval Giani 已提交
602
	}
I
Ingo Molnar 已提交
603 604
}

605
#if defined CONFIG_SMP
606 607 608 609

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
610
{
611 612 613 614 615 616 617 618
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

	if (next && rt_prio(next->prio))
		return next->prio;
	else
		return MAX_RT_PRIO;
}

619 620
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
621
{
G
Gregory Haskins 已提交
622
	struct rq *rq = rq_of_rt_rq(rt_rq);
623

624
	if (prio < prev_prio) {
G
Gregory Haskins 已提交
625

626 627
		/*
		 * If the new task is higher in priority than anything on the
628 629
		 * run-queue, we know that the previous high becomes our
		 * next-highest.
630
		 */
631
		rt_rq->highest_prio.next = prev_prio;
632 633

		if (rq->online)
G
Gregory Haskins 已提交
634
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
I
Ingo Molnar 已提交
635

636 637 638 639 640 641 642 643 644 645 646 647
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
648
}
649

650 651 652 653
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
654

655 656 657 658 659
	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
		rt_rq->highest_prio.next = next_prio(rq);

	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
660 661
}

662 663
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
664
static inline
665 666 667 668 669
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
670

671
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
688
	if (rt_rq->rt_nr_running) {
689

690
		WARN_ON(prio < prev_prio);
691

692
		/*
693 694
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
695
		 */
696
		if (prio == prev_prio) {
697 698 699
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
700
				sched_find_first_bit(array->bitmap);
701 702
		}

703
	} else
704
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
705

706 707
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
708

709 710 711 712 713 714
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
715

716
#ifdef CONFIG_RT_GROUP_SCHED
717 718 719 720 721 722 723 724 725 726 727 728 729 730

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
731 732 733 734
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
773 774
}

775
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
776
{
P
Peter Zijlstra 已提交
777 778 779
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
780
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
781

782 783 784 785 786 787 788
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
789
		return;
790

791
	list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
792
	__set_bit(rt_se_prio(rt_se), array->bitmap);
793

P
Peter Zijlstra 已提交
794 795 796
	inc_rt_tasks(rt_se, rt_rq);
}

797
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
813
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
814
{
815
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
816

817 818 819 820 821 822 823
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
			__dequeue_rt_entity(rt_se);
	}
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
		__enqueue_rt_entity(rt_se);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
			__enqueue_rt_entity(rt_se);
844
	}
I
Ingo Molnar 已提交
845 846 847 848 849
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
850 851 852 853 854 855 856
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

857
	enqueue_rt_entity(rt_se);
858

859 860 861
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);

862
	inc_cpu_load(rq, p->se.load.weight);
P
Peter Zijlstra 已提交
863 864
}

865
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
866
{
P
Peter Zijlstra 已提交
867
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
868

869
	update_curr_rt(rq);
870
	dequeue_rt_entity(rt_se);
871

872 873
	dequeue_pushable_task(rq, p);

874
	dec_cpu_load(rq, p->se.load.weight);
I
Ingo Molnar 已提交
875 876 877 878 879 880
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
881 882
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
883
{
884
	if (on_rt_rq(rt_se)) {
885 886 887 888 889 890 891
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
892
	}
P
Peter Zijlstra 已提交
893 894
}

895
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
896
{
P
Peter Zijlstra 已提交
897 898
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
899

P
Peter Zijlstra 已提交
900 901
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
902
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
903
	}
I
Ingo Molnar 已提交
904 905
}

P
Peter Zijlstra 已提交
906
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
907
{
908
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
909 910
}

911
#ifdef CONFIG_SMP
912 913
static int find_lowest_rq(struct task_struct *task);

914 915
static int select_task_rq_rt(struct task_struct *p, int sync)
{
916 917 918
	struct rq *rq = task_rq(p);

	/*
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
934
	 */
935
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
936
	    (p->rt.nr_cpus_allowed > 1)) {
937 938 939 940 941 942 943 944 945
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
946 947
	return task_cpu(p);
}
948 949 950 951 952 953

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

954
	if (p->rt.nr_cpus_allowed != 1
955 956
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
957

958 959
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
960 961 962 963 964 965 966 967 968 969

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

970 971
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
972 973 974
/*
 * Preempt the current task with a newly woken task if needed:
 */
975
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
976
{
977
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
978
		resched_task(rq->curr);
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
995 996
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
997
#endif
I
Ingo Molnar 已提交
998 999
}

P
Peter Zijlstra 已提交
1000 1001
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1002
{
P
Peter Zijlstra 已提交
1003 1004
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1005 1006 1007 1008
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1009
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1010 1011

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1012
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1013

P
Peter Zijlstra 已提交
1014 1015
	return next;
}
I
Ingo Molnar 已提交
1016

1017
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1018 1019 1020 1021
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1022

P
Peter Zijlstra 已提交
1023 1024 1025 1026 1027
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
1028
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1029 1030 1031 1032
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1033
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

P
Peter Zijlstra 已提交
1051
	return p;
I
Ingo Molnar 已提交
1052 1053
}

1054
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1055
{
1056
	update_curr_rt(rq);
I
Ingo Molnar 已提交
1057
	p->se.exec_start = 0;
1058 1059 1060 1061 1062 1063 1064

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1065 1066
}

1067
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1068

S
Steven Rostedt 已提交
1069 1070 1071 1072 1073
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1074 1075 1076
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1077
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
1078
	    (p->rt.nr_cpus_allowed > 1))
1079 1080 1081 1082
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1083
/* Return the second highest RT task, NULL otherwise */
1084
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1085
{
P
Peter Zijlstra 已提交
1086 1087 1088 1089
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1090 1091
	int idx;

P
Peter Zijlstra 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1111 1112
	}

S
Steven Rostedt 已提交
1113 1114 1115
	return next;
}

1116
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1117

1118 1119
static inline int pick_optimal_cpu(int this_cpu,
				   const struct cpumask *mask)
G
Gregory Haskins 已提交
1120 1121 1122 1123
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
1124
	if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
G
Gregory Haskins 已提交
1125 1126
		return this_cpu;

1127 1128
	first = cpumask_first(mask);
	if (first < nr_cpu_ids)
G
Gregory Haskins 已提交
1129 1130 1131 1132 1133 1134 1135 1136
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1137
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1138 1139
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
1140
	cpumask_var_t domain_mask;
G
Gregory Haskins 已提交
1141

1142 1143
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1144

1145 1146
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1147

1148 1149 1150 1151 1152
	/*
	 * Only consider CPUs that are usable for migration.
	 * I guess we might want to change cpupri_find() to ignore those
	 * in the first place.
	 */
1153
	cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
1154

G
Gregory Haskins 已提交
1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1163
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

1173 1174 1175 1176
	if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
		for_each_domain(cpu, sd) {
			if (sd->flags & SD_WAKE_AFFINE) {
				int best_cpu;
G
Gregory Haskins 已提交
1177

1178 1179 1180
				cpumask_and(domain_mask,
					    sched_domain_span(sd),
					    lowest_mask);
G
Gregory Haskins 已提交
1181

1182 1183
				best_cpu = pick_optimal_cpu(this_cpu,
							    domain_mask);
G
Gregory Haskins 已提交
1184

1185 1186 1187 1188 1189
				if (best_cpu != -1) {
					free_cpumask_var(domain_mask);
					return best_cpu;
				}
			}
G
Gregory Haskins 已提交
1190
		}
1191
		free_cpumask_var(domain_mask);
G
Gregory Haskins 已提交
1192 1193 1194 1195 1196 1197 1198 1199
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
1200 1201 1202
}

/* Will lock the rq it finds */
1203
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1204 1205 1206
{
	struct rq *lowest_rq = NULL;
	int tries;
1207
	int cpu;
S
Steven Rostedt 已提交
1208

1209 1210 1211
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1212
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1213 1214
			break;

1215 1216
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1217
		/* if the prio of this runqueue changed, try again */
1218
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1219 1220 1221 1222 1223 1224
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1225
			if (unlikely(task_rq(task) != rq ||
1226 1227
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1228
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1229
				     !task->se.on_rq)) {
1230

S
Steven Rostedt 已提交
1231 1232 1233 1234 1235 1236 1237
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1238
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1239 1240 1241
			break;

		/* try again */
1242
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1243 1244 1245 1246 1247 1248
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

	BUG_ON(!p->se.on_rq);
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1274 1275 1276 1277 1278
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1279
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1280 1281 1282 1283
{
	struct task_struct *next_task;
	struct rq *lowest_rq;

G
Gregory Haskins 已提交
1284 1285 1286
	if (!rq->rt.overloaded)
		return 0;

1287
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1288 1289 1290 1291
	if (!next_task)
		return 0;

 retry:
1292
	if (unlikely(next_task == rq->curr)) {
1293
		WARN_ON(1);
S
Steven Rostedt 已提交
1294
		return 0;
1295
	}
S
Steven Rostedt 已提交
1296 1297 1298 1299 1300 1301

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1302 1303
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1304 1305 1306
		return 0;
	}

1307
	/* We might release rq lock */
S
Steven Rostedt 已提交
1308 1309 1310
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1311
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1312 1313 1314
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1315
		 * find lock_lowest_rq releases rq->lock
1316 1317 1318 1319 1320
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1321
		 */
1322
		task = pick_next_pushable_task(rq);
1323 1324 1325 1326 1327 1328 1329 1330 1331
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
			 * If we get here, the task hasnt moved at all, but
			 * it has failed to push.  We will not try again,
			 * since the other cpus will pull from us when they
			 * are ready.
			 */
			dequeue_pushable_task(rq, next_task);
			goto out;
S
Steven Rostedt 已提交
1332
		}
1333

1334 1335 1336 1337
		if (!task)
			/* No more tasks, just exit */
			goto out;

1338
		/*
1339
		 * Something has shifted, try again.
1340
		 */
1341 1342 1343
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1344 1345
	}

1346
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1347 1348 1349 1350 1351
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1352
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1353 1354 1355 1356

out:
	put_task_struct(next_task);

1357
	return 1;
S
Steven Rostedt 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1367 1368
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1369
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1370
	struct task_struct *p;
1371 1372
	struct rq *src_rq;

1373
	if (likely(!rt_overloaded(this_rq)))
1374 1375
		return 0;

1376
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1377 1378 1379 1380
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1393 1394 1395
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1396
		 * alter this_rq
1397
		 */
1398
		double_lock_balance(this_rq, src_rq);
1399 1400 1401 1402

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1403 1404
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1405 1406 1407 1408 1409 1410 1411

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1412
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1413 1414 1415 1416 1417 1418 1419 1420 1421
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1422
			 * current task on the run queue
1423
			 */
1424
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1425
				goto skip;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */
		}
M
Mike Galbraith 已提交
1439
 skip:
1440
		double_unlock_balance(this_rq, src_rq);
1441 1442 1443 1444 1445
	}

	return ret;
}

1446
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1447 1448
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1449
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1450 1451 1452
		pull_rt_task(rq);
}

1453 1454 1455 1456 1457
/*
 * assumes rq->lock is held
 */
static int needs_post_schedule_rt(struct rq *rq)
{
1458
	return has_pushable_tasks(rq);
1459 1460
}

1461
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1462 1463
{
	/*
1464 1465
	 * This is only called if needs_post_schedule_rt() indicates that
	 * we need to push tasks away
S
Steven Rostedt 已提交
1466
	 */
1467 1468 1469
	spin_lock_irq(&rq->lock);
	push_rt_tasks(rq);
	spin_unlock_irq(&rq->lock);
S
Steven Rostedt 已提交
1470 1471
}

1472 1473 1474 1475
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1476
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1477
{
1478
	if (!task_running(rq, p) &&
1479
	    !test_tsk_need_resched(rq->curr) &&
1480
	    has_pushable_tasks(rq) &&
1481
	    p->rt.nr_cpus_allowed > 1)
1482 1483 1484
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1485
static unsigned long
I
Ingo Molnar 已提交
1486
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1487 1488 1489
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1490
{
1491 1492
	/* don't touch RT tasks */
	return 0;
1493 1494 1495 1496 1497 1498
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1499 1500
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1501
}
1502

1503
static void set_cpus_allowed_rt(struct task_struct *p,
1504
				const struct cpumask *new_mask)
1505
{
1506
	int weight = cpumask_weight(new_mask);
1507 1508 1509 1510 1511 1512 1513

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1514
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1515 1516
		struct rq *rq = task_rq(p);

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1535
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1536
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1537
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1538 1539 1540 1541
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1542
		update_rt_migration(&rq->rt);
1543 1544
	}

1545
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1546
	p->rt.nr_cpus_allowed = weight;
1547
}
1548

1549
/* Assumes rq->lock is held */
1550
static void rq_online_rt(struct rq *rq)
1551 1552 1553
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1554

P
Peter Zijlstra 已提交
1555 1556
	__enable_runtime(rq);

1557
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1558 1559 1560
}

/* Assumes rq->lock is held */
1561
static void rq_offline_rt(struct rq *rq)
1562 1563 1564
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1565

P
Peter Zijlstra 已提交
1566 1567
	__disable_runtime(rq);

1568
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1569
}
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
1588 1589 1590 1591 1592 1593

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1594
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1595
					GFP_KERNEL, cpu_to_node(i));
1596
}
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1645 1646 1647
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1648
		 */
1649
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1650 1651 1652 1653 1654
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1655
#endif /* CONFIG_SMP */
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1682
		if (p->rt.timeout > next)
1683
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1684 1685
	}
}
I
Ingo Molnar 已提交
1686

P
Peter Zijlstra 已提交
1687
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1688
{
1689 1690
	update_curr_rt(rq);

1691 1692
	watchdog(rq, p);

I
Ingo Molnar 已提交
1693 1694 1695 1696 1697 1698 1699
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1700
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1701 1702
		return;

P
Peter Zijlstra 已提交
1703
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1704

1705 1706 1707 1708
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1709
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1710
		requeue_task_rt(rq, p, 0);
1711 1712
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1713 1714
}

1715 1716 1717 1718 1719
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
1720 1721 1722

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1723 1724
}

1725
static const struct sched_class rt_sched_class = {
1726
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1736
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1737 1738
	.select_task_rq		= select_task_rq_rt,

I
Ingo Molnar 已提交
1739
	.load_balance		= load_balance_rt,
1740
	.move_one_task		= move_one_task_rt,
1741
	.set_cpus_allowed       = set_cpus_allowed_rt,
1742 1743
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1744
	.pre_schedule		= pre_schedule_rt,
1745
	.needs_post_schedule	= needs_post_schedule_rt,
1746 1747
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1748
	.switched_from		= switched_from_rt,
1749
#endif
I
Ingo Molnar 已提交
1750

1751
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1752
	.task_tick		= task_tick_rt,
1753 1754 1755

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1756
};
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1770
#endif /* CONFIG_SCHED_DEBUG */
1771