sched_rt.c 33.2 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15 16 17
	if (!rq->online)
		return;

18
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
19 20 21 22 23 24 25 26
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
27
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
28
}
I
Ingo Molnar 已提交
29

S
Steven Rostedt 已提交
30 31
static inline void rt_clear_overload(struct rq *rq)
{
32 33 34
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
35
	/* the order here really doesn't matter */
36 37
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
38
}
39 40 41

static void update_rt_migration(struct rq *rq)
{
42
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 44 45 46 47
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
48
		rt_clear_overload(rq);
49 50
		rq->rt.overloaded = 0;
	}
51
}
S
Steven Rostedt 已提交
52 53
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
54
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
55
{
P
Peter Zijlstra 已提交
56 57 58 59 60 61 62 63
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

64
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
65

P
Peter Zijlstra 已提交
66
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
67 68
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
69
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
70

P
Peter Zijlstra 已提交
71 72 73 74 75 76
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
103
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
104 105 106 107
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108 109
		struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;

P
Peter Zijlstra 已提交
110
		enqueue_rt_entity(rt_se);
111 112
		if (rt_rq->highest_prio < curr->prio)
			resched_task(curr);
P
Peter Zijlstra 已提交
113 114 115
	}
}

P
Peter Zijlstra 已提交
116
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
117 118 119 120 121 122 123
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

141 142 143 144 145
#ifdef CONFIG_SMP
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
146
#else
147 148 149 150 151
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}
#endif
P
Peter Zijlstra 已提交
152

153 154
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
155
{
156 157
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
158

P
Peter Zijlstra 已提交
159 160 161 162 163
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

164 165 166 167
#else

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
168 169 170 171 172 173
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
200
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
201 202 203
{
}

P
Peter Zijlstra 已提交
204
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
205 206 207
{
}

P
Peter Zijlstra 已提交
208 209 210 211
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
212 213 214 215 216 217 218 219 220 221 222 223

static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
224 225 226 227 228
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

P
Peter Zijlstra 已提交
229 230
#endif

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
	cpumask_t span;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return 1;

	span = sched_rt_period_mask();
	for_each_cpu_mask(i, span) {
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
P
Peter Zijlstra 已提交
247
			u64 runtime;
248

P
Peter Zijlstra 已提交
249 250
			spin_lock(&rt_rq->rt_runtime_lock);
			runtime = rt_rq->rt_runtime;
251 252 253 254 255 256 257
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
P
Peter Zijlstra 已提交
258
			spin_unlock(&rt_rq->rt_runtime_lock);
259 260 261 262 263 264 265 266 267 268
		}

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}

P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
#ifdef CONFIG_SMP
static int balance_runtime(struct rt_rq *rt_rq)
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

	weight = cpus_weight(rd->span);

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
	for_each_cpu_mask(i, rd->span) {
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
289 290 291
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

P
Peter Zijlstra 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
			do_div(diff, weight);
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
305
next:
P
Peter Zijlstra 已提交
306 307 308 309 310 311
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

		want = rt_b->rt_runtime - rt_rq->rt_runtime;

		for_each_cpu_mask(i, rd->span) {
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

			if (iter == rt_rq)
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
		BUG_ON(want);
balanced:
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

P
Peter Zijlstra 已提交
404 405
#endif

P
Peter Zijlstra 已提交
406 407
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
408
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
409 410 411 412 413 414 415 416 417
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
		return rt_rq->highest_prio;
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
418
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
419
{
P
Peter Zijlstra 已提交
420
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
421

P
Peter Zijlstra 已提交
422
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
423 424 425
		return 0;

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
426
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
427

P
Peter Zijlstra 已提交
428 429 430 431 432 433
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

#ifdef CONFIG_SMP
	if (rt_rq->rt_time > runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
434
		balance_runtime(rt_rq);
P
Peter Zijlstra 已提交
435 436
		spin_lock(&rt_rq->rt_runtime_lock);

P
Peter Zijlstra 已提交
437 438 439
		runtime = sched_rt_runtime(rt_rq);
		if (runtime == RUNTIME_INF)
			return 0;
P
Peter Zijlstra 已提交
440 441 442
	}
#endif

P
Peter Zijlstra 已提交
443
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
444
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
445
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
446
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
447 448
			return 1;
		}
P
Peter Zijlstra 已提交
449 450 451 452 453
	}

	return 0;
}

I
Ingo Molnar 已提交
454 455 456 457
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
458
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
459 460
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
461 462
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
463 464 465 466 467
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

468
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
469 470
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
471 472

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
473 474

	curr->se.sum_exec_runtime += delta_exec;
475
	curr->se.exec_start = rq->clock;
476
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
477

D
Dhaval Giani 已提交
478 479 480 481 482 483 484 485 486
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_time += delta_exec;
		if (sched_rt_runtime_exceeded(rt_rq))
			resched_task(curr);
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
I
Ingo Molnar 已提交
487 488
}

P
Peter Zijlstra 已提交
489 490
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
491
{
P
Peter Zijlstra 已提交
492 493
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	rt_rq->rt_nr_running++;
494
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
495 496
	if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
497

I
Ingo Molnar 已提交
498 499
		rt_rq->highest_prio = rt_se_prio(rt_se);
#ifdef CONFIG_SMP
500 501 502
		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_se_prio(rt_se));
I
Ingo Molnar 已提交
503
#endif
504
	}
P
Peter Zijlstra 已提交
505
#endif
506
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
507 508
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
I
Ingo Molnar 已提交
509

510
		rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
511
	}
512

P
Peter Zijlstra 已提交
513 514
	update_rt_migration(rq_of_rt_rq(rt_rq));
#endif
515
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
516 517
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
518 519 520 521 522

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
#else
	start_rt_bandwidth(&def_rt_bandwidth);
P
Peter Zijlstra 已提交
523
#endif
524 525
}

P
Peter Zijlstra 已提交
526 527
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
528
{
529 530 531 532
#ifdef CONFIG_SMP
	int highest_prio = rt_rq->highest_prio;
#endif

P
Peter Zijlstra 已提交
533 534 535
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
536
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
537
	if (rt_rq->rt_nr_running) {
538 539
		struct rt_prio_array *array;

P
Peter Zijlstra 已提交
540 541
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
542
			/* recalculate */
P
Peter Zijlstra 已提交
543 544
			array = &rt_rq->active;
			rt_rq->highest_prio =
545 546 547
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
P
Peter Zijlstra 已提交
548 549 550 551 552
		rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
553
		rq->rt.rt_nr_migratory--;
P
Peter Zijlstra 已提交
554
	}
555

556 557
	if (rt_rq->highest_prio != highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
558 559 560 561

		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_rq->highest_prio);
562 563
	}

P
Peter Zijlstra 已提交
564
	update_rt_migration(rq_of_rt_rq(rt_rq));
565
#endif /* CONFIG_SMP */
566
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
567 568 569 570 571
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
572 573
}

574
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
575
{
P
Peter Zijlstra 已提交
576 577 578
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
579
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
580

581 582 583 584 585 586 587
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
588
		return;
589

590
	if (rt_se->nr_cpus_allowed == 1)
591
		list_add(&rt_se->run_list, queue);
592
	else
593
		list_add_tail(&rt_se->run_list, queue);
594

P
Peter Zijlstra 已提交
595
	__set_bit(rt_se_prio(rt_se), array->bitmap);
596

P
Peter Zijlstra 已提交
597 598 599
	inc_rt_tasks(rt_se, rt_rq);
}

600
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
601 602 603 604 605
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
606
	if (list_empty(array->queue + rt_se_prio(rt_se)))
P
Peter Zijlstra 已提交
607 608 609 610 611 612 613 614 615
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
616
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
617
{
618
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
619

620 621 622 623 624 625 626
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
			__dequeue_rt_entity(rt_se);
	}
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
		__enqueue_rt_entity(rt_se);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
			__enqueue_rt_entity(rt_se);
647
	}
I
Ingo Molnar 已提交
648 649 650 651 652
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
653 654 655 656 657 658 659
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

660
	enqueue_rt_entity(rt_se);
P
Peter Zijlstra 已提交
661 662
}

663
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
664
{
P
Peter Zijlstra 已提交
665
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
666

667
	update_curr_rt(rq);
668
	dequeue_rt_entity(rt_se);
I
Ingo Molnar 已提交
669 670 671 672 673 674
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
P
Peter Zijlstra 已提交
675 676 677 678
static
void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
	struct rt_prio_array *array = &rt_rq->active;
P
Peter Zijlstra 已提交
679
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
P
Peter Zijlstra 已提交
680

681 682 683 684 685
	if (on_rt_rq(rt_se)) {
		list_del_init(&rt_se->run_list);
		list_add_tail(&rt_se->run_list,
			      array->queue + rt_se_prio(rt_se));
	}
P
Peter Zijlstra 已提交
686 687
}

I
Ingo Molnar 已提交
688 689
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
690 691
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
692

P
Peter Zijlstra 已提交
693 694 695 696
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
		requeue_rt_entity(rt_rq, rt_se);
	}
I
Ingo Molnar 已提交
697 698
}

P
Peter Zijlstra 已提交
699
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
700
{
701
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
702 703
}

704
#ifdef CONFIG_SMP
705 706
static int find_lowest_rq(struct task_struct *task);

707 708
static int select_task_rq_rt(struct task_struct *p, int sync)
{
709 710 711
	struct rq *rq = task_rq(p);

	/*
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
727
	 */
728
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
729
	    (p->rt.nr_cpus_allowed > 1)) {
730 731 732 733 734 735 736 737 738
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
739 740 741 742
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
743 744 745 746 747
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
748
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
749
		resched_task(rq->curr);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
	if((p->prio == rq->curr->prio)
	   && p->rt.nr_cpus_allowed == 1
768
	   && rq->curr->rt.nr_cpus_allowed != 1) {
769 770 771 772 773 774 775 776 777 778
		cpumask_t mask;

		if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
			/*
			 * There appears to be other cpus that can accept
			 * current, so lets reschedule to try and push it away
			 */
			resched_task(rq->curr);
	}
#endif
I
Ingo Molnar 已提交
779 780
}

P
Peter Zijlstra 已提交
781 782
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
783
{
P
Peter Zijlstra 已提交
784 785
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
786 787 788 789
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
790
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
791

792 793
	queue = array->queue + idx;
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
794

P
Peter Zijlstra 已提交
795 796
	return next;
}
I
Ingo Molnar 已提交
797

P
Peter Zijlstra 已提交
798 799 800 801 802
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
803

P
Peter Zijlstra 已提交
804 805 806 807 808
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
809
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
810 811 812 813
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
814
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
815 816 817 818 819 820
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
821 822
}

823
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
824
{
825
	update_curr_rt(rq);
I
Ingo Molnar 已提交
826 827 828
	p->se.exec_start = 0;
}

829
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
830

S
Steven Rostedt 已提交
831 832 833 834 835 836
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

837 838 839
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
840
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
841
	    (p->rt.nr_cpus_allowed > 1))
842 843 844 845
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
846
/* Return the second highest RT task, NULL otherwise */
847
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
848
{
P
Peter Zijlstra 已提交
849 850 851 852
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
853 854
	int idx;

P
Peter Zijlstra 已提交
855 856 857 858 859 860 861 862
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
863
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
P
Peter Zijlstra 已提交
864 865 866 867 868 869 870 871 872 873
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
874 875
	}

S
Steven Rostedt 已提交
876 877 878 879 880
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
902

903 904
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
905

906 907
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
947 948 949
}

/* Will lock the rq it finds */
950
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
951 952 953
{
	struct rq *lowest_rq = NULL;
	int tries;
954
	int cpu;
S
Steven Rostedt 已提交
955

956 957 958
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

959
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
960 961
			break;

962 963
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
964
		/* if the prio of this runqueue changed, try again */
965
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
966 967 968 969 970 971
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
972
			if (unlikely(task_rq(task) != rq ||
973 974
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
975
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
976
				     !task->se.on_rq)) {
977

S
Steven Rostedt 已提交
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1001
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1002 1003 1004 1005 1006 1007
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
1008 1009 1010
	if (!rq->rt.overloaded)
		return 0;

1011
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1012 1013 1014 1015
	if (!next_task)
		return 0;

 retry:
1016
	if (unlikely(next_task == rq->curr)) {
1017
		WARN_ON(1);
S
Steven Rostedt 已提交
1018
		return 0;
1019
	}
S
Steven Rostedt 已提交
1020 1021 1022 1023 1024 1025

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1026 1027
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1028 1029 1030
		return 0;
	}

1031
	/* We might release rq lock */
S
Steven Rostedt 已提交
1032 1033 1034
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1035
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1036 1037 1038
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1039
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
1040 1041 1042
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
1043
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1044 1045 1046 1047 1048 1049 1050 1051
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

1052
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1084 1085
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1086 1087
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
1088 1089
	struct rq *src_rq;

1090
	if (likely(!rt_overloaded(this_rq)))
1091 1092 1093 1094
		return 0;

	next = pick_next_task_rt(this_rq);

1095
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
1109

1110 1111 1112 1113 1114 1115 1116 1117
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1118 1119
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
M
Mike Galbraith 已提交
1143
				goto skip;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
1155
			 *
1156 1157 1158 1159 1160 1161 1162
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
M
Mike Galbraith 已提交
1163
 skip:
1164 1165 1166 1167 1168 1169
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

1170
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1171 1172
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1173
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1174 1175 1176
		pull_rt_task(rq);
}

1177
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1178 1179 1180 1181 1182 1183 1184 1185
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
1186
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
1187 1188 1189 1190 1191 1192
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

1193 1194 1195 1196
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1197
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1198
{
1199
	if (!task_running(rq, p) &&
1200
	    !test_tsk_need_resched(rq->curr) &&
G
Gregory Haskins 已提交
1201
	    rq->rt.overloaded)
1202 1203 1204
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1205
static unsigned long
I
Ingo Molnar 已提交
1206
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1207 1208 1209
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1210
{
1211 1212
	/* don't touch RT tasks */
	return 0;
1213 1214 1215 1216 1217 1218
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1219 1220
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1221
}
1222

1223 1224
static void set_cpus_allowed_rt(struct task_struct *p,
				const cpumask_t *new_mask)
1225 1226 1227 1228 1229 1230 1231 1232 1233
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1234
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1235 1236
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
1237
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1238
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1239
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1240 1241 1242 1243 1244 1245 1246 1247
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
P
Peter Zijlstra 已提交
1248
	p->rt.nr_cpus_allowed = weight;
1249
}
1250

1251
/* Assumes rq->lock is held */
1252
static void rq_online_rt(struct rq *rq)
1253 1254 1255
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1256

P
Peter Zijlstra 已提交
1257 1258
	__enable_runtime(rq);

1259
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1260 1261 1262
}

/* Assumes rq->lock is held */
1263
static void rq_offline_rt(struct rq *rq)
1264 1265 1266
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1267

P
Peter Zijlstra 已提交
1268 1269
	__disable_runtime(rq);

1270
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1271
}
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1338 1339 1340
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1341
		 */
1342
		if (p->prio > rq->rt.highest_prio && rq->curr == p)
1343 1344 1345 1346 1347
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1348
#endif /* CONFIG_SMP */
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1375
		if (p->rt.timeout > next)
1376 1377 1378
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
1379

P
Peter Zijlstra 已提交
1380
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1381
{
1382 1383
	update_curr_rt(rq);

1384 1385
	watchdog(rq, p);

I
Ingo Molnar 已提交
1386 1387 1388 1389 1390 1391 1392
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1393
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1394 1395
		return;

P
Peter Zijlstra 已提交
1396
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1397

1398 1399 1400 1401
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1402
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1403 1404 1405
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1406 1407
}

1408 1409 1410 1411 1412 1413 1414
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1415
static const struct sched_class rt_sched_class = {
1416
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1417 1418 1419
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
1420 1421 1422
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1423 1424 1425 1426 1427 1428

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1429
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1430
	.load_balance		= load_balance_rt,
1431
	.move_one_task		= move_one_task_rt,
1432
	.set_cpus_allowed       = set_cpus_allowed_rt,
1433 1434
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1435 1436 1437
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1438
	.switched_from		= switched_from_rt,
1439
#endif
I
Ingo Molnar 已提交
1440

1441
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1442
	.task_tick		= task_tick_rt,
1443 1444 1445

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1446
};
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
#endif