sched_rt.c 23.1 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
16 17 18 19 20 21 22 23
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
24
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
25
}
I
Ingo Molnar 已提交
26

S
Steven Rostedt 已提交
27 28 29
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
30 31
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
32
}
33 34 35

static void update_rt_migration(struct rq *rq)
{
36
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 38 39 40 41
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
42
		rt_clear_overload(rq);
43 44
		rq->rt.overloaded = 0;
	}
45
}
S
Steven Rostedt 已提交
46 47
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
static int sched_rt_ratio_exceeded(struct rq *rq, struct rt_rq *rt_rq)
{
	u64 period, ratio;

	if (sysctl_sched_rt_ratio == SCHED_RT_FRAC)
		return 0;

	if (rt_rq->rt_throttled)
		return 1;

	period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
	ratio = (period * sysctl_sched_rt_ratio) >> SCHED_RT_FRAC_SHIFT;

	if (rt_rq->rt_time > ratio) {
		rt_rq->rt_throttled = rq->clock + period - rt_rq->rt_time;
		return 1;
	}

	return 0;
}

static void update_sched_rt_period(struct rq *rq)
{
	while (rq->clock > rq->rt_period_expire) {
		u64 period, ratio;

		period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
		ratio = (period * sysctl_sched_rt_ratio) >> SCHED_RT_FRAC_SHIFT;

		rq->rt.rt_time -= min(rq->rt.rt_time, ratio);
		rq->rt_period_expire += period;
	}

	/*
	 * When the rt throttle is expired, let them rip.
	 * (XXX: use hrtick when available)
	 */
	if (rq->rt.rt_throttled && rq->clock > rq->rt.rt_throttled) {
		rq->rt.rt_throttled = 0;
		if (!sched_rt_ratio_exceeded(rq, &rq->rt))
			resched_task(rq->curr);
	}
}

I
Ingo Molnar 已提交
92 93 94 95
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
96
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
97 98 99 100 101 102 103
{
	struct task_struct *curr = rq->curr;
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

104
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
105 106
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
107 108

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
109 110

	curr->se.sum_exec_runtime += delta_exec;
111
	curr->se.exec_start = rq->clock;
112
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
113 114 115 116 117

	rq->rt.rt_time += delta_exec;
	update_sched_rt_period(rq);
	if (sched_rt_ratio_exceeded(rq, &rq->rt))
		resched_task(curr);
I
Ingo Molnar 已提交
118 119
}

120 121 122 123
static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	rq->rt.rt_nr_running++;
124 125 126
#ifdef CONFIG_SMP
	if (p->prio < rq->rt.highest_prio)
		rq->rt.highest_prio = p->prio;
127 128 129 130
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory++;

	update_rt_migration(rq);
131
#endif /* CONFIG_SMP */
132 133 134 135 136 137 138
}

static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	WARN_ON(!rq->rt.rt_nr_running);
	rq->rt.rt_nr_running--;
139 140 141 142 143 144 145 146 147 148 149 150 151
#ifdef CONFIG_SMP
	if (rq->rt.rt_nr_running) {
		struct rt_prio_array *array;

		WARN_ON(p->prio < rq->rt.highest_prio);
		if (p->prio == rq->rt.highest_prio) {
			/* recalculate */
			array = &rq->rt.active;
			rq->rt.highest_prio =
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
		rq->rt.highest_prio = MAX_RT_PRIO;
152 153 154 155
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory--;

	update_rt_migration(rq);
156
#endif /* CONFIG_SMP */
157 158
}

159
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
I
Ingo Molnar 已提交
160 161 162
{
	struct rt_prio_array *array = &rq->rt.active;

P
Peter Zijlstra 已提交
163
	list_add_tail(&p->rt.run_list, array->queue + p->prio);
I
Ingo Molnar 已提交
164
	__set_bit(p->prio, array->bitmap);
165
	inc_cpu_load(rq, p->se.load.weight);
166 167

	inc_rt_tasks(p, rq);
168 169 170

	if (wakeup)
		p->rt.timeout = 0;
I
Ingo Molnar 已提交
171 172 173 174 175
}

/*
 * Adding/removing a task to/from a priority array:
 */
176
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
177 178 179
{
	struct rt_prio_array *array = &rq->rt.active;

180
	update_curr_rt(rq);
I
Ingo Molnar 已提交
181

P
Peter Zijlstra 已提交
182
	list_del(&p->rt.run_list);
I
Ingo Molnar 已提交
183 184
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
185
	dec_cpu_load(rq, p->se.load.weight);
186 187

	dec_rt_tasks(p, rq);
I
Ingo Molnar 已提交
188 189 190 191 192 193 194 195 196 197
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
	struct rt_prio_array *array = &rq->rt.active;

P
Peter Zijlstra 已提交
198
	list_move_tail(&p->rt.run_list, array->queue + p->prio);
I
Ingo Molnar 已提交
199 200 201
}

static void
202
yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
203
{
204
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
205 206
}

207
#ifdef CONFIG_SMP
208 209
static int find_lowest_rq(struct task_struct *task);

210 211
static int select_task_rq_rt(struct task_struct *p, int sync)
{
212 213 214
	struct rq *rq = task_rq(p);

	/*
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
230
	 */
231 232
	if (unlikely(rt_task(rq->curr)) &&
	    (p->nr_cpus_allowed > 1)) {
233 234 235 236 237 238 239 240 241
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
242 243 244 245
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
246 247 248 249 250 251 252 253 254
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
	if (p->prio < rq->curr->prio)
		resched_task(rq->curr);
}

255
static struct task_struct *pick_next_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
256 257 258 259
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
P
Peter Zijlstra 已提交
260
	struct rt_rq *rt_rq = &rq->rt;
I
Ingo Molnar 已提交
261 262
	int idx;

P
Peter Zijlstra 已提交
263 264 265
	if (sched_rt_ratio_exceeded(rq, rt_rq))
		return NULL;

I
Ingo Molnar 已提交
266 267 268 269 270
	idx = sched_find_first_bit(array->bitmap);
	if (idx >= MAX_RT_PRIO)
		return NULL;

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
271
	next = list_entry(queue->next, struct task_struct, rt.run_list);
I
Ingo Molnar 已提交
272

273
	next->se.exec_start = rq->clock;
I
Ingo Molnar 已提交
274 275 276 277

	return next;
}

278
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
279
{
280
	update_curr_rt(rq);
I
Ingo Molnar 已提交
281 282 283
	p->se.exec_start = 0;
}

284
#ifdef CONFIG_SMP
S
Steven Rostedt 已提交
285 286 287 288 289 290
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

291 292 293
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
294 295
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
	    (p->nr_cpus_allowed > 1))
296 297 298 299
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
300
/* Return the second highest RT task, NULL otherwise */
301
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	if (likely(rq->rt.rt_nr_running < 2))
		return NULL;

	idx = sched_find_first_bit(array->bitmap);
	if (unlikely(idx >= MAX_RT_PRIO)) {
		WARN_ON(1); /* rt_nr_running is bad */
		return NULL;
	}

	queue = array->queue + idx;
318 319
	BUG_ON(list_empty(queue));

P
Peter Zijlstra 已提交
320
	next = list_entry(queue->next, struct task_struct, rt.run_list);
321 322
	if (unlikely(pick_rt_task(rq, next, cpu)))
		goto out;
S
Steven Rostedt 已提交
323 324 325

	if (queue->next->next != queue) {
		/* same prio task */
326
		next = list_entry(queue->next->next, struct task_struct,
P
Peter Zijlstra 已提交
327
				  rt.run_list);
328 329
		if (pick_rt_task(rq, next, cpu))
			goto out;
S
Steven Rostedt 已提交
330 331
	}

332
 retry:
S
Steven Rostedt 已提交
333 334
	/* slower, but more flexible */
	idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
335
	if (unlikely(idx >= MAX_RT_PRIO))
S
Steven Rostedt 已提交
336 337 338
		return NULL;

	queue = array->queue + idx;
339 340
	BUG_ON(list_empty(queue));

P
Peter Zijlstra 已提交
341
	list_for_each_entry(next, queue, rt.run_list) {
342 343 344 345 346
		if (pick_rt_task(rq, next, cpu))
			goto out;
	}

	goto retry;
S
Steven Rostedt 已提交
347

348
 out:
S
Steven Rostedt 已提交
349 350 351 352 353
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
354
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
S
Steven Rostedt 已提交
355
{
G
Gregory Haskins 已提交
356
	int       lowest_prio = -1;
357
	int       lowest_cpu  = -1;
G
Gregory Haskins 已提交
358
	int       count       = 0;
359
	int       cpu;
S
Steven Rostedt 已提交
360

361
	cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
S
Steven Rostedt 已提交
362

363 364 365
	/*
	 * Scan each rq for the lowest prio.
	 */
366
	for_each_cpu_mask(cpu, *lowest_mask) {
367
		struct rq *rq = cpu_rq(cpu);
S
Steven Rostedt 已提交
368

369 370
		/* We look for lowest RT prio or non-rt CPU */
		if (rq->rt.highest_prio >= MAX_RT_PRIO) {
371 372 373 374 375 376 377 378 379
			/*
			 * if we already found a low RT queue
			 * and now we found this non-rt queue
			 * clear the mask and set our bit.
			 * Otherwise just return the queue as is
			 * and the count==1 will cause the algorithm
			 * to use the first bit found.
			 */
			if (lowest_cpu != -1) {
G
Gregory Haskins 已提交
380
				cpus_clear(*lowest_mask);
381 382
				cpu_set(rq->cpu, *lowest_mask);
			}
G
Gregory Haskins 已提交
383
			return 1;
384 385 386
		}

		/* no locking for now */
G
Gregory Haskins 已提交
387 388 389 390 391
		if ((rq->rt.highest_prio > task->prio)
		    && (rq->rt.highest_prio >= lowest_prio)) {
			if (rq->rt.highest_prio > lowest_prio) {
				/* new low - clear old data */
				lowest_prio = rq->rt.highest_prio;
392 393
				lowest_cpu = cpu;
				count = 0;
G
Gregory Haskins 已提交
394
			}
G
Gregory Haskins 已提交
395
			count++;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
		} else
			cpu_clear(cpu, *lowest_mask);
	}

	/*
	 * Clear out all the set bits that represent
	 * runqueues that were of higher prio than
	 * the lowest_prio.
	 */
	if (lowest_cpu > 0) {
		/*
		 * Perhaps we could add another cpumask op to
		 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
		 * Then that could be optimized to use memset and such.
		 */
		for_each_cpu_mask(cpu, *lowest_mask) {
			if (cpu >= lowest_cpu)
				break;
			cpu_clear(cpu, *lowest_mask);
S
Steven Rostedt 已提交
415
		}
416 417
	}

G
Gregory Haskins 已提交
418
	return count;
G
Gregory Haskins 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
}

static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
442 443 444 445
	int count    = find_lowest_cpus(task, lowest_mask);

	if (!count)
		return -1; /* No targets found */
G
Gregory Haskins 已提交
446

G
Gregory Haskins 已提交
447 448 449 450 451 452
	/*
	 * There is no sense in performing an optimal search if only one
	 * target is found.
	 */
	if (count == 1)
		return first_cpu(*lowest_mask);
G
Gregory Haskins 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
492 493 494
}

/* Will lock the rq it finds */
495
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
496 497 498
{
	struct rq *lowest_rq = NULL;
	int tries;
499
	int cpu;
S
Steven Rostedt 已提交
500

501 502 503
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

504
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
505 506
			break;

507 508
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
509
		/* if the prio of this runqueue changed, try again */
510
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
511 512 513 514 515 516
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
517
			if (unlikely(task_rq(task) != rq ||
518 519
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
520
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
521
				     !task->se.on_rq)) {
522

S
Steven Rostedt 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
546
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
547 548 549 550 551 552
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
553 554 555
	if (!rq->rt.overloaded)
		return 0;

556
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
557 558 559 560
	if (!next_task)
		return 0;

 retry:
561
	if (unlikely(next_task == rq->curr)) {
562
		WARN_ON(1);
S
Steven Rostedt 已提交
563
		return 0;
564
	}
S
Steven Rostedt 已提交
565 566 567 568 569 570

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
571 572
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
573 574 575
		return 0;
	}

576
	/* We might release rq lock */
S
Steven Rostedt 已提交
577 578 579
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
580
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
581 582 583
	if (!lowest_rq) {
		struct task_struct *task;
		/*
584
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
585 586 587
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
588
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
589 590 591 592 593 594 595 596
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

597
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

629 630
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
631 632
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
633 634
	struct rq *src_rq;

635
	if (likely(!rt_overloaded(this_rq)))
636 637 638 639
		return 0;

	next = pick_next_task_rt(this_rq);

640
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
641 642 643 644 645 646 647 648 649 650 651 652 653
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
654

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
		if (src_rq->rt.rt_nr_running <= 1) {
			spin_unlock(&src_rq->lock);
			continue;
		}

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
I
Ingo Molnar 已提交
690
				goto out;
691 692 693 694 695 696 697 698 699 700 701

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
702
			 *
703 704 705 706 707 708 709
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
I
Ingo Molnar 已提交
710
 out:
711 712 713 714 715 716
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

717
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
718 719
{
	/* Try to pull RT tasks here if we lower this rq's prio */
720
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
721 722 723
		pull_rt_task(rq);
}

724
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
725 726 727 728 729 730 731 732
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
733
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
734 735 736 737 738 739
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

740

741
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
742
{
743
	if (!task_running(rq, p) &&
G
Gregory Haskins 已提交
744 745
	    (p->prio >= rq->rt.highest_prio) &&
	    rq->rt.overloaded)
746 747 748
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
749
static unsigned long
I
Ingo Molnar 已提交
750
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
751 752 753
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
754
{
755 756
	/* don't touch RT tasks */
	return 0;
757 758 759 760 761 762
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
763 764
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
765
}
766

767 768 769 770 771 772 773 774 775 776 777 778 779
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
	if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
		struct rq *rq = task_rq(p);

780
		if ((p->nr_cpus_allowed <= 1) && (weight > 1)) {
781
			rq->rt.rt_nr_migratory++;
782
		} else if ((p->nr_cpus_allowed > 1) && (weight <= 1)) {
783 784 785 786 787 788 789 790 791 792
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
	p->nr_cpus_allowed = weight;
}
793

794 795 796 797 798 799 800 801 802 803 804 805 806
/* Assumes rq->lock is held */
static void join_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
}

/* Assumes rq->lock is held */
static void leave_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
}
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
		 * then reschedule.
		 */
		if (p->prio > rq->rt.highest_prio)
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
881
#endif /* CONFIG_SMP */
882 883 884 885 886 887 888 889 890 891 892
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
		if (next > p->rt.timeout) {
			u64 next_time = p->se.sum_exec_runtime;

			next_time += next * (NSEC_PER_SEC/HZ);
			if (p->it_sched_expires > next_time)
				p->it_sched_expires = next_time;
		} else
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
918

P
Peter Zijlstra 已提交
919
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
920
{
921 922
	update_curr_rt(rq);

923 924
	watchdog(rq, p);

I
Ingo Molnar 已提交
925 926 927 928 929 930 931
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
932
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
933 934
		return;

P
Peter Zijlstra 已提交
935
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
936

937 938 939 940
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
941
	if (p->rt.run_list.prev != p->rt.run_list.next) {
942 943 944
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
945 946
}

947 948 949 950 951 952 953
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

954 955
const struct sched_class rt_sched_class = {
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
956 957 958
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
959 960 961
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
962 963 964 965 966 967

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

968
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
969
	.load_balance		= load_balance_rt,
970
	.move_one_task		= move_one_task_rt,
971
	.set_cpus_allowed       = set_cpus_allowed_rt,
972 973
	.join_domain            = join_domain_rt,
	.leave_domain           = leave_domain_rt,
974 975 976
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
977
	.switched_from		= switched_from_rt,
978
#endif
I
Ingo Molnar 已提交
979

980
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
981
	.task_tick		= task_tick_rt,
982 983 984

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
985
};