sched_rt.c 41.0 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#ifdef CONFIG_RT_GROUP_SCHED

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

10 11
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
12 13 14
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

30 31
#define rt_entity_is_task(rt_se) (1)

32 33 34 35 36
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
52
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
53

54
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
55
{
56
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
57
}
I
Ingo Molnar 已提交
58

S
Steven Rostedt 已提交
59 60
static inline void rt_set_overload(struct rq *rq)
{
61 62 63
	if (!rq->online)
		return;

64
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
65 66 67 68 69 70 71 72
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
73
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
74
}
I
Ingo Molnar 已提交
75

S
Steven Rostedt 已提交
76 77
static inline void rt_clear_overload(struct rq *rq)
{
78 79 80
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
81
	/* the order here really doesn't matter */
82
	atomic_dec(&rq->rd->rto_count);
83
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
84
}
85

86
static void update_rt_migration(struct rt_rq *rt_rq)
87
{
88
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 90 91
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
92
		}
93 94 95
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
96
	}
97
}
S
Steven Rostedt 已提交
98

99 100
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
101 102 103 104 105 106
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
107 108 109 110 111 112 113 114
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
115 116 117 118 119 120
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
121 122 123 124 125 126
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

127 128 129 130 131 132 133 134 135 136 137 138
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

139 140 141 142 143
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

144 145
#else

146
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
147
{
P
Peter Zijlstra 已提交
148 149
}

150 151 152 153
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

154
static inline
155 156 157 158
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

159
static inline
160 161 162
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
163

S
Steven Rostedt 已提交
164 165
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
166 167 168 169 170
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

171
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
172

P
Peter Zijlstra 已提交
173
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
174 175
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
176
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
177

P
Peter Zijlstra 已提交
178 179 180 181 182 183
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
184 185
}

186 187 188 189 190 191 192 193 194 195 196
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_add_rcu(&rt_rq->leaf_rt_rq_list,
			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_del_rcu(&rt_rq->leaf_rt_rq_list);
}

P
Peter Zijlstra 已提交
197
#define for_each_leaf_rt_rq(rt_rq, rq) \
198
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
199 200 201 202 203 204 205 206 207

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

208
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
209 210
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
211
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
212
{
213
	int this_cpu = smp_processor_id();
214
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
215 216 217
	struct sched_rt_entity *rt_se;

	rt_se = rt_rq->tg->rt_se[this_cpu];
P
Peter Zijlstra 已提交
218

219 220
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
221
			enqueue_rt_entity(rt_se, false);
222
		if (rt_rq->highest_prio.curr < curr->prio)
223
			resched_task(curr);
P
Peter Zijlstra 已提交
224 225 226
	}
}

P
Peter Zijlstra 已提交
227
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
228
{
229 230 231 232
	int this_cpu = smp_processor_id();
	struct sched_rt_entity *rt_se;

	rt_se = rt_rq->tg->rt_se[this_cpu];
P
Peter Zijlstra 已提交
233 234 235 236 237

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

255
#ifdef CONFIG_SMP
256
static inline const struct cpumask *sched_rt_period_mask(void)
257 258 259
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
260
#else
261
static inline const struct cpumask *sched_rt_period_mask(void)
262
{
263
	return cpu_online_mask;
264 265
}
#endif
P
Peter Zijlstra 已提交
266

267 268
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
269
{
270 271
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
272

P
Peter Zijlstra 已提交
273 274 275 276 277
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

278
#else /* !CONFIG_RT_GROUP_SCHED */
279 280 281

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
282 283 284 285 286 287
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
288 289
}

290 291 292 293 294 295 296 297
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

P
Peter Zijlstra 已提交
298 299 300 301 302 303 304 305 306 307 308
#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
309
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
310
{
311 312
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
313 314
}

P
Peter Zijlstra 已提交
315
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
316 317 318
{
}

P
Peter Zijlstra 已提交
319 320 321 322
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
323

324
static inline const struct cpumask *sched_rt_period_mask(void)
325
{
326
	return cpu_online_mask;
327 328 329 330 331 332 333 334
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
335 336 337 338 339
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

340
#endif /* CONFIG_RT_GROUP_SCHED */
341

P
Peter Zijlstra 已提交
342
#ifdef CONFIG_SMP
343 344 345
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
346
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
347 348 349 350 351 352
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

353
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
354

355
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
356
	rt_period = ktime_to_ns(rt_b->rt_period);
357
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
358 359 360 361 362 363
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

364
		raw_spin_lock(&iter->rt_runtime_lock);
365 366 367 368 369
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
370 371 372
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

373 374 375 376
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
377 378
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
379
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
380 381 382 383 384 385
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
386
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
387 388 389
				break;
			}
		}
P
Peter Zijlstra 已提交
390
next:
391
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
392
	}
393
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
394 395 396

	return more;
}
P
Peter Zijlstra 已提交
397

398 399 400
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

414 415
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
416 417 418 419 420
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
421 422 423
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
424
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
425

426 427 428 429 430
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
431 432
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

433 434 435
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
436
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
437 438 439
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

440 441 442
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
443
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
444 445
				continue;

446
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
455
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
456 457 458 459 460

			if (!want)
				break;
		}

461
		raw_spin_lock(&rt_rq->rt_runtime_lock);
462 463 464 465
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
466 467
		BUG_ON(want);
balanced:
468 469 470 471
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
472
		rt_rq->rt_runtime = RUNTIME_INF;
473 474
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
475 476 477 478 479 480 481
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

482
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
483
	__disable_runtime(rq);
484
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
485 486 487 488 489 490 491 492 493
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

494 495 496
	/*
	 * Reset each runqueue's bandwidth settings
	 */
P
Peter Zijlstra 已提交
497 498 499
	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

500 501
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
502 503
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
504
		rt_rq->rt_throttled = 0;
505 506
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
507 508 509 510 511 512 513
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

514
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
515
	__enable_runtime(rq);
516
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
517 518
}

519 520 521 522 523
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
524
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
525
		more = do_balance_runtime(rt_rq);
526
		raw_spin_lock(&rt_rq->rt_runtime_lock);
527 528 529 530
	}

	return more;
}
531
#else /* !CONFIG_SMP */
532 533 534 535
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
536
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
537

538 539 540
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
541
	const struct cpumask *span;
542

543
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
544 545 546
		return 1;

	span = sched_rt_period_mask();
547
	for_each_cpu(i, span) {
548 549 550 551
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

552
		raw_spin_lock(&rq->lock);
553 554 555
		if (rt_rq->rt_time) {
			u64 runtime;

556
			raw_spin_lock(&rt_rq->rt_runtime_lock);
557 558 559 560 561 562 563 564 565 566
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
567
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
568 569
		} else if (rt_rq->rt_nr_running)
			idle = 0;
570 571 572

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
573
		raw_spin_unlock(&rq->lock);
574 575 576 577
	}

	return idle;
}
P
Peter Zijlstra 已提交
578

P
Peter Zijlstra 已提交
579 580
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
581
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
582 583 584
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
585
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
586 587 588 589 590
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
591
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
592
{
P
Peter Zijlstra 已提交
593
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
594 595

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
596
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
597

P
Peter Zijlstra 已提交
598 599 600
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

601 602 603 604
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
605

P
Peter Zijlstra 已提交
606
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
607
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
608
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
609
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
610 611
			return 1;
		}
P
Peter Zijlstra 已提交
612 613 614 615 616
	}

	return 0;
}

I
Ingo Molnar 已提交
617 618 619 620
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
621
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
622 623
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
624 625
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
626 627 628 629 630
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

631
	delta_exec = rq->clock_task - curr->se.exec_start;
I
Ingo Molnar 已提交
632 633
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
634

635
	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
636 637

	curr->se.sum_exec_runtime += delta_exec;
638 639
	account_group_exec_runtime(curr, delta_exec);

640
	curr->se.exec_start = rq->clock_task;
641
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
642

643 644
	sched_rt_avg_update(rq, delta_exec);

645 646 647
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
648 649 650
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

651
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
652
			raw_spin_lock(&rt_rq->rt_runtime_lock);
653 654 655
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
656
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
657
		}
D
Dhaval Giani 已提交
658
	}
I
Ingo Molnar 已提交
659 660
}

661
#if defined CONFIG_SMP
662 663 664 665

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
666
{
667 668 669 670 671 672 673 674
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

	if (next && rt_prio(next->prio))
		return next->prio;
	else
		return MAX_RT_PRIO;
}

675 676
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
677
{
G
Gregory Haskins 已提交
678
	struct rq *rq = rq_of_rt_rq(rt_rq);
679

680
	if (prio < prev_prio) {
G
Gregory Haskins 已提交
681

682 683
		/*
		 * If the new task is higher in priority than anything on the
684 685
		 * run-queue, we know that the previous high becomes our
		 * next-highest.
686
		 */
687
		rt_rq->highest_prio.next = prev_prio;
688 689

		if (rq->online)
G
Gregory Haskins 已提交
690
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
I
Ingo Molnar 已提交
691

692 693 694 695 696 697 698 699 700 701 702 703
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
704
}
705

706 707 708 709
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
710

711 712 713 714 715
	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
		rt_rq->highest_prio.next = next_prio(rq);

	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
716 717
}

718 719
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
720
static inline
721 722 723 724 725
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
726

727
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
744
	if (rt_rq->rt_nr_running) {
745

746
		WARN_ON(prio < prev_prio);
747

748
		/*
749 750
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
751
		 */
752
		if (prio == prev_prio) {
753 754 755
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
756
				sched_find_first_bit(array->bitmap);
757 758
		}

759
	} else
760
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
761

762 763
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
764

765 766 767 768 769 770
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
771

772
#ifdef CONFIG_RT_GROUP_SCHED
773 774 775 776 777 778 779 780 781 782 783 784 785 786

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
787 788 789 790
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
829 830
}

831
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
832
{
P
Peter Zijlstra 已提交
833 834 835
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
836
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
837

838 839 840 841 842 843 844
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
845
		return;
846

847 848 849
	if (!rt_rq->rt_nr_running)
		list_add_leaf_rt_rq(rt_rq);

850 851 852 853
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
854
	__set_bit(rt_se_prio(rt_se), array->bitmap);
855

P
Peter Zijlstra 已提交
856 857 858
	inc_rt_tasks(rt_se, rt_rq);
}

859
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
860 861 862 863 864 865 866 867 868
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
869 870
	if (!rt_rq->rt_nr_running)
		list_del_leaf_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
871 872 873 874 875 876
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
877
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
878
{
879
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
880

881 882 883 884 885 886 887
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
888 889 890 891
			__dequeue_rt_entity(rt_se);
	}
}

892
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
893 894 895
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
896
		__enqueue_rt_entity(rt_se, head);
897 898 899 900 901 902 903 904 905 906
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
907
			__enqueue_rt_entity(rt_se, false);
908
	}
I
Ingo Molnar 已提交
909 910 911 912 913
}

/*
 * Adding/removing a task to/from a priority array:
 */
914
static void
915
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
916 917 918
{
	struct sched_rt_entity *rt_se = &p->rt;

919
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
920 921
		rt_se->timeout = 0;

922
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
923

924 925
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
P
Peter Zijlstra 已提交
926 927
}

928
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
929
{
P
Peter Zijlstra 已提交
930
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
931

932
	update_curr_rt(rq);
933
	dequeue_rt_entity(rt_se);
934

935
	dequeue_pushable_task(rq, p);
I
Ingo Molnar 已提交
936 937 938 939 940 941
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
942 943
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
944
{
945
	if (on_rt_rq(rt_se)) {
946 947 948 949 950 951 952
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
953
	}
P
Peter Zijlstra 已提交
954 955
}

956
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
957
{
P
Peter Zijlstra 已提交
958 959
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
960

P
Peter Zijlstra 已提交
961 962
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
963
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
964
	}
I
Ingo Molnar 已提交
965 966
}

P
Peter Zijlstra 已提交
967
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
968
{
969
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
970 971
}

972
#ifdef CONFIG_SMP
973 974
static int find_lowest_rq(struct task_struct *task);

975 976
static int
select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
977
{
978
	if (sd_flag != SD_BALANCE_WAKE)
979 980
		return smp_processor_id();

981
	/*
982 983 984 985 986
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
987 988 989 990 991 992 993 994 995
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
996
	 */
997
	if (unlikely(rt_task(rq->curr)) &&
998 999
	    (rq->curr->rt.nr_cpus_allowed < 2 ||
	     rq->curr->prio < p->prio) &&
P
Peter Zijlstra 已提交
1000
	    (p->rt.nr_cpus_allowed > 1)) {
1001 1002 1003 1004 1005 1006 1007 1008 1009
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
1010 1011
	return task_cpu(p);
}
1012 1013 1014 1015 1016 1017

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

1018
	if (p->rt.nr_cpus_allowed != 1
1019 1020
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1021

1022 1023
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1034 1035
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1036 1037 1038
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1039
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1040
{
1041
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1042
		resched_task(rq->curr);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1059 1060
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
1061
#endif
I
Ingo Molnar 已提交
1062 1063
}

P
Peter Zijlstra 已提交
1064 1065
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1066
{
P
Peter Zijlstra 已提交
1067 1068
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1069 1070 1071 1072
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1073
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1074 1075

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1076
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1077

P
Peter Zijlstra 已提交
1078 1079
	return next;
}
I
Ingo Molnar 已提交
1080

1081
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1082 1083 1084 1085
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1086

P
Peter Zijlstra 已提交
1087 1088 1089 1090 1091
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
1092
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1093 1094 1095 1096
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1097
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1098 1099 1100 1101
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1102
	p->se.exec_start = rq->clock_task;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1115
#ifdef CONFIG_SMP
1116 1117 1118 1119 1120
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1121
#endif
1122

P
Peter Zijlstra 已提交
1123
	return p;
I
Ingo Molnar 已提交
1124 1125
}

1126
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1127
{
1128
	update_curr_rt(rq);
I
Ingo Molnar 已提交
1129
	p->se.exec_start = 0;
1130 1131 1132 1133 1134 1135 1136

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1137 1138
}

1139
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1140

S
Steven Rostedt 已提交
1141 1142 1143 1144 1145
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1146 1147 1148
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1149
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
1150
	    (p->rt.nr_cpus_allowed > 1))
1151 1152 1153 1154
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1155
/* Return the second highest RT task, NULL otherwise */
1156
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1157
{
P
Peter Zijlstra 已提交
1158 1159 1160 1161
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1162 1163
	int idx;

P
Peter Zijlstra 已提交
1164 1165 1166
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1167
next_idx:
P
Peter Zijlstra 已提交
1168 1169 1170 1171 1172
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1173 1174 1175 1176 1177 1178
			struct task_struct *p;

			if (!rt_entity_is_task(rt_se))
				continue;

			p = rt_task_of(rt_se);
P
Peter Zijlstra 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1188 1189
	}

S
Steven Rostedt 已提交
1190 1191 1192
	return next;
}

1193
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1194

G
Gregory Haskins 已提交
1195 1196 1197
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1198
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1199 1200
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1201

1202 1203
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1204

1205 1206
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1216
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1217 1218 1219 1220 1221 1222
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1223 1224
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1225

R
Rusty Russell 已提交
1226 1227 1228
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1229

R
Rusty Russell 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
				return this_cpu;

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
			if (best_cpu < nr_cpu_ids)
				return best_cpu;
G
Gregory Haskins 已提交
1242 1243 1244 1245 1246 1247 1248 1249
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1250 1251 1252 1253 1254 1255 1256
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1257 1258 1259
}

/* Will lock the rq it finds */
1260
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1261 1262 1263
{
	struct rq *lowest_rq = NULL;
	int tries;
1264
	int cpu;
S
Steven Rostedt 已提交
1265

1266 1267 1268
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1269
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1270 1271
			break;

1272 1273
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1274
		/* if the prio of this runqueue changed, try again */
1275
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1276 1277 1278 1279 1280 1281
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1282
			if (unlikely(task_rq(task) != rq ||
1283 1284
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1285
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1286
				     !task->se.on_rq)) {
1287

1288
				raw_spin_unlock(&lowest_rq->lock);
S
Steven Rostedt 已提交
1289 1290 1291 1292 1293 1294
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1295
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1296 1297 1298
			break;

		/* try again */
1299
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1300 1301 1302 1303 1304 1305
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

	BUG_ON(!p->se.on_rq);
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1326 1327 1328 1329 1330
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1331
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1332 1333 1334 1335
{
	struct task_struct *next_task;
	struct rq *lowest_rq;

G
Gregory Haskins 已提交
1336 1337 1338
	if (!rq->rt.overloaded)
		return 0;

1339
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1340 1341 1342
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1343
retry:
1344
	if (unlikely(next_task == rq->curr)) {
1345
		WARN_ON(1);
S
Steven Rostedt 已提交
1346
		return 0;
1347
	}
S
Steven Rostedt 已提交
1348 1349 1350 1351 1352 1353

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1354 1355
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1356 1357 1358
		return 0;
	}

1359
	/* We might release rq lock */
S
Steven Rostedt 已提交
1360 1361 1362
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1363
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1364 1365 1366
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1367
		 * find lock_lowest_rq releases rq->lock
1368 1369 1370 1371 1372
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1373
		 */
1374
		task = pick_next_pushable_task(rq);
1375 1376 1377 1378 1379 1380 1381 1382 1383
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
			 * If we get here, the task hasnt moved at all, but
			 * it has failed to push.  We will not try again,
			 * since the other cpus will pull from us when they
			 * are ready.
			 */
			dequeue_pushable_task(rq, next_task);
			goto out;
S
Steven Rostedt 已提交
1384
		}
1385

1386 1387 1388 1389
		if (!task)
			/* No more tasks, just exit */
			goto out;

1390
		/*
1391
		 * Something has shifted, try again.
1392
		 */
1393 1394 1395
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1396 1397
	}

1398
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1399 1400 1401 1402 1403
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1404
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1405 1406 1407 1408

out:
	put_task_struct(next_task);

1409
	return 1;
S
Steven Rostedt 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1419 1420
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1421
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1422
	struct task_struct *p;
1423 1424
	struct rq *src_rq;

1425
	if (likely(!rt_overloaded(this_rq)))
1426 1427
		return 0;

1428
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1429 1430 1431 1432
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1445 1446 1447
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1448
		 * alter this_rq
1449
		 */
1450
		double_lock_balance(this_rq, src_rq);
1451 1452 1453 1454

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1455 1456
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1457 1458 1459 1460 1461 1462 1463

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1464
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1465 1466 1467 1468 1469 1470 1471 1472 1473
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1474
			 * current task on the run queue
1475
			 */
1476
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1477
				goto skip;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1491
skip:
1492
		double_unlock_balance(this_rq, src_rq);
1493 1494 1495 1496 1497
	}

	return ret;
}

1498
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1499 1500
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1501
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1502 1503 1504
		pull_rt_task(rq);
}

1505
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1506
{
1507
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1508 1509
}

1510 1511 1512 1513
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1514
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1515
{
1516
	if (!task_running(rq, p) &&
1517
	    !test_tsk_need_resched(rq->curr) &&
1518
	    has_pushable_tasks(rq) &&
1519
	    p->rt.nr_cpus_allowed > 1 &&
1520
	    rt_task(rq->curr) &&
1521 1522
	    (rq->curr->rt.nr_cpus_allowed < 2 ||
	     rq->curr->prio < p->prio))
1523 1524 1525
		push_rt_tasks(rq);
}

1526
static void set_cpus_allowed_rt(struct task_struct *p,
1527
				const struct cpumask *new_mask)
1528
{
1529
	int weight = cpumask_weight(new_mask);
1530 1531 1532 1533 1534 1535 1536

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1537
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1538 1539
		struct rq *rq = task_rq(p);

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1558
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1559
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1560
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1561 1562 1563 1564
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1565
		update_rt_migration(&rq->rt);
1566 1567
	}

1568
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1569
	p->rt.nr_cpus_allowed = weight;
1570
}
1571

1572
/* Assumes rq->lock is held */
1573
static void rq_online_rt(struct rq *rq)
1574 1575 1576
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1577

P
Peter Zijlstra 已提交
1578 1579
	__enable_runtime(rq);

1580
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1581 1582 1583
}

/* Assumes rq->lock is held */
1584
static void rq_offline_rt(struct rq *rq)
1585 1586 1587
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1588

P
Peter Zijlstra 已提交
1589 1590
	__disable_runtime(rq);

1591
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1592
}
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
1611 1612 1613 1614 1615 1616

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1617
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1618
					GFP_KERNEL, cpu_to_node(i));
1619
}
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1668 1669 1670
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1671
		 */
1672
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1673 1674 1675 1676 1677
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1678
#endif /* CONFIG_SMP */
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1690 1691 1692 1693
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1694 1695 1696
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1697 1698 1699 1700 1701 1702

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1703
		if (p->rt.timeout > next)
1704
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1705 1706
	}
}
I
Ingo Molnar 已提交
1707

P
Peter Zijlstra 已提交
1708
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1709
{
1710 1711
	update_curr_rt(rq);

1712 1713
	watchdog(rq, p);

I
Ingo Molnar 已提交
1714 1715 1716 1717 1718 1719 1720
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1721
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1722 1723
		return;

P
Peter Zijlstra 已提交
1724
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1725

1726 1727 1728 1729
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1730
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1731
		requeue_task_rt(rq, p, 0);
1732 1733
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1734 1735
}

1736 1737 1738 1739
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

1740
	p->se.exec_start = rq->clock_task;
1741 1742 1743

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1744 1745
}

1746
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
		return DEF_TIMESLICE;
	else
		return 0;
}

1757
static const struct sched_class rt_sched_class = {
1758
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1768
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1769 1770
	.select_task_rq		= select_task_rq_rt,

1771
	.set_cpus_allowed       = set_cpus_allowed_rt,
1772 1773
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1774 1775
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
1776
	.task_woken		= task_woken_rt,
1777
	.switched_from		= switched_from_rt,
1778
#endif
I
Ingo Molnar 已提交
1779

1780
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1781
	.task_tick		= task_tick_rt,
1782

1783 1784
	.get_rr_interval	= get_rr_interval_rt,

1785 1786
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1787
};
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1801
#endif /* CONFIG_SCHED_DEBUG */
1802