sched_rt.c 15.9 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_SMP
static cpumask_t rt_overload_mask;
static atomic_t rto_count;
static inline int rt_overloaded(void)
{
	return atomic_read(&rto_count);
}
static inline cpumask_t *rt_overload(void)
{
	return &rt_overload_mask;
}
static inline void rt_set_overload(struct rq *rq)
{
	cpu_set(rq->cpu, rt_overload_mask);
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
	atomic_inc(&rto_count);
}
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
	atomic_dec(&rto_count);
	cpu_clear(rq->cpu, rt_overload_mask);
}
36 37 38 39 40 41 42 43

static void update_rt_migration(struct rq *rq)
{
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
		rt_set_overload(rq);
	else
		rt_clear_overload(rq);
}
S
Steven Rostedt 已提交
44 45
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
46 47 48 49
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
50
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
51 52 53 54 55 56 57
{
	struct task_struct *curr = rq->curr;
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

58
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
59 60
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
61 62

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
63 64

	curr->se.sum_exec_runtime += delta_exec;
65
	curr->se.exec_start = rq->clock;
66
	cpuacct_charge(curr, delta_exec);
I
Ingo Molnar 已提交
67 68
}

69 70 71 72
static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	rq->rt.rt_nr_running++;
73 74 75
#ifdef CONFIG_SMP
	if (p->prio < rq->rt.highest_prio)
		rq->rt.highest_prio = p->prio;
76 77 78 79
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory++;

	update_rt_migration(rq);
80
#endif /* CONFIG_SMP */
81 82 83 84 85 86 87
}

static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	WARN_ON(!rq->rt.rt_nr_running);
	rq->rt.rt_nr_running--;
88 89 90 91 92 93 94 95 96 97 98 99 100
#ifdef CONFIG_SMP
	if (rq->rt.rt_nr_running) {
		struct rt_prio_array *array;

		WARN_ON(p->prio < rq->rt.highest_prio);
		if (p->prio == rq->rt.highest_prio) {
			/* recalculate */
			array = &rq->rt.active;
			rq->rt.highest_prio =
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
		rq->rt.highest_prio = MAX_RT_PRIO;
101 102 103 104
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory--;

	update_rt_migration(rq);
105
#endif /* CONFIG_SMP */
106 107
}

108
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
I
Ingo Molnar 已提交
109 110 111 112 113
{
	struct rt_prio_array *array = &rq->rt.active;

	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
114
	inc_cpu_load(rq, p->se.load.weight);
115 116

	inc_rt_tasks(p, rq);
I
Ingo Molnar 已提交
117 118 119 120 121
}

/*
 * Adding/removing a task to/from a priority array:
 */
122
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
123 124 125
{
	struct rt_prio_array *array = &rq->rt.active;

126
	update_curr_rt(rq);
I
Ingo Molnar 已提交
127 128 129 130

	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
131
	dec_cpu_load(rq, p->se.load.weight);
132 133

	dec_rt_tasks(p, rq);
I
Ingo Molnar 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
	struct rt_prio_array *array = &rq->rt.active;

	list_move_tail(&p->run_list, array->queue + p->prio);
}

static void
148
yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
149
{
150
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
151 152 153 154 155 156 157 158 159 160 161
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
	if (p->prio < rq->curr->prio)
		resched_task(rq->curr);
}

162
static struct task_struct *pick_next_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
	if (idx >= MAX_RT_PRIO)
		return NULL;

	queue = array->queue + idx;
	next = list_entry(queue->next, struct task_struct, run_list);

176
	next->se.exec_start = rq->clock;
I
Ingo Molnar 已提交
177 178 179 180

	return next;
}

181
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
182
{
183
	update_curr_rt(rq);
I
Ingo Molnar 已提交
184 185 186
	p->se.exec_start = 0;
}

187
#ifdef CONFIG_SMP
S
Steven Rostedt 已提交
188 189 190 191 192 193
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

194 195 196
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
197 198
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
	    (p->nr_cpus_allowed > 1))
199 200 201 202
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
203
/* Return the second highest RT task, NULL otherwise */
204 205
static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
						     int cpu)
S
Steven Rostedt 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	assert_spin_locked(&rq->lock);

	if (likely(rq->rt.rt_nr_running < 2))
		return NULL;

	idx = sched_find_first_bit(array->bitmap);
	if (unlikely(idx >= MAX_RT_PRIO)) {
		WARN_ON(1); /* rt_nr_running is bad */
		return NULL;
	}

	queue = array->queue + idx;
224 225
	BUG_ON(list_empty(queue));

S
Steven Rostedt 已提交
226
	next = list_entry(queue->next, struct task_struct, run_list);
227 228
	if (unlikely(pick_rt_task(rq, next, cpu)))
		goto out;
S
Steven Rostedt 已提交
229 230 231 232

	if (queue->next->next != queue) {
		/* same prio task */
		next = list_entry(queue->next->next, struct task_struct, run_list);
233 234
		if (pick_rt_task(rq, next, cpu))
			goto out;
S
Steven Rostedt 已提交
235 236
	}

237
 retry:
S
Steven Rostedt 已提交
238 239
	/* slower, but more flexible */
	idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
240
	if (unlikely(idx >= MAX_RT_PRIO))
S
Steven Rostedt 已提交
241 242 243
		return NULL;

	queue = array->queue + idx;
244 245 246 247 248 249 250 251
	BUG_ON(list_empty(queue));

	list_for_each_entry(next, queue, run_list) {
		if (pick_rt_task(rq, next, cpu))
			goto out;
	}

	goto retry;
S
Steven Rostedt 已提交
252

253
 out:
S
Steven Rostedt 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

/* Will lock the rq it finds */
static struct rq *find_lock_lowest_rq(struct task_struct *task,
				      struct rq *this_rq)
{
	struct rq *lowest_rq = NULL;
	int cpu;
	int tries;
	cpumask_t *cpu_mask = &__get_cpu_var(local_cpu_mask);

	cpus_and(*cpu_mask, cpu_online_map, task->cpus_allowed);

	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		/*
		 * Scan each rq for the lowest prio.
		 */
		for_each_cpu_mask(cpu, *cpu_mask) {
			struct rq *rq = &per_cpu(runqueues, cpu);

			if (cpu == this_rq->cpu)
				continue;

			/* We look for lowest RT prio or non-rt CPU */
			if (rq->rt.highest_prio >= MAX_RT_PRIO) {
				lowest_rq = rq;
				break;
			}

			/* no locking for now */
			if (rq->rt.highest_prio > task->prio &&
			    (!lowest_rq || rq->rt.highest_prio > lowest_rq->rt.highest_prio)) {
				lowest_rq = rq;
			}
		}

		if (!lowest_rq)
			break;

		/* if the prio of this runqueue changed, try again */
		if (double_lock_balance(this_rq, lowest_rq)) {
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
			if (unlikely(task_rq(task) != this_rq ||
				     !cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
				     task_running(this_rq, task) ||
				     !task->se.on_rq)) {
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
331
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
332 333 334 335 336 337
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

338
	assert_spin_locked(&rq->lock);
S
Steven Rostedt 已提交
339

340
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
341 342 343 344
	if (!next_task)
		return 0;

 retry:
345
	if (unlikely(next_task == rq->curr)) {
346
		WARN_ON(1);
S
Steven Rostedt 已提交
347
		return 0;
348
	}
S
Steven Rostedt 已提交
349 350 351 352 353 354

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
355 356
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
357 358 359
		return 0;
	}

360
	/* We might release rq lock */
S
Steven Rostedt 已提交
361 362 363
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
364
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
365 366 367
	if (!lowest_rq) {
		struct task_struct *task;
		/*
368
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
369 370 371
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
372
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
373 374 375 376 377 378 379 380 381 382
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

	assert_spin_locked(&lowest_rq->lock);

383
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
static int pull_rt_task(struct rq *this_rq)
{
	struct task_struct *next;
	struct task_struct *p;
	struct rq *src_rq;
	cpumask_t *rto_cpumask;
	int this_cpu = this_rq->cpu;
	int cpu;
	int ret = 0;

	assert_spin_locked(&this_rq->lock);

	/*
	 * If cpusets are used, and we have overlapping
	 * run queue cpusets, then this algorithm may not catch all.
	 * This is just the price you pay on trying to keep
	 * dirtying caches down on large SMP machines.
	 */
	if (likely(!rt_overloaded()))
		return 0;

	next = pick_next_task_rt(this_rq);

	rto_cpumask = rt_overload();

	for_each_cpu_mask(cpu, *rto_cpumask) {
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
			/*
			 * It is possible that overlapping cpusets
			 * will miss clearing a non overloaded runqueue.
			 * Clear it now.
			 */
			if (double_lock_balance(this_rq, src_rq)) {
				/* unlocked our runqueue lock */
				struct task_struct *old_next = next;
				next = pick_next_task_rt(this_rq);
				if (next != old_next)
					ret = 1;
			}
			if (likely(src_rq->rt.rt_nr_running <= 1))
				/*
				 * Small chance that this_rq->curr changed
				 * but it's really harmless here.
				 */
				rt_clear_overload(this_rq);
			else
				/*
				 * Heh, the src_rq is now overloaded, since
				 * we already have the src_rq lock, go straight
				 * to pulling tasks from it.
				 */
				goto try_pulling;
			spin_unlock(&src_rq->lock);
			continue;
		}

		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
		if (src_rq->rt.rt_nr_running <= 1) {
			spin_unlock(&src_rq->lock);
			continue;
		}

 try_pulling:
		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
				goto bail;

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */

			/*
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
 bail:
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

static void schedule_balance_rt(struct rq *rq,
				struct task_struct *prev)
{
	/* Try to pull RT tasks here if we lower this rq's prio */
	if (unlikely(rt_task(prev)) &&
	    rq->rt.highest_prio > prev->prio)
		pull_rt_task(rq);
}

S
Steven Rostedt 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static void schedule_tail_balance_rt(struct rq *rq)
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
	if (unlikely(rq->rt.rt_nr_running > 1)) {
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

574 575 576 577 578 579 580 581 582

static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
{
	if (unlikely(rt_task(p)) &&
	    !task_running(rq, p) &&
	    (p->prio >= rq->curr->prio))
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
583
static unsigned long
I
Ingo Molnar 已提交
584
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
585 586 587
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
588
{
589 590
	/* don't touch RT tasks */
	return 0;
591 592 593 594 595 596
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
597 598
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
599
}
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
	if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
		struct rq *rq = task_rq(p);

		if ((p->nr_cpus_allowed <= 1) && (weight > 1))
			rq->rt.rt_nr_migratory++;
		else if((p->nr_cpus_allowed > 1) && (weight <= 1)) {
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
	p->nr_cpus_allowed = weight;
}
S
Steven Rostedt 已提交
626 627
#else /* CONFIG_SMP */
# define schedule_tail_balance_rt(rq)	do { } while (0)
628
# define schedule_balance_rt(rq, prev)	do { } while (0)
629
# define wakeup_balance_rt(rq, p)	do { } while (0)
S
Steven Rostedt 已提交
630
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
631 632 633

static void task_tick_rt(struct rq *rq, struct task_struct *p)
{
634 635
	update_curr_rt(rq);

I
Ingo Molnar 已提交
636 637 638 639 640 641 642 643 644 645
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

	if (--p->time_slice)
		return;

D
Dmitry Adamushko 已提交
646
	p->time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
647

648 649 650 651 652 653 654 655
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
	if (p->run_list.prev != p->run_list.next) {
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
656 657
}

658 659 660 661 662 663 664
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

665 666
const struct sched_class rt_sched_class = {
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
667 668 669 670 671 672 673 674 675
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

676
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
677
	.load_balance		= load_balance_rt,
678
	.move_one_task		= move_one_task_rt,
679
	.set_cpus_allowed       = set_cpus_allowed_rt,
680
#endif
I
Ingo Molnar 已提交
681

682
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
683 684
	.task_tick		= task_tick_rt,
};