sched_rt.c 33.4 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15 16 17
	if (!rq->online)
		return;

18
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
19 20 21 22 23 24 25 26
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
27
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
28
}
I
Ingo Molnar 已提交
29

S
Steven Rostedt 已提交
30 31
static inline void rt_clear_overload(struct rq *rq)
{
32 33 34
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
35
	/* the order here really doesn't matter */
36 37
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
38
}
39 40 41

static void update_rt_migration(struct rq *rq)
{
42
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 44 45 46 47
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
48
		rt_clear_overload(rq);
49 50
		rq->rt.overloaded = 0;
	}
51
}
S
Steven Rostedt 已提交
52 53
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
54
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
55
{
P
Peter Zijlstra 已提交
56 57 58 59 60 61 62 63
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

64
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
65

P
Peter Zijlstra 已提交
66
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
67 68
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
69
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
70

P
Peter Zijlstra 已提交
71 72 73 74 75 76
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
103
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
104 105 106 107
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108 109
		struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;

P
Peter Zijlstra 已提交
110
		enqueue_rt_entity(rt_se);
111 112
		if (rt_rq->highest_prio < curr->prio)
			resched_task(curr);
P
Peter Zijlstra 已提交
113 114 115
	}
}

P
Peter Zijlstra 已提交
116
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
117 118 119 120 121 122 123
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

141 142 143 144 145
#ifdef CONFIG_SMP
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
146
#else
147 148 149 150 151
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}
#endif
P
Peter Zijlstra 已提交
152

153 154
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
155
{
156 157
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
158

P
Peter Zijlstra 已提交
159 160 161 162 163
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

164 165 166 167
#else

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
168 169 170 171 172 173
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
200
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
201 202 203
{
}

P
Peter Zijlstra 已提交
204
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
205 206 207
{
}

P
Peter Zijlstra 已提交
208 209 210 211
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
212 213 214 215 216 217 218 219 220 221 222 223

static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
224 225 226 227 228
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

P
Peter Zijlstra 已提交
229 230
#endif

P
Peter Zijlstra 已提交
231
#ifdef CONFIG_SMP
232
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

	weight = cpus_weight(rd->span);

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
	for_each_cpu_mask(i, rd->span) {
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
251 252 253
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

P
Peter Zijlstra 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
			do_div(diff, weight);
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
267
next:
P
Peter Zijlstra 已提交
268 269 270 271 272 273
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

		want = rt_b->rt_runtime - rt_rq->rt_runtime;

		for_each_cpu_mask(i, rd->span) {
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

			if (iter == rt_rq)
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
		BUG_ON(want);
balanced:
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
		more = do_balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);
	}

	return more;
}
#else
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
P
Peter Zijlstra 已提交
382 383
#endif

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
	cpumask_t span;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return 1;

	span = sched_rt_period_mask();
	for_each_cpu_mask(i, span) {
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
			u64 runtime;

			spin_lock(&rt_rq->rt_runtime_lock);
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
			spin_unlock(&rt_rq->rt_runtime_lock);
414 415
		} else if (rt_rq->rt_nr_running)
			idle = 0;
416 417 418 419 420 421 422 423 424

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}

P
Peter Zijlstra 已提交
425 426
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
427
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
428 429 430 431 432 433 434 435 436
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
		return rt_rq->highest_prio;
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
437
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
438
{
P
Peter Zijlstra 已提交
439
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
440

P
Peter Zijlstra 已提交
441
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
442 443 444
		return 0;

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
445
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
446

P
Peter Zijlstra 已提交
447 448 449
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

450 451 452 453
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
454

P
Peter Zijlstra 已提交
455
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
456
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
457
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
458
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
459 460
			return 1;
		}
P
Peter Zijlstra 已提交
461 462 463 464 465
	}

	return 0;
}

I
Ingo Molnar 已提交
466 467 468 469
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
470
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
471 472
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
473 474
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
475 476 477 478 479
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

480
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
481 482
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
483 484

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
485 486

	curr->se.sum_exec_runtime += delta_exec;
487
	curr->se.exec_start = rq->clock;
488
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
489

D
Dhaval Giani 已提交
490 491 492 493 494 495 496 497 498
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_time += delta_exec;
		if (sched_rt_runtime_exceeded(rt_rq))
			resched_task(curr);
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
I
Ingo Molnar 已提交
499 500
}

P
Peter Zijlstra 已提交
501 502
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
503
{
P
Peter Zijlstra 已提交
504 505
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	rt_rq->rt_nr_running++;
506
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
507 508
	if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
509

I
Ingo Molnar 已提交
510 511
		rt_rq->highest_prio = rt_se_prio(rt_se);
#ifdef CONFIG_SMP
512 513 514
		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_se_prio(rt_se));
I
Ingo Molnar 已提交
515
#endif
516
	}
P
Peter Zijlstra 已提交
517
#endif
518
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
519 520
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
I
Ingo Molnar 已提交
521

522
		rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
523
	}
524

P
Peter Zijlstra 已提交
525 526
	update_rt_migration(rq_of_rt_rq(rt_rq));
#endif
527
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
528 529
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
530 531 532 533 534

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
#else
	start_rt_bandwidth(&def_rt_bandwidth);
P
Peter Zijlstra 已提交
535
#endif
536 537
}

P
Peter Zijlstra 已提交
538 539
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
540
{
541 542 543 544
#ifdef CONFIG_SMP
	int highest_prio = rt_rq->highest_prio;
#endif

P
Peter Zijlstra 已提交
545 546 547
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
548
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
549
	if (rt_rq->rt_nr_running) {
550 551
		struct rt_prio_array *array;

P
Peter Zijlstra 已提交
552 553
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
554
			/* recalculate */
P
Peter Zijlstra 已提交
555 556
			array = &rt_rq->active;
			rt_rq->highest_prio =
557 558 559
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
P
Peter Zijlstra 已提交
560 561 562 563 564
		rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
565
		rq->rt.rt_nr_migratory--;
P
Peter Zijlstra 已提交
566
	}
567

568 569
	if (rt_rq->highest_prio != highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
570 571 572 573

		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_rq->highest_prio);
574 575
	}

P
Peter Zijlstra 已提交
576
	update_rt_migration(rq_of_rt_rq(rt_rq));
577
#endif /* CONFIG_SMP */
578
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
579 580 581 582 583
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
584 585
}

586
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
587
{
P
Peter Zijlstra 已提交
588 589 590
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
591
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
592

593 594 595 596 597 598 599
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
600
		return;
601

602
	if (rt_se->nr_cpus_allowed == 1)
603
		list_add(&rt_se->run_list, queue);
604
	else
605
		list_add_tail(&rt_se->run_list, queue);
606

P
Peter Zijlstra 已提交
607
	__set_bit(rt_se_prio(rt_se), array->bitmap);
608

P
Peter Zijlstra 已提交
609 610 611
	inc_rt_tasks(rt_se, rt_rq);
}

612
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
613 614 615 616 617
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
618
	if (list_empty(array->queue + rt_se_prio(rt_se)))
P
Peter Zijlstra 已提交
619 620 621 622 623 624 625 626 627
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
628
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
629
{
630
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
631

632 633 634 635 636 637 638
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
			__dequeue_rt_entity(rt_se);
	}
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
		__enqueue_rt_entity(rt_se);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
			__enqueue_rt_entity(rt_se);
659
	}
I
Ingo Molnar 已提交
660 661 662 663 664
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
665 666 667 668 669 670 671
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

672
	enqueue_rt_entity(rt_se);
P
Peter Zijlstra 已提交
673 674
}

675
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
676
{
P
Peter Zijlstra 已提交
677
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
678

679
	update_curr_rt(rq);
680
	dequeue_rt_entity(rt_se);
I
Ingo Molnar 已提交
681 682 683 684 685 686
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
P
Peter Zijlstra 已提交
687 688 689 690 691
static
void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
	struct rt_prio_array *array = &rt_rq->active;

692 693 694 695 696
	if (on_rt_rq(rt_se)) {
		list_del_init(&rt_se->run_list);
		list_add_tail(&rt_se->run_list,
			      array->queue + rt_se_prio(rt_se));
	}
P
Peter Zijlstra 已提交
697 698
}

I
Ingo Molnar 已提交
699 700
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
701 702
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
703

P
Peter Zijlstra 已提交
704 705 706 707
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
		requeue_rt_entity(rt_rq, rt_se);
	}
I
Ingo Molnar 已提交
708 709
}

P
Peter Zijlstra 已提交
710
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
711
{
712
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
713 714
}

715
#ifdef CONFIG_SMP
716 717
static int find_lowest_rq(struct task_struct *task);

718 719
static int select_task_rq_rt(struct task_struct *p, int sync)
{
720 721 722
	struct rq *rq = task_rq(p);

	/*
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
738
	 */
739
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
740
	    (p->rt.nr_cpus_allowed > 1)) {
741 742 743 744 745 746 747 748 749
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
750 751 752 753
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
754 755 756 757 758
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
759
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
760
		resched_task(rq->curr);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
	if((p->prio == rq->curr->prio)
	   && p->rt.nr_cpus_allowed == 1
779
	   && rq->curr->rt.nr_cpus_allowed != 1) {
780 781 782 783 784 785 786 787 788 789
		cpumask_t mask;

		if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
			/*
			 * There appears to be other cpus that can accept
			 * current, so lets reschedule to try and push it away
			 */
			resched_task(rq->curr);
	}
#endif
I
Ingo Molnar 已提交
790 791
}

P
Peter Zijlstra 已提交
792 793
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
794
{
P
Peter Zijlstra 已提交
795 796
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
797 798 799 800
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
801
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
802

803 804
	queue = array->queue + idx;
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
805

P
Peter Zijlstra 已提交
806 807
	return next;
}
I
Ingo Molnar 已提交
808

P
Peter Zijlstra 已提交
809 810 811 812 813
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
814

P
Peter Zijlstra 已提交
815 816 817 818 819
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
820
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
821 822 823 824
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
825
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
826 827 828 829 830 831
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
832 833
}

834
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
835
{
836
	update_curr_rt(rq);
I
Ingo Molnar 已提交
837 838 839
	p->se.exec_start = 0;
}

840
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
841

S
Steven Rostedt 已提交
842 843 844 845 846 847
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

848 849 850
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
851
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
852
	    (p->rt.nr_cpus_allowed > 1))
853 854 855 856
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
857
/* Return the second highest RT task, NULL otherwise */
858
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
859
{
P
Peter Zijlstra 已提交
860 861 862 863
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
864 865
	int idx;

P
Peter Zijlstra 已提交
866 867 868 869 870 871 872 873
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
874
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
P
Peter Zijlstra 已提交
875 876 877 878 879 880 881 882 883 884
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
885 886
	}

S
Steven Rostedt 已提交
887 888 889 890 891
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
913

914 915
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
916

917 918
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
958 959 960
}

/* Will lock the rq it finds */
961
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
962 963 964
{
	struct rq *lowest_rq = NULL;
	int tries;
965
	int cpu;
S
Steven Rostedt 已提交
966

967 968 969
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

970
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
971 972
			break;

973 974
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
975
		/* if the prio of this runqueue changed, try again */
976
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
977 978 979 980 981 982
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
983
			if (unlikely(task_rq(task) != rq ||
984 985
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
986
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
987
				     !task->se.on_rq)) {
988

S
Steven Rostedt 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1012
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1013 1014 1015 1016 1017 1018
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
1019 1020 1021
	if (!rq->rt.overloaded)
		return 0;

1022
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1023 1024 1025 1026
	if (!next_task)
		return 0;

 retry:
1027
	if (unlikely(next_task == rq->curr)) {
1028
		WARN_ON(1);
S
Steven Rostedt 已提交
1029
		return 0;
1030
	}
S
Steven Rostedt 已提交
1031 1032 1033 1034 1035 1036

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1037 1038
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1039 1040 1041
		return 0;
	}

1042
	/* We might release rq lock */
S
Steven Rostedt 已提交
1043 1044 1045
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1046
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1047 1048 1049
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1050
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
1051 1052 1053
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
1054
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1055 1056 1057 1058 1059 1060 1061 1062
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

1063
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1095 1096
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1097 1098
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
1099 1100
	struct rq *src_rq;

1101
	if (likely(!rt_overloaded(this_rq)))
1102 1103 1104 1105
		return 0;

	next = pick_next_task_rt(this_rq);

1106
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
1120

1121 1122 1123 1124 1125 1126 1127 1128
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1129 1130
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
M
Mike Galbraith 已提交
1154
				goto skip;
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
1166
			 *
1167 1168 1169 1170 1171 1172 1173
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
M
Mike Galbraith 已提交
1174
 skip:
1175 1176 1177 1178 1179 1180
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

1181
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1182 1183
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1184
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1185 1186 1187
		pull_rt_task(rq);
}

1188
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1189 1190 1191 1192 1193 1194 1195 1196
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
1197
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
1198 1199 1200 1201 1202 1203
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

1204 1205 1206 1207
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1208
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1209
{
1210
	if (!task_running(rq, p) &&
1211
	    !test_tsk_need_resched(rq->curr) &&
G
Gregory Haskins 已提交
1212
	    rq->rt.overloaded)
1213 1214 1215
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1216
static unsigned long
I
Ingo Molnar 已提交
1217
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1218 1219 1220
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1221
{
1222 1223
	/* don't touch RT tasks */
	return 0;
1224 1225 1226 1227 1228 1229
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1230 1231
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1232
}
1233

1234 1235
static void set_cpus_allowed_rt(struct task_struct *p,
				const cpumask_t *new_mask)
1236 1237 1238 1239 1240 1241 1242 1243 1244
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1245
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1246 1247
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
1248
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1249
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1250
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1251 1252 1253 1254 1255 1256 1257 1258
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
P
Peter Zijlstra 已提交
1259
	p->rt.nr_cpus_allowed = weight;
1260
}
1261

1262
/* Assumes rq->lock is held */
1263
static void rq_online_rt(struct rq *rq)
1264 1265 1266
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1267

P
Peter Zijlstra 已提交
1268 1269
	__enable_runtime(rq);

1270
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1271 1272 1273
}

/* Assumes rq->lock is held */
1274
static void rq_offline_rt(struct rq *rq)
1275 1276 1277
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1278

P
Peter Zijlstra 已提交
1279 1280
	__disable_runtime(rq);

1281
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1282
}
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1349 1350 1351
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1352
		 */
1353
		if (p->prio > rq->rt.highest_prio && rq->curr == p)
1354 1355 1356 1357 1358
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1359
#endif /* CONFIG_SMP */
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1386
		if (p->rt.timeout > next)
1387 1388 1389
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
1390

P
Peter Zijlstra 已提交
1391
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1392
{
1393 1394
	update_curr_rt(rq);

1395 1396
	watchdog(rq, p);

I
Ingo Molnar 已提交
1397 1398 1399 1400 1401 1402 1403
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1404
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1405 1406
		return;

P
Peter Zijlstra 已提交
1407
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1408

1409 1410 1411 1412
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1413
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1414 1415 1416
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1417 1418
}

1419 1420 1421 1422 1423 1424 1425
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1426
static const struct sched_class rt_sched_class = {
1427
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1428 1429 1430
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
1431 1432 1433
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1434 1435 1436 1437 1438 1439

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1440
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1441
	.load_balance		= load_balance_rt,
1442
	.move_one_task		= move_one_task_rt,
1443
	.set_cpus_allowed       = set_cpus_allowed_rt,
1444 1445
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1446 1447 1448
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1449
	.switched_from		= switched_from_rt,
1450
#endif
I
Ingo Molnar 已提交
1451

1452
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1453
	.task_tick		= task_tick_rt,
1454 1455 1456

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1457
};
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
#endif