sched_rt.c 31.3 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15 16 17
	if (!rq->online)
		return;

18
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
19 20 21 22 23 24 25 26
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
27
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
28
}
I
Ingo Molnar 已提交
29

S
Steven Rostedt 已提交
30 31
static inline void rt_clear_overload(struct rq *rq)
{
32 33 34
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
35
	/* the order here really doesn't matter */
36 37
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
38
}
39 40 41

static void update_rt_migration(struct rq *rq)
{
42
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 44 45 46 47
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
48
		rt_clear_overload(rq);
49 50
		rq->rt.overloaded = 0;
	}
51
}
S
Steven Rostedt 已提交
52 53
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
54
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
55
{
P
Peter Zijlstra 已提交
56 57 58 59 60 61 62 63
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

64
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
65

P
Peter Zijlstra 已提交
66
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
67 68
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
69
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
70

P
Peter Zijlstra 已提交
71 72 73 74 75 76
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
103
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
104 105 106 107
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108 109
		struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;

P
Peter Zijlstra 已提交
110
		enqueue_rt_entity(rt_se);
111 112
		if (rt_rq->highest_prio < curr->prio)
			resched_task(curr);
P
Peter Zijlstra 已提交
113 114 115
	}
}

P
Peter Zijlstra 已提交
116
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
117 118 119 120 121 122 123
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

141 142 143 144 145
#ifdef CONFIG_SMP
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
146
#else
147 148 149 150 151
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}
#endif
P
Peter Zijlstra 已提交
152

153 154
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
155
{
156 157
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
158

P
Peter Zijlstra 已提交
159 160 161 162 163
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

164 165 166 167
#else

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
168 169 170 171 172 173
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
200
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
201 202 203
{
}

P
Peter Zijlstra 已提交
204
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
205 206 207
{
}

P
Peter Zijlstra 已提交
208 209 210 211
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
212 213 214 215 216 217 218 219 220 221 222 223

static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
224 225 226 227 228
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

P
Peter Zijlstra 已提交
229 230
#endif

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
	cpumask_t span;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return 1;

	span = sched_rt_period_mask();
	for_each_cpu_mask(i, span) {
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
P
Peter Zijlstra 已提交
247
			u64 runtime;
248

P
Peter Zijlstra 已提交
249 250
			spin_lock(&rt_rq->rt_runtime_lock);
			runtime = rt_rq->rt_runtime;
251 252 253 254 255 256 257
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
P
Peter Zijlstra 已提交
258
			spin_unlock(&rt_rq->rt_runtime_lock);
259 260 261 262 263 264 265 266 267 268
		}

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}

P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
#ifdef CONFIG_SMP
static int balance_runtime(struct rt_rq *rt_rq)
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

	weight = cpus_weight(rd->span);

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
	for_each_cpu_mask(i, rd->span) {
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
			do_div(diff, weight);
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
#endif

P
Peter Zijlstra 已提交
310 311
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
312
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
313 314 315 316 317 318 319 320 321
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
		return rt_rq->highest_prio;
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
322
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
323
{
P
Peter Zijlstra 已提交
324
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
325

P
Peter Zijlstra 已提交
326
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
327 328 329
		return 0;

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
330
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
331

P
Peter Zijlstra 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

#ifdef CONFIG_SMP
	if (rt_rq->rt_time > runtime) {
		int more;

		spin_unlock(&rt_rq->rt_runtime_lock);
		more = balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);

		if (more)
			runtime = sched_rt_runtime(rt_rq);
	}
#endif

P
Peter Zijlstra 已提交
348
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
349
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
350
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
351
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
352 353
			return 1;
		}
P
Peter Zijlstra 已提交
354 355 356 357 358
	}

	return 0;
}

I
Ingo Molnar 已提交
359 360 361 362
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
363
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
364 365
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
366 367
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
368 369 370 371 372
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

373
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
374 375
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
376 377

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
378 379

	curr->se.sum_exec_runtime += delta_exec;
380
	curr->se.exec_start = rq->clock;
381
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
382

D
Dhaval Giani 已提交
383 384 385 386 387 388 389 390 391
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_time += delta_exec;
		if (sched_rt_runtime_exceeded(rt_rq))
			resched_task(curr);
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
I
Ingo Molnar 已提交
392 393
}

P
Peter Zijlstra 已提交
394 395
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
396
{
P
Peter Zijlstra 已提交
397 398
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	rt_rq->rt_nr_running++;
399
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
400 401
	if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
402

I
Ingo Molnar 已提交
403 404
		rt_rq->highest_prio = rt_se_prio(rt_se);
#ifdef CONFIG_SMP
405 406 407
		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_se_prio(rt_se));
I
Ingo Molnar 已提交
408
#endif
409
	}
P
Peter Zijlstra 已提交
410
#endif
411
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
412 413
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
I
Ingo Molnar 已提交
414

415
		rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
416
	}
417

P
Peter Zijlstra 已提交
418 419
	update_rt_migration(rq_of_rt_rq(rt_rq));
#endif
420
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
421 422
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
423 424 425 426 427

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
#else
	start_rt_bandwidth(&def_rt_bandwidth);
P
Peter Zijlstra 已提交
428
#endif
429 430
}

P
Peter Zijlstra 已提交
431 432
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
433
{
434 435 436 437
#ifdef CONFIG_SMP
	int highest_prio = rt_rq->highest_prio;
#endif

P
Peter Zijlstra 已提交
438 439 440
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
441
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
442
	if (rt_rq->rt_nr_running) {
443 444
		struct rt_prio_array *array;

P
Peter Zijlstra 已提交
445 446
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
447
			/* recalculate */
P
Peter Zijlstra 已提交
448 449
			array = &rt_rq->active;
			rt_rq->highest_prio =
450 451 452
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
P
Peter Zijlstra 已提交
453 454 455 456 457
		rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
458
		rq->rt.rt_nr_migratory--;
P
Peter Zijlstra 已提交
459
	}
460

461 462
	if (rt_rq->highest_prio != highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
463 464 465 466

		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_rq->highest_prio);
467 468
	}

P
Peter Zijlstra 已提交
469
	update_rt_migration(rq_of_rt_rq(rt_rq));
470
#endif /* CONFIG_SMP */
471
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
472 473 474 475 476
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
477 478
}

P
Peter Zijlstra 已提交
479
static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
480
{
P
Peter Zijlstra 已提交
481 482 483
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
I
Ingo Molnar 已提交
484

P
Peter Zijlstra 已提交
485
	if (group_rq && rt_rq_throttled(group_rq))
P
Peter Zijlstra 已提交
486
		return;
487

488 489 490 491 492 493 494
	if (rt_se->nr_cpus_allowed == 1)
		list_add_tail(&rt_se->run_list,
			      array->xqueue + rt_se_prio(rt_se));
	else
		list_add_tail(&rt_se->run_list,
			      array->squeue + rt_se_prio(rt_se));

P
Peter Zijlstra 已提交
495
	__set_bit(rt_se_prio(rt_se), array->bitmap);
496

P
Peter Zijlstra 已提交
497 498 499 500 501 502 503 504 505
	inc_rt_tasks(rt_se, rt_rq);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
506 507
	if (list_empty(array->squeue + rt_se_prio(rt_se))
	    && list_empty(array->xqueue + rt_se_prio(rt_se)))
P
Peter Zijlstra 已提交
508 509 510 511 512 513 514 515 516 517 518
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
static void dequeue_rt_stack(struct task_struct *p)
{
519
	struct sched_rt_entity *rt_se, *back = NULL;
P
Peter Zijlstra 已提交
520

521 522 523 524 525 526 527 528 529 530
	rt_se = &p->rt;
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
			dequeue_rt_entity(rt_se);
	}
I
Ingo Molnar 已提交
531 532 533 534 535
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

	dequeue_rt_stack(p);

	/*
	 * enqueue everybody, bottom - up.
	 */
	for_each_sched_rt_entity(rt_se)
		enqueue_rt_entity(rt_se);
}

552
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
553
{
P
Peter Zijlstra 已提交
554 555
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
556

557
	update_curr_rt(rq);
I
Ingo Molnar 已提交
558

P
Peter Zijlstra 已提交
559 560 561 562 563 564 565 566 567 568
	dequeue_rt_stack(p);

	/*
	 * re-enqueue all non-empty rt_rq entities.
	 */
	for_each_sched_rt_entity(rt_se) {
		rt_rq = group_rt_rq(rt_se);
		if (rt_rq && rt_rq->rt_nr_running)
			enqueue_rt_entity(rt_se);
	}
I
Ingo Molnar 已提交
569 570 571 572 573
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
574 575 576 577 578
 *
 * Note: We always enqueue the task to the shared-queue, regardless of its
 * previous position w.r.t. exclusive vs shared.  This is so that exclusive RR
 * tasks fairly round-robin with all tasks on the runqueue, not just other
 * exclusive tasks.
I
Ingo Molnar 已提交
579
 */
P
Peter Zijlstra 已提交
580 581 582 583 584
static
void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
	struct rt_prio_array *array = &rt_rq->active;

585 586
	list_del_init(&rt_se->run_list);
	list_add_tail(&rt_se->run_list, array->squeue + rt_se_prio(rt_se));
P
Peter Zijlstra 已提交
587 588
}

I
Ingo Molnar 已提交
589 590
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
591 592
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
593

P
Peter Zijlstra 已提交
594 595 596 597
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
		requeue_rt_entity(rt_rq, rt_se);
	}
I
Ingo Molnar 已提交
598 599
}

P
Peter Zijlstra 已提交
600
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
601
{
602
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
603 604
}

605
#ifdef CONFIG_SMP
606 607
static int find_lowest_rq(struct task_struct *task);

608 609
static int select_task_rq_rt(struct task_struct *p, int sync)
{
610 611 612
	struct rq *rq = task_rq(p);

	/*
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
628
	 */
629
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
630
	    (p->rt.nr_cpus_allowed > 1)) {
631 632 633 634 635 636 637 638 639
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
640 641 642 643
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

644 645 646
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq);

I
Ingo Molnar 已提交
647 648 649 650 651
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
652
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
653
		resched_task(rq->curr);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
	if((p->prio == rq->curr->prio)
	   && p->rt.nr_cpus_allowed == 1
	   && rq->curr->rt.nr_cpus_allowed != 1
	   && pick_next_rt_entity(rq, &rq->rt) != &rq->curr->rt) {
		cpumask_t mask;

		if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
			/*
			 * There appears to be other cpus that can accept
			 * current, so lets reschedule to try and push it away
			 */
			resched_task(rq->curr);
	}
#endif
I
Ingo Molnar 已提交
684 685
}

P
Peter Zijlstra 已提交
686 687
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
688
{
P
Peter Zijlstra 已提交
689 690
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
691 692 693 694
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
695
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
696

697 698 699 700 701 702 703 704 705
	queue = array->xqueue + idx;
	if (!list_empty(queue))
		next = list_entry(queue->next, struct sched_rt_entity,
				  run_list);
	else {
		queue = array->squeue + idx;
		next = list_entry(queue->next, struct sched_rt_entity,
				  run_list);
	}
706

P
Peter Zijlstra 已提交
707 708
	return next;
}
I
Ingo Molnar 已提交
709

P
Peter Zijlstra 已提交
710 711 712 713 714
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
715

P
Peter Zijlstra 已提交
716 717 718 719 720
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
721
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
722 723 724 725
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
726
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
727 728 729 730 731 732
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
733 734
}

735
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
736
{
737
	update_curr_rt(rq);
I
Ingo Molnar 已提交
738 739 740
	p->se.exec_start = 0;
}

741
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
742

S
Steven Rostedt 已提交
743 744 745 746 747 748
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

749 750 751
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
752
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
753
	    (p->rt.nr_cpus_allowed > 1))
754 755 756 757
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
758
/* Return the second highest RT task, NULL otherwise */
759
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
760
{
P
Peter Zijlstra 已提交
761 762 763 764
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
765 766
	int idx;

P
Peter Zijlstra 已提交
767 768 769 770 771 772 773 774
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
775
		list_for_each_entry(rt_se, array->squeue + idx, run_list) {
P
Peter Zijlstra 已提交
776 777 778 779 780 781 782 783 784 785
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
786 787
	}

S
Steven Rostedt 已提交
788 789 790 791 792
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
814

815 816
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
817

818 819
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
859 860 861
}

/* Will lock the rq it finds */
862
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
863 864 865
{
	struct rq *lowest_rq = NULL;
	int tries;
866
	int cpu;
S
Steven Rostedt 已提交
867

868 869 870
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

871
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
872 873
			break;

874 875
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
876
		/* if the prio of this runqueue changed, try again */
877
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
878 879 880 881 882 883
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
884
			if (unlikely(task_rq(task) != rq ||
885 886
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
887
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
888
				     !task->se.on_rq)) {
889

S
Steven Rostedt 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
913
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
914 915 916 917 918 919
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
920 921 922
	if (!rq->rt.overloaded)
		return 0;

923
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
924 925 926 927
	if (!next_task)
		return 0;

 retry:
928
	if (unlikely(next_task == rq->curr)) {
929
		WARN_ON(1);
S
Steven Rostedt 已提交
930
		return 0;
931
	}
S
Steven Rostedt 已提交
932 933 934 935 936 937

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
938 939
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
940 941 942
		return 0;
	}

943
	/* We might release rq lock */
S
Steven Rostedt 已提交
944 945 946
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
947
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
948 949 950
	if (!lowest_rq) {
		struct task_struct *task;
		/*
951
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
952 953 954
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
955
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
956 957 958 959 960 961 962 963
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

964
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

996 997
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
998 999
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
1000 1001
	struct rq *src_rq;

1002
	if (likely(!rt_overloaded(this_rq)))
1003 1004 1005 1006
		return 0;

	next = pick_next_task_rt(this_rq);

1007
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
1021

1022 1023 1024 1025 1026 1027 1028 1029
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1030 1031
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
M
Mike Galbraith 已提交
1055
				goto skip;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
1067
			 *
1068 1069 1070 1071 1072 1073 1074
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
M
Mike Galbraith 已提交
1075
 skip:
1076 1077 1078 1079 1080 1081
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

1082
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1083 1084
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1085
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1086 1087 1088
		pull_rt_task(rq);
}

1089
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1090 1091 1092 1093 1094 1095 1096 1097
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
1098
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
1099 1100 1101 1102 1103 1104
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

1105 1106 1107 1108
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1109
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1110
{
1111
	if (!task_running(rq, p) &&
1112
	    !test_tsk_need_resched(rq->curr) &&
G
Gregory Haskins 已提交
1113
	    rq->rt.overloaded)
1114 1115 1116
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1117
static unsigned long
I
Ingo Molnar 已提交
1118
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1119 1120 1121
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1122
{
1123 1124
	/* don't touch RT tasks */
	return 0;
1125 1126 1127 1128 1129 1130
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1131 1132
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1133
}
1134

1135 1136
static void set_cpus_allowed_rt(struct task_struct *p,
				const cpumask_t *new_mask)
1137 1138 1139 1140 1141 1142 1143 1144 1145
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1146
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1147 1148
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
1149
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1150
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1151
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1152 1153 1154 1155 1156
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
1157 1158 1159 1160 1161 1162 1163 1164

		if (unlikely(weight == 1 || p->rt.nr_cpus_allowed == 1))
			/*
			 * If either the new or old weight is a "1", we need
			 * to requeue to properly move between shared and
			 * exclusive queues.
			 */
			requeue_task_rt(rq, p);
1165 1166 1167
	}

	p->cpus_allowed    = *new_mask;
P
Peter Zijlstra 已提交
1168
	p->rt.nr_cpus_allowed = weight;
1169
}
1170

1171
/* Assumes rq->lock is held */
1172
static void rq_online_rt(struct rq *rq)
1173 1174 1175
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1176 1177

	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1178 1179 1180
}

/* Assumes rq->lock is held */
1181
static void rq_offline_rt(struct rq *rq)
1182 1183 1184
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1185 1186

	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1187
}
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1254 1255 1256
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1257
		 */
1258
		if (p->prio > rq->rt.highest_prio && rq->curr == p)
1259 1260 1261 1262 1263
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1264
#endif /* CONFIG_SMP */
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1291
		if (p->rt.timeout > next)
1292 1293 1294
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
1295

P
Peter Zijlstra 已提交
1296
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1297
{
1298 1299
	update_curr_rt(rq);

1300 1301
	watchdog(rq, p);

I
Ingo Molnar 已提交
1302 1303 1304 1305 1306 1307 1308
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1309
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1310 1311
		return;

P
Peter Zijlstra 已提交
1312
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1313

1314 1315 1316 1317
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1318
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1319 1320 1321
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1322 1323
}

1324 1325 1326 1327 1328 1329 1330
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1331
static const struct sched_class rt_sched_class = {
1332
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1333 1334 1335
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
1336 1337 1338
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1339 1340 1341 1342 1343 1344

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1345
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1346
	.load_balance		= load_balance_rt,
1347
	.move_one_task		= move_one_task_rt,
1348
	.set_cpus_allowed       = set_cpus_allowed_rt,
1349 1350
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1351 1352 1353
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1354
	.switched_from		= switched_from_rt,
1355
#endif
I
Ingo Molnar 已提交
1356

1357
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1358
	.task_tick		= task_tick_rt,
1359 1360 1361

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1362
};