memcontrol.c 131.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 97
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 104 105 106 107 108 109 110

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

111 112 113 114
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
115 116 117
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
118 119
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
120 121

	struct zone_reclaim_stat reclaim_stat;
122 123 124 125
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
126 127
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
128 129 130 131 132 133 134 135 136 137 138 139
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

160 161 162 163 164
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
165
/* For threshold */
166 167
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
168
	int current_threshold;
169 170 171 172 173
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
174 175 176 177 178 179 180 181 182 183 184 185

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
186 187 188 189 190
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
191 192

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
193
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194

B
Balbir Singh 已提交
195 196 197 198 199 200 201
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 203 204
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
205 206 207 208 209 210 211
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
212 213 214 215
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
216 217 218 219
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
220
	struct mem_cgroup_lru_info info;
221

K
KOSAKI Motohiro 已提交
222 223 224 225 226
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

227
	/*
228
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
229
	 * reclaimed from.
230
	 */
K
KAMEZAWA Hiroyuki 已提交
231
	int last_scanned_child;
232 233 234 235
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
236
	atomic_t	oom_lock;
237
	atomic_t	refcnt;
238

K
KOSAKI Motohiro 已提交
239
	unsigned int	swappiness;
240 241
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
242

243 244 245
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

246 247 248 249
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
250
	struct mem_cgroup_thresholds thresholds;
251

252
	/* thresholds for mem+swap usage. RCU-protected */
253
	struct mem_cgroup_thresholds memsw_thresholds;
254

K
KAMEZAWA Hiroyuki 已提交
255 256 257
	/* For oom notifier event fd */
	struct list_head oom_notify;

258 259 260 261 262
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
263
	/*
264
	 * percpu counter.
265
	 */
266
	struct mem_cgroup_stat_cpu *stat;
267 268 269 270 271 272
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
273 274
};

275 276 277 278 279 280
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
281
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 284 285
	NR_MOVE_TYPE,
};

286 287
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
288
	spinlock_t	  lock; /* for from, to */
289 290 291
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
292
	unsigned long moved_charge;
293
	unsigned long moved_swap;
294 295 296
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
297
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 299
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
300

D
Daisuke Nishimura 已提交
301 302 303 304 305 306
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

307 308 309 310 311 312
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

313 314 315 316 317 318 319
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

320 321 322
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
325
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
326
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 328 329
	NR_CHARGE_TYPE,
};

330 331 332 333
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
334 335
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
336

337 338 339
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
340
#define _OOM_TYPE		(2)
341 342 343
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
344 345
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
346

347 348 349 350 351 352 353
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 355
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356

357 358
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
359
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360
static void drain_all_stock_async(void);
361

362 363 364 365 366 367
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

368 369 370 371 372
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
402
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403
				struct mem_cgroup_per_zone *mz,
404 405
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
406 407 408 409 410 411 412 413
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

414 415 416
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
433 434 435 436 437 438 439 440 441 442 443 444 445
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

446 447 448 449 450 451
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
452
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453 454 455 456 457 458
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
459
	unsigned long long excess;
460 461
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
462 463
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
464 465 466
	mctz = soft_limit_tree_from_page(page);

	/*
467 468
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
469
	 */
470 471
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472
		excess = res_counter_soft_limit_excess(&mem->res);
473 474 475 476
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
477
		if (excess || mz->on_tree) {
478 479 480 481 482
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
483 484
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
485
			 */
486
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 488
			spin_unlock(&mctz->lock);
		}
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

507 508 509 510 511 512 513 514 515
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
516
	struct mem_cgroup_per_zone *mz;
517 518

retry:
519
	mz = NULL;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
568 569 570 571 572 573
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

574 575
	get_online_cpus();
	for_each_online_cpu(cpu)
576
		val += per_cpu(mem->stat->count[idx], cpu);
577 578 579 580 581 582
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
583 584 585 586 587 588 589 590 591 592 593 594
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

595 596 597 598
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
599
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 601
}

602
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603
					 bool file, int nr_pages)
604
{
605 606
	preempt_disable();

607 608
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609
	else
610
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611

612 613
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
614
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615
	else {
616
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617 618
		nr_pages = -nr_pages; /* for event */
	}
619 620

	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
621

622
	preempt_enable();
623 624
}

K
KAMEZAWA Hiroyuki 已提交
625
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626
					enum lru_list idx)
627 628 629 630 631 632 633 634 635 636 637
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
638 639
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

663
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
664 665 666 667 668 669
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

670
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
671
{
672 673 674 675 676 677 678 679
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

680 681 682 683
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

684 685 686
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
687 688 689

	if (!mm)
		return NULL;
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
705 706
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
707
{
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
730 731 732 733 734 735 736 737 738
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
739 740
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
741
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
742

K
KAMEZAWA Hiroyuki 已提交
743
	css_put(&iter->css);
744 745
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
746
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
747

748 749 750
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
751 752
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
753
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
754 755 756

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
757
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
758
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
759
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
760
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
761
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
762
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
763

K
KAMEZAWA Hiroyuki 已提交
764
	return iter;
K
KAMEZAWA Hiroyuki 已提交
765
}
K
KAMEZAWA Hiroyuki 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

779 780 781
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
782

783 784 785 786 787
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
801

K
KAMEZAWA Hiroyuki 已提交
802 803 804 805
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
806

807
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
808 809 810
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
811
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
812
		return;
813
	VM_BUG_ON(!pc->mem_cgroup);
814 815 816 817
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
818
	mz = page_cgroup_zoneinfo(pc);
819 820
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
821 822 823
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
824
	list_del_init(&pc->lru);
825 826
}

K
KAMEZAWA Hiroyuki 已提交
827
void mem_cgroup_del_lru(struct page *page)
828
{
K
KAMEZAWA Hiroyuki 已提交
829 830
	mem_cgroup_del_lru_list(page, page_lru(page));
}
831

K
KAMEZAWA Hiroyuki 已提交
832 833 834 835
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
836

837
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
838
		return;
839

K
KAMEZAWA Hiroyuki 已提交
840
	pc = lookup_page_cgroup(page);
841
	/* unused or root page is not rotated. */
842 843 844 845 846
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
847 848 849
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
850 851
}

K
KAMEZAWA Hiroyuki 已提交
852
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
853
{
K
KAMEZAWA Hiroyuki 已提交
854 855
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
856

857
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
858 859
		return;
	pc = lookup_page_cgroup(page);
860
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
861
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
862
		return;
863 864
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
K
KAMEZAWA Hiroyuki 已提交
865
	mz = page_cgroup_zoneinfo(pc);
866 867
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
868 869 870
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
871 872
	list_add(&pc->lru, &mz->lists[lru]);
}
873

K
KAMEZAWA Hiroyuki 已提交
874
/*
875 876 877 878 879
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
880
 */
881
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
882
{
883 884 885 886 887 888 889 890 891 892 893 894
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
895 896
}

897 898 899 900 901 902 903 904
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
905
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
906 907 908 909 910
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
911 912 913
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
914
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
915 916 917
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
918 919
}

920 921 922
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
923
	struct mem_cgroup *curr = NULL;
924
	struct task_struct *p;
925

926 927 928 929 930
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
931 932
	if (!curr)
		return 0;
933 934 935 936 937 938 939
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
940 941 942 943
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
944 945 946
	return ret;
}

947
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
948 949 950
{
	unsigned long active;
	unsigned long inactive;
951 952
	unsigned long gb;
	unsigned long inactive_ratio;
953

K
KAMEZAWA Hiroyuki 已提交
954 955
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
984 985 986 987 988
		return 1;

	return 0;
}

989 990 991 992 993 994 995 996 997 998 999
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1000 1001 1002 1003
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1004
	int nid = zone_to_nid(zone);
1005 1006 1007 1008 1009 1010
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1011 1012 1013
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1014
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1031 1032
	if (!PageCgroupUsed(pc))
		return NULL;
1033 1034
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
K
KOSAKI Motohiro 已提交
1035 1036 1037 1038 1039 1040 1041
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1042 1043 1044 1045 1046
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1047
					int active, int file)
1048 1049 1050 1051 1052 1053
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1054
	struct page_cgroup *pc, *tmp;
1055
	int nid = zone_to_nid(z);
1056 1057
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1058
	int lru = LRU_FILE * file + active;
1059
	int ret;
1060

1061
	BUG_ON(!mem_cont);
1062
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1063
	src = &mz->lists[lru];
1064

1065 1066
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1067
		if (scan >= nr_to_scan)
1068
			break;
K
KAMEZAWA Hiroyuki 已提交
1069 1070

		page = pc->page;
1071 1072
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1073
		if (unlikely(!PageLRU(page)))
1074 1075
			continue;

H
Hugh Dickins 已提交
1076
		scan++;
1077 1078 1079
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1080
			list_move(&page->lru, dst);
1081
			mem_cgroup_del_lru(page);
1082
			nr_taken += hpage_nr_pages(page);
1083 1084 1085 1086 1087 1088 1089
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1090 1091 1092 1093
		}
	}

	*scanned = scan;
1094 1095 1096 1097

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1098 1099 1100
	return nr_taken;
}

1101 1102 1103
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_check_margin - check if the memory cgroup allows charging
 * @mem: memory cgroup to check
 * @bytes: the number of bytes the caller intends to charge
 *
 * Returns a boolean value on whether @mem can be charged @bytes or
 * whether this would exceed the limit.
 */
static bool mem_cgroup_check_margin(struct mem_cgroup *mem, unsigned long bytes)
{
	if (!res_counter_check_margin(&mem->res, bytes))
		return false;
	if (do_swap_account && !res_counter_check_margin(&mem->memsw, bytes))
		return false;
	return true;
}

K
KOSAKI Motohiro 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1149 1150 1151
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1152 1153 1154 1155

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1156
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1157 1158 1159
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1170 1171 1172
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1173
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1174 1175 1176
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1195 1196 1197

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1198 1199
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1200
	bool ret = false;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1235
/**
1236
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1255
	if (!memcg || !p)
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1302 1303 1304 1305 1306 1307 1308
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1309 1310 1311 1312
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1313 1314 1315
	return num;
}

D
David Rientjes 已提交
1316 1317 1318 1319 1320 1321 1322 1323
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1324 1325 1326
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1327 1328 1329 1330 1331 1332 1333 1334
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1335
/*
K
KAMEZAWA Hiroyuki 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1378 1379
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1380 1381 1382
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1383 1384
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1385 1386
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1387
						struct zone *zone,
1388 1389
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1390
{
K
KAMEZAWA Hiroyuki 已提交
1391 1392 1393
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1394 1395
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1396 1397
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1398

1399 1400 1401 1402
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1403
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1404
		victim = mem_cgroup_select_victim(root_mem);
1405
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1406
			loop++;
1407 1408
			if (loop >= 1)
				drain_all_stock_async();
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1432
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1433 1434
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1435 1436
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1437
		/* we use swappiness of local cgroup */
1438 1439
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1440
				noswap, get_swappiness(victim), zone);
1441 1442 1443
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1444
		css_put(&victim->css);
1445 1446 1447 1448 1449 1450 1451
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1452
		total += ret;
1453 1454 1455 1456
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1457
			return 1 + total;
1458
	}
K
KAMEZAWA Hiroyuki 已提交
1459
	return total;
1460 1461
}

K
KAMEZAWA Hiroyuki 已提交
1462 1463 1464 1465 1466 1467
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1468 1469
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1470

K
KAMEZAWA Hiroyuki 已提交
1471 1472 1473 1474
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1475 1476 1477 1478

	if (lock_count == 1)
		return true;
	return false;
1479
}
1480

K
KAMEZAWA Hiroyuki 已提交
1481
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1482
{
K
KAMEZAWA Hiroyuki 已提交
1483 1484
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1485 1486 1487 1488 1489
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1490 1491
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1492 1493 1494
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1495 1496 1497 1498

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1535 1536
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1537
	if (mem && atomic_read(&mem->oom_lock))
1538 1539 1540
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1541 1542 1543 1544
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1545
{
K
KAMEZAWA Hiroyuki 已提交
1546
	struct oom_wait_info owait;
1547
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1548

K
KAMEZAWA Hiroyuki 已提交
1549 1550 1551 1552 1553
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1554
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1555 1556 1557 1558 1559 1560 1561 1562
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1563 1564 1565 1566
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1567
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1568 1569
	mutex_unlock(&memcg_oom_mutex);

1570 1571
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1572
		mem_cgroup_out_of_memory(mem, mask);
1573
	} else {
K
KAMEZAWA Hiroyuki 已提交
1574
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1575
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1576 1577 1578
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1579
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1580 1581 1582 1583 1584 1585 1586
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1587 1588
}

1589 1590 1591
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1611
 */
1612

1613 1614
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1615 1616
{
	struct mem_cgroup *mem;
1617 1618
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1619
	unsigned long uninitialized_var(flags);
1620 1621 1622 1623

	if (unlikely(!pc))
		return;

1624
	rcu_read_lock();
1625
	mem = pc->mem_cgroup;
1626 1627 1628
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1629
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1630
		/* take a lock against to access pc->mem_cgroup */
1631
		move_lock_page_cgroup(pc, &flags);
1632 1633 1634 1635 1636
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1637 1638

	switch (idx) {
1639
	case MEMCG_NR_FILE_MAPPED:
1640 1641 1642
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1643
			ClearPageCgroupFileMapped(pc);
1644
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1645 1646 1647
		break;
	default:
		BUG();
1648
	}
1649

1650 1651
	this_cpu_add(mem->stat->count[idx], val);

1652 1653
out:
	if (unlikely(need_unlock))
1654
		move_unlock_page_cgroup(pc, &flags);
1655 1656
	rcu_read_unlock();
	return;
1657
}
1658
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1659

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1721
 * This will be consumed by consume_stock() function, later.
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1799 1800 1801 1802
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1803 1804 1805 1806 1807
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1808
	struct mem_cgroup *iter;
1809

1810 1811 1812 1813 1814 1815
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1816
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1817
		return NOTIFY_OK;
1818 1819 1820 1821

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1822 1823 1824 1825 1826
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

1854
		res_counter_uncharge(&mem->res, csize);
1855 1856 1857 1858
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1859 1860 1861 1862 1863 1864 1865 1866 1867
	/*
	 * csize can be either a huge page (HPAGE_SIZE), a batch of
	 * regular pages (CHARGE_SIZE), or a single regular page
	 * (PAGE_SIZE).
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
	if (csize == CHARGE_SIZE)
1868 1869 1870 1871 1872 1873
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1874 1875 1876
					      gfp_mask, flags);
	if (mem_cgroup_check_margin(mem_over_limit, csize))
		return CHARGE_RETRY;
1877
	/*
1878 1879 1880 1881 1882 1883 1884
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
1885
	 */
1886
	if (csize == PAGE_SIZE && ret)
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1906 1907 1908
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1909
 */
1910
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
1911 1912 1913
				   gfp_t gfp_mask,
				   struct mem_cgroup **memcg, bool oom,
				   int page_size)
1914
{
1915 1916 1917
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
A
Andrea Arcangeli 已提交
1918
	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1919

K
KAMEZAWA Hiroyuki 已提交
1920 1921 1922 1923 1924 1925 1926 1927
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1928

1929
	/*
1930 1931
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1932 1933 1934
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1935 1936 1937 1938
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1939
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1940 1941 1942
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
A
Andrea Arcangeli 已提交
1943
		if (page_size == PAGE_SIZE && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
1944
			goto done;
1945 1946
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1947
		struct task_struct *p;
1948

K
KAMEZAWA Hiroyuki 已提交
1949 1950 1951
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
1952 1953 1954 1955 1956 1957 1958 1959
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
1960 1961
		 */
		mem = mem_cgroup_from_task(p);
1962
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1963 1964 1965
			rcu_read_unlock();
			goto done;
		}
A
Andrea Arcangeli 已提交
1966
		if (page_size == PAGE_SIZE && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1985

1986 1987
	do {
		bool oom_check;
1988

1989
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1990 1991
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1992
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1993
		}
1994

1995 1996 1997 1998
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1999
		}
2000

2001
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2002

2003 2004 2005 2006
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
A
Andrea Arcangeli 已提交
2007
			csize = page_size;
K
KAMEZAWA Hiroyuki 已提交
2008 2009 2010
			css_put(&mem->css);
			mem = NULL;
			goto again;
2011
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2012
			css_put(&mem->css);
2013 2014
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2015 2016
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2017
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2018
			}
2019 2020 2021 2022
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2023
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2024
			goto bypass;
2025
		}
2026 2027
	} while (ret != CHARGE_OK);

A
Andrea Arcangeli 已提交
2028 2029
	if (csize > page_size)
		refill_stock(mem, csize - page_size);
K
KAMEZAWA Hiroyuki 已提交
2030
	css_put(&mem->css);
2031
done:
K
KAMEZAWA Hiroyuki 已提交
2032
	*memcg = mem;
2033 2034
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2035
	*memcg = NULL;
2036
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2037 2038 2039
bypass:
	*memcg = NULL;
	return 0;
2040
}
2041

2042 2043 2044 2045 2046
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2047 2048
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2049 2050
{
	if (!mem_cgroup_is_root(mem)) {
2051
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2052
		if (do_swap_account)
2053
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2054
	}
2055 2056
}

A
Andrea Arcangeli 已提交
2057 2058
static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
				     int page_size)
2059
{
A
Andrea Arcangeli 已提交
2060
	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2061 2062
}

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2082
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2083
{
2084
	struct mem_cgroup *mem = NULL;
2085
	struct page_cgroup *pc;
2086
	unsigned short id;
2087 2088
	swp_entry_t ent;

2089 2090 2091
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2092
	lock_page_cgroup(pc);
2093
	if (PageCgroupUsed(pc)) {
2094
		mem = pc->mem_cgroup;
2095 2096
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2097
	} else if (PageSwapCache(page)) {
2098
		ent.val = page_private(page);
2099 2100 2101 2102 2103 2104
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2105
	}
2106
	unlock_page_cgroup(pc);
2107 2108 2109
	return mem;
}

2110 2111 2112 2113
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				       struct page_cgroup *pc,
				       enum charge_type ctype,
				       int page_size)
2114
{
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	int nr_pages = page_size >> PAGE_SHIFT;

	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		mem_cgroup_cancel_charge(mem, page_size);
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2131
	pc->mem_cgroup = mem;
2132 2133 2134 2135 2136 2137 2138
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2139
	smp_wmb();
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2153

2154
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2155
	unlock_page_cgroup(pc);
2156 2157 2158 2159 2160
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2161
	memcg_check_events(mem, pc->page);
2162
}
2163

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2178 2179
	if (mem_cgroup_disabled())
		return;
2180
	/*
2181
	 * We have no races with charge/uncharge but will have races with
2182 2183 2184 2185 2186 2187
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
		mz = page_cgroup_zoneinfo(head_pc);
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2201 2202 2203 2204 2205
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2206
/**
2207
 * __mem_cgroup_move_account - move account of the page
2208 2209 2210
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2211
 * @uncharge: whether we should call uncharge and css_put against @from.
2212 2213
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2214
 * - page is not on LRU (isolate_page() is useful.)
2215
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2216
 *
2217 2218 2219 2220
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2221 2222
 */

2223
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2224 2225
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
	int charge_size)
2226
{
2227 2228
	int nr_pages = charge_size >> PAGE_SHIFT;

2229
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2230
	VM_BUG_ON(PageLRU(pc->page));
2231
	VM_BUG_ON(!page_is_cgroup_locked(pc));
2232 2233
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2234

2235
	if (PageCgroupFileMapped(pc)) {
2236 2237 2238 2239 2240
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2241
	}
2242
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2243 2244
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2245
		mem_cgroup_cancel_charge(from, charge_size);
2246

2247
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2248
	pc->mem_cgroup = to;
2249
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2250 2251 2252
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2253 2254 2255
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2256
	 */
2257 2258 2259 2260 2261 2262 2263
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2264 2265
		struct mem_cgroup *from, struct mem_cgroup *to,
		bool uncharge, int charge_size)
2266 2267
{
	int ret = -EINVAL;
2268
	unsigned long flags;
2269 2270 2271 2272 2273 2274
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
2275 2276 2277
	if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
		return -EBUSY;

2278 2279
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2280
		move_lock_page_cgroup(pc, &flags);
2281
		__mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2282
		move_unlock_page_cgroup(pc, &flags);
2283 2284 2285
		ret = 0;
	}
	unlock_page_cgroup(pc);
2286 2287 2288 2289 2290
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2302
	struct page *page = pc->page;
2303 2304 2305
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2306
	int page_size = PAGE_SIZE;
2307
	unsigned long flags;
2308 2309 2310 2311 2312 2313
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2314 2315 2316 2317 2318
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2319 2320 2321

	if (PageTransHuge(page))
		page_size = HPAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2322

2323
	parent = mem_cgroup_from_cont(pcg);
2324 2325
	ret = __mem_cgroup_try_charge(NULL, gfp_mask,
				&parent, false, page_size);
2326
	if (ret || !parent)
2327
		goto put_back;
2328

2329
	if (page_size > PAGE_SIZE)
2330 2331
		flags = compound_lock_irqsave(page);

2332
	ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2333
	if (ret)
2334
		mem_cgroup_cancel_charge(parent, page_size);
2335

2336
	if (page_size > PAGE_SIZE)
2337
		compound_unlock_irqrestore(page, flags);
2338
put_back:
K
KAMEZAWA Hiroyuki 已提交
2339
	putback_lru_page(page);
2340
put:
2341
	put_page(page);
2342
out:
2343 2344 2345
	return ret;
}

2346 2347 2348 2349 2350 2351 2352
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2353
				gfp_t gfp_mask, enum charge_type ctype)
2354
{
2355
	struct mem_cgroup *mem = NULL;
2356
	int page_size = PAGE_SIZE;
2357
	struct page_cgroup *pc;
2358
	bool oom = true;
2359
	int ret;
A
Andrea Arcangeli 已提交
2360

A
Andrea Arcangeli 已提交
2361
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2362
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2363
		VM_BUG_ON(!PageTransHuge(page));
2364 2365 2366 2367 2368
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2369
	}
2370 2371 2372 2373 2374 2375 2376

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

2377
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2378
	if (ret || !mem)
2379 2380
		return ret;

A
Andrea Arcangeli 已提交
2381
	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2382 2383 2384
	return 0;
}

2385 2386
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2387
{
2388
	if (mem_cgroup_disabled())
2389
		return 0;
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2401
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2402
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2403 2404
}

D
Daisuke Nishimura 已提交
2405 2406 2407 2408
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2409 2410
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2411
{
2412 2413
	int ret;

2414
	if (mem_cgroup_disabled())
2415
		return 0;
2416 2417
	if (PageCompound(page))
		return 0;
2418 2419 2420 2421 2422 2423 2424 2425
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2426 2427
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2428 2429 2430 2431
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2432 2433 2434 2435 2436 2437
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2438 2439
			return 0;
		}
2440
		unlock_page_cgroup(pc);
2441 2442
	}

2443
	if (unlikely(!mm))
2444
		mm = &init_mm;
2445

2446 2447
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2448
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2449

D
Daisuke Nishimura 已提交
2450 2451
	/* shmem */
	if (PageSwapCache(page)) {
2452 2453
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2454 2455 2456 2457 2458 2459
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2460
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2461 2462

	return ret;
2463 2464
}

2465 2466 2467
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2468
 * struct page_cgroup is acquired. This refcnt will be consumed by
2469 2470
 * "commit()" or removed by "cancel()"
 */
2471 2472 2473 2474 2475
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2476
	int ret;
2477

2478
	if (mem_cgroup_disabled())
2479 2480 2481 2482 2483 2484
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2485 2486 2487
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2488 2489
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2490
		goto charge_cur_mm;
2491
	mem = try_get_mem_cgroup_from_page(page);
2492 2493
	if (!mem)
		goto charge_cur_mm;
2494
	*ptr = mem;
A
Andrea Arcangeli 已提交
2495
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2496 2497
	css_put(&mem->css);
	return ret;
2498 2499 2500
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
A
Andrea Arcangeli 已提交
2501
	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2502 2503
}

D
Daisuke Nishimura 已提交
2504 2505 2506
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2507 2508 2509
{
	struct page_cgroup *pc;

2510
	if (mem_cgroup_disabled())
2511 2512 2513
		return;
	if (!ptr)
		return;
2514
	cgroup_exclude_rmdir(&ptr->css);
2515
	pc = lookup_page_cgroup(page);
2516
	mem_cgroup_lru_del_before_commit_swapcache(page);
A
Andrea Arcangeli 已提交
2517
	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2518
	mem_cgroup_lru_add_after_commit_swapcache(page);
2519 2520 2521
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2522 2523 2524
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2525
	 */
2526
	if (do_swap_account && PageSwapCache(page)) {
2527
		swp_entry_t ent = {.val = page_private(page)};
2528
		unsigned short id;
2529
		struct mem_cgroup *memcg;
2530 2531 2532 2533

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2534
		if (memcg) {
2535 2536 2537 2538
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2539
			if (!mem_cgroup_is_root(memcg))
2540
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2541
			mem_cgroup_swap_statistics(memcg, false);
2542 2543
			mem_cgroup_put(memcg);
		}
2544
		rcu_read_unlock();
2545
	}
2546 2547 2548 2549 2550 2551
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2552 2553
}

D
Daisuke Nishimura 已提交
2554 2555 2556 2557 2558 2559
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2560 2561
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2562
	if (mem_cgroup_disabled())
2563 2564 2565
		return;
	if (!mem)
		return;
A
Andrea Arcangeli 已提交
2566
	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2567 2568
}

2569
static void
A
Andrea Arcangeli 已提交
2570 2571
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
	      int page_size)
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

A
Andrea Arcangeli 已提交
2598 2599 2600
	if (page_size != PAGE_SIZE)
		goto direct_uncharge;

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
A
Andrea Arcangeli 已提交
2614
	res_counter_uncharge(&mem->res, page_size);
2615
	if (uncharge_memsw)
A
Andrea Arcangeli 已提交
2616
		res_counter_uncharge(&mem->memsw, page_size);
2617 2618
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2619 2620
	return;
}
2621

2622
/*
2623
 * uncharge if !page_mapped(page)
2624
 */
2625
static struct mem_cgroup *
2626
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2627
{
2628
	int count;
H
Hugh Dickins 已提交
2629
	struct page_cgroup *pc;
2630
	struct mem_cgroup *mem = NULL;
A
Andrea Arcangeli 已提交
2631
	int page_size = PAGE_SIZE;
2632

2633
	if (mem_cgroup_disabled())
2634
		return NULL;
2635

K
KAMEZAWA Hiroyuki 已提交
2636
	if (PageSwapCache(page))
2637
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2638

A
Andrea Arcangeli 已提交
2639
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2640
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2641 2642
		VM_BUG_ON(!PageTransHuge(page));
	}
A
Andrea Arcangeli 已提交
2643

2644
	count = page_size >> PAGE_SHIFT;
2645
	/*
2646
	 * Check if our page_cgroup is valid
2647
	 */
2648 2649
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2650
		return NULL;
2651

2652
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2653

2654 2655
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2656 2657 2658 2659 2660
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2661
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2662 2663
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2675
	}
K
KAMEZAWA Hiroyuki 已提交
2676

2677
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
K
KAMEZAWA Hiroyuki 已提交
2678

2679
	ClearPageCgroupUsed(pc);
2680 2681 2682 2683 2684 2685
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2686

2687
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2688 2689 2690 2691
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2692
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2693 2694 2695 2696 2697
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
A
Andrea Arcangeli 已提交
2698
		__do_uncharge(mem, ctype, page_size);
2699

2700
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2701 2702 2703

unlock_out:
	unlock_page_cgroup(pc);
2704
	return NULL;
2705 2706
}

2707 2708
void mem_cgroup_uncharge_page(struct page *page)
{
2709 2710 2711 2712 2713
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2714 2715 2716 2717 2718 2719
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2720
	VM_BUG_ON(page->mapping);
2721 2722 2723
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2764
	memcg_oom_recover(batch->memcg);
2765 2766 2767 2768
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2769
#ifdef CONFIG_SWAP
2770
/*
2771
 * called after __delete_from_swap_cache() and drop "page" account.
2772 2773
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2774 2775
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2776 2777
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2778 2779 2780 2781 2782 2783
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2784

K
KAMEZAWA Hiroyuki 已提交
2785 2786 2787 2788 2789
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2790
		swap_cgroup_record(ent, css_id(&memcg->css));
2791
}
2792
#endif
2793 2794 2795 2796 2797 2798 2799

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2800
{
2801
	struct mem_cgroup *memcg;
2802
	unsigned short id;
2803 2804 2805 2806

	if (!do_swap_account)
		return;

2807 2808 2809
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2810
	if (memcg) {
2811 2812 2813 2814
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2815
		if (!mem_cgroup_is_root(memcg))
2816
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2817
		mem_cgroup_swap_statistics(memcg, false);
2818 2819
		mem_cgroup_put(memcg);
	}
2820
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2821
}
2822 2823 2824 2825 2826 2827

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2828
 * @need_fixup: whether we should fixup res_counters and refcounts.
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2839
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2840 2841 2842 2843 2844 2845 2846 2847
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2848
		mem_cgroup_swap_statistics(to, true);
2849
		/*
2850 2851 2852 2853 2854 2855
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2856 2857
		 */
		mem_cgroup_get(to);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2869 2870 2871 2872 2873 2874
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2875
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2876 2877 2878
{
	return -EINVAL;
}
2879
#endif
K
KAMEZAWA Hiroyuki 已提交
2880

2881
/*
2882 2883
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2884
 */
2885
int mem_cgroup_prepare_migration(struct page *page,
2886
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2887 2888
{
	struct page_cgroup *pc;
2889
	struct mem_cgroup *mem = NULL;
2890
	enum charge_type ctype;
2891
	int ret = 0;
2892

A
Andrea Arcangeli 已提交
2893
	VM_BUG_ON(PageTransHuge(page));
2894
	if (mem_cgroup_disabled())
2895 2896
		return 0;

2897 2898 2899
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2900 2901
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2933
	}
2934
	unlock_page_cgroup(pc);
2935 2936 2937 2938 2939 2940
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2941

A
Andrea Arcangeli 已提交
2942
	*ptr = mem;
2943
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2956
	}
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
A
Andrea Arcangeli 已提交
2970
	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2971
	return ret;
2972
}
2973

2974
/* remove redundant charge if migration failed*/
2975
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2976
	struct page *oldpage, struct page *newpage, bool migration_ok)
2977
{
2978
	struct page *used, *unused;
2979 2980 2981 2982
	struct page_cgroup *pc;

	if (!mem)
		return;
2983
	/* blocks rmdir() */
2984
	cgroup_exclude_rmdir(&mem->css);
2985
	if (!migration_ok) {
2986 2987
		used = oldpage;
		unused = newpage;
2988
	} else {
2989
		used = newpage;
2990 2991
		unused = oldpage;
	}
2992
	/*
2993 2994 2995
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2996
	 */
2997 2998 2999 3000
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3001

3002 3003
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3004
	/*
3005 3006 3007 3008 3009 3010
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3011
	 */
3012 3013
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3014
	/*
3015 3016
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3017 3018 3019 3020
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3021
}
3022

3023
/*
3024 3025 3026 3027 3028 3029
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3030
 */
3031
int mem_cgroup_shmem_charge_fallback(struct page *page,
3032 3033
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3034
{
3035
	struct mem_cgroup *mem = NULL;
3036
	int ret;
3037

3038
	if (mem_cgroup_disabled())
3039
		return 0;
3040

3041 3042 3043
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3044

3045
	return ret;
3046 3047
}

3048 3049
static DEFINE_MUTEX(set_limit_mutex);

3050
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3051
				unsigned long long val)
3052
{
3053
	int retry_count;
3054
	u64 memswlimit, memlimit;
3055
	int ret = 0;
3056 3057
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3058
	int enlarge;
3059 3060 3061 3062 3063 3064 3065 3066 3067

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3068

3069
	enlarge = 0;
3070
	while (retry_count) {
3071 3072 3073 3074
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3085 3086
			break;
		}
3087 3088 3089 3090 3091

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3092
		ret = res_counter_set_limit(&memcg->res, val);
3093 3094 3095 3096 3097 3098
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3099 3100 3101 3102 3103
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3104
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3105
						MEM_CGROUP_RECLAIM_SHRINK);
3106 3107 3108 3109 3110 3111
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3112
	}
3113 3114
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3115

3116 3117 3118
	return ret;
}

L
Li Zefan 已提交
3119 3120
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3121
{
3122
	int retry_count;
3123
	u64 memlimit, memswlimit, oldusage, curusage;
3124 3125
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3126
	int enlarge = 0;
3127

3128 3129 3130
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3148 3149 3150
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3151
		ret = res_counter_set_limit(&memcg->memsw, val);
3152 3153 3154 3155 3156 3157
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3158 3159 3160 3161 3162
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3163
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3164 3165
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3166
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3167
		/* Usage is reduced ? */
3168
		if (curusage >= oldusage)
3169
			retry_count--;
3170 3171
		else
			oldusage = curusage;
3172
	}
3173 3174
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3175 3176 3177
	return ret;
}

3178
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3179
					    gfp_t gfp_mask)
3180 3181 3182 3183 3184 3185
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3186
	unsigned long long excess;
3187 3188 3189 3190

	if (order > 0)
		return 0;

3191
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3239
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3240 3241 3242 3243 3244 3245 3246 3247
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3248 3249
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3268 3269 3270 3271
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3272
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3273
				int node, int zid, enum lru_list lru)
3274
{
K
KAMEZAWA Hiroyuki 已提交
3275 3276
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3277
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3278
	unsigned long flags, loop;
3279
	struct list_head *list;
3280
	int ret = 0;
3281

K
KAMEZAWA Hiroyuki 已提交
3282 3283
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3284
	list = &mz->lists[lru];
3285

3286 3287 3288 3289 3290 3291
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3292
		spin_lock_irqsave(&zone->lru_lock, flags);
3293
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3294
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3295
			break;
3296 3297 3298 3299
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3300
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3301
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3302 3303
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3304
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3305

K
KAMEZAWA Hiroyuki 已提交
3306
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3307
		if (ret == -ENOMEM)
3308
			break;
3309 3310 3311 3312 3313 3314 3315

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3316
	}
K
KAMEZAWA Hiroyuki 已提交
3317

3318 3319 3320
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3321 3322 3323 3324 3325 3326
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3327
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3328
{
3329 3330 3331
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3332
	struct cgroup *cgrp = mem->css.cgroup;
3333

3334
	css_get(&mem->css);
3335 3336

	shrink = 0;
3337 3338 3339
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3340
move_account:
3341
	do {
3342
		ret = -EBUSY;
3343 3344 3345 3346
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3347
			goto out;
3348 3349
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3350
		drain_all_stock_sync();
3351
		ret = 0;
3352
		mem_cgroup_start_move(mem);
3353
		for_each_node_state(node, N_HIGH_MEMORY) {
3354
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3355
				enum lru_list l;
3356 3357
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3358
							node, zid, l);
3359 3360 3361
					if (ret)
						break;
				}
3362
			}
3363 3364 3365
			if (ret)
				break;
		}
3366
		mem_cgroup_end_move(mem);
3367
		memcg_oom_recover(mem);
3368 3369 3370
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3371
		cond_resched();
3372 3373
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3374 3375 3376
out:
	css_put(&mem->css);
	return ret;
3377 3378

try_to_free:
3379 3380
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3381 3382 3383
		ret = -EBUSY;
		goto out;
	}
3384 3385
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3386 3387 3388 3389
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3390 3391 3392 3393 3394

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3395 3396
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3397
		if (!progress) {
3398
			nr_retries--;
3399
			/* maybe some writeback is necessary */
3400
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3401
		}
3402 3403

	}
K
KAMEZAWA Hiroyuki 已提交
3404
	lru_add_drain();
3405
	/* try move_account...there may be some *locked* pages. */
3406
	goto move_account;
3407 3408
}

3409 3410 3411 3412 3413 3414
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3433
	 * If parent's use_hierarchy is set, we can't make any modifications
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3453

K
KAMEZAWA Hiroyuki 已提交
3454 3455
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3456
{
K
KAMEZAWA Hiroyuki 已提交
3457 3458
	struct mem_cgroup *iter;
	s64 val = 0;
3459

K
KAMEZAWA Hiroyuki 已提交
3460 3461 3462 3463 3464 3465 3466
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3467 3468
}

3469 3470
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3471
	u64 val;
3472 3473 3474 3475 3476 3477 3478 3479

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3480 3481
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3482

K
KAMEZAWA Hiroyuki 已提交
3483 3484 3485
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3486 3487 3488 3489

	return val << PAGE_SHIFT;
}

3490
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3491
{
3492
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3493
	u64 val;
3494 3495 3496 3497 3498 3499
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3500 3501 3502
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3503
			val = res_counter_read_u64(&mem->res, name);
3504 3505
		break;
	case _MEMSWAP:
3506 3507 3508
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3509
			val = res_counter_read_u64(&mem->memsw, name);
3510 3511 3512 3513 3514 3515
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3516
}
3517 3518 3519 3520
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3521 3522
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3523
{
3524
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3525
	int type, name;
3526 3527 3528
	unsigned long long val;
	int ret;

3529 3530 3531
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3532
	case RES_LIMIT:
3533 3534 3535 3536
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3537 3538
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3539 3540 3541
		if (ret)
			break;
		if (type == _MEM)
3542
			ret = mem_cgroup_resize_limit(memcg, val);
3543 3544
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3545
		break;
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3560 3561 3562 3563 3564
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3565 3566
}

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3595
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3596 3597
{
	struct mem_cgroup *mem;
3598
	int type, name;
3599 3600

	mem = mem_cgroup_from_cont(cont);
3601 3602 3603
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3604
	case RES_MAX_USAGE:
3605 3606 3607 3608
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3609 3610
		break;
	case RES_FAILCNT:
3611 3612 3613 3614
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3615 3616
		break;
	}
3617

3618
	return 0;
3619 3620
}

3621 3622 3623 3624 3625 3626
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3627
#ifdef CONFIG_MMU
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3646 3647 3648 3649 3650 3651 3652
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3653

K
KAMEZAWA Hiroyuki 已提交
3654 3655 3656 3657 3658

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3659
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3660 3661
	MCS_PGPGIN,
	MCS_PGPGOUT,
3662
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3673 3674
};

K
KAMEZAWA Hiroyuki 已提交
3675 3676 3677 3678 3679 3680
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3681
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3682 3683
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3684
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3685 3686 3687 3688 3689 3690 3691 3692
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3693 3694
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3695 3696 3697 3698
{
	s64 val;

	/* per cpu stat */
3699
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3700
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3701
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3702
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3703
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3704
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3705
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3706
	s->stat[MCS_PGPGIN] += val;
3707
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3708
	s->stat[MCS_PGPGOUT] += val;
3709
	if (do_swap_account) {
3710
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3711 3712
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3730 3731 3732 3733
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3734 3735
}

3736 3737
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3738 3739
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3740
	struct mcs_total_stat mystat;
3741 3742
	int i;

K
KAMEZAWA Hiroyuki 已提交
3743 3744
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3745

3746 3747 3748
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3749
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3750
	}
L
Lee Schermerhorn 已提交
3751

K
KAMEZAWA Hiroyuki 已提交
3752
	/* Hierarchical information */
3753 3754 3755 3756 3757 3758 3759
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3760

K
KAMEZAWA Hiroyuki 已提交
3761 3762
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3763 3764 3765
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3766
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3767
	}
K
KAMEZAWA Hiroyuki 已提交
3768

K
KOSAKI Motohiro 已提交
3769
#ifdef CONFIG_DEBUG_VM
3770
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3798 3799 3800
	return 0;
}

K
KOSAKI Motohiro 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3813

K
KOSAKI Motohiro 已提交
3814 3815 3816 3817 3818 3819 3820
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3821 3822 3823

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3824 3825
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3826 3827
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3828
		return -EINVAL;
3829
	}
K
KOSAKI Motohiro 已提交
3830 3831 3832 3833 3834

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3835 3836
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3837 3838 3839
	return 0;
}

3840 3841 3842 3843 3844 3845 3846 3847
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3848
		t = rcu_dereference(memcg->thresholds.primary);
3849
	else
3850
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3862
	i = t->current_threshold;
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3886
	t->current_threshold = i - 1;
3887 3888 3889 3890 3891 3892
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3893 3894 3895 3896 3897 3898 3899
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3910
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3921 3922 3923 3924
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3925 3926 3927 3928
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3929 3930
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3931 3932
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3933 3934
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3935
	int i, size, ret;
3936 3937 3938 3939 3940 3941

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3942

3943
	if (type == _MEM)
3944
		thresholds = &memcg->thresholds;
3945
	else if (type == _MEMSWAP)
3946
		thresholds = &memcg->memsw_thresholds;
3947 3948 3949 3950 3951 3952
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3953
	if (thresholds->primary)
3954 3955
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3956
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3957 3958

	/* Allocate memory for new array of thresholds */
3959
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3960
			GFP_KERNEL);
3961
	if (!new) {
3962 3963 3964
		ret = -ENOMEM;
		goto unlock;
	}
3965
	new->size = size;
3966 3967

	/* Copy thresholds (if any) to new array */
3968 3969
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3970
				sizeof(struct mem_cgroup_threshold));
3971 3972
	}

3973
	/* Add new threshold */
3974 3975
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3976 3977

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3978
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3979 3980 3981
			compare_thresholds, NULL);

	/* Find current threshold */
3982
	new->current_threshold = -1;
3983
	for (i = 0; i < size; i++) {
3984
		if (new->entries[i].threshold < usage) {
3985
			/*
3986 3987
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3988 3989
			 * it here.
			 */
3990
			++new->current_threshold;
3991 3992 3993
		}
	}

3994 3995 3996 3997 3998
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3999

4000
	/* To be sure that nobody uses thresholds */
4001 4002 4003 4004 4005 4006 4007 4008
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4009
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4010
	struct cftype *cft, struct eventfd_ctx *eventfd)
4011 4012
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4013 4014
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4015 4016
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4017
	int i, j, size;
4018 4019 4020

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4021
		thresholds = &memcg->thresholds;
4022
	else if (type == _MEMSWAP)
4023
		thresholds = &memcg->memsw_thresholds;
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4039 4040 4041
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4042 4043 4044
			size++;
	}

4045
	new = thresholds->spare;
4046

4047 4048
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4049 4050
		kfree(new);
		new = NULL;
4051
		goto swap_buffers;
4052 4053
	}

4054
	new->size = size;
4055 4056

	/* Copy thresholds and find current threshold */
4057 4058 4059
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4060 4061
			continue;

4062 4063
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4064
			/*
4065
			 * new->current_threshold will not be used
4066 4067 4068
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4069
			++new->current_threshold;
4070 4071 4072 4073
		}
		j++;
	}

4074
swap_buffers:
4075 4076 4077
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4078

4079
	/* To be sure that nobody uses thresholds */
4080 4081 4082 4083
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4084

K
KAMEZAWA Hiroyuki 已提交
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4110
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4165 4166
	if (!val)
		memcg_oom_recover(mem);
4167 4168 4169 4170
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4171 4172
static struct cftype mem_cgroup_files[] = {
	{
4173
		.name = "usage_in_bytes",
4174
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4175
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4176 4177
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4178
	},
4179 4180
	{
		.name = "max_usage_in_bytes",
4181
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4182
		.trigger = mem_cgroup_reset,
4183 4184
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4185
	{
4186
		.name = "limit_in_bytes",
4187
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4188
		.write_string = mem_cgroup_write,
4189
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4190
	},
4191 4192 4193 4194 4195 4196
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4197 4198
	{
		.name = "failcnt",
4199
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4200
		.trigger = mem_cgroup_reset,
4201
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4202
	},
4203 4204
	{
		.name = "stat",
4205
		.read_map = mem_control_stat_show,
4206
	},
4207 4208 4209 4210
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4211 4212 4213 4214 4215
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4216 4217 4218 4219 4220
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4221 4222 4223 4224 4225
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4226 4227
	{
		.name = "oom_control",
4228 4229
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4230 4231 4232 4233
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4234 4235
};

4236 4237 4238 4239 4240 4241
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4242 4243
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4279 4280 4281
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4282
	struct mem_cgroup_per_zone *mz;
4283
	enum lru_list l;
4284
	int zone, tmp = node;
4285 4286 4287 4288 4289 4290 4291 4292
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4293 4294
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4295
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4296 4297
	if (!pn)
		return 1;
4298

4299
	mem->info.nodeinfo[node] = pn;
4300 4301
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4302 4303
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4304
		mz->usage_in_excess = 0;
4305 4306
		mz->on_tree = false;
		mz->mem = mem;
4307
	}
4308 4309 4310
	return 0;
}

4311 4312 4313 4314 4315
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4316 4317 4318
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4319
	int size = sizeof(struct mem_cgroup);
4320

4321
	/* Can be very big if MAX_NUMNODES is very big */
4322
	if (size < PAGE_SIZE)
4323
		mem = kzalloc(size, GFP_KERNEL);
4324
	else
4325
		mem = vzalloc(size);
4326

4327 4328 4329
	if (!mem)
		return NULL;

4330
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4331 4332
	if (!mem->stat)
		goto out_free;
4333
	spin_lock_init(&mem->pcp_counter_lock);
4334
	return mem;
4335 4336 4337 4338 4339 4340 4341

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4342 4343
}

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4355
static void __mem_cgroup_free(struct mem_cgroup *mem)
4356
{
K
KAMEZAWA Hiroyuki 已提交
4357 4358
	int node;

4359
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4360 4361
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4362 4363 4364
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4365 4366
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4367 4368 4369 4370 4371
		kfree(mem);
	else
		vfree(mem);
}

4372 4373 4374 4375 4376
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4377
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4378
{
4379
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4380
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4381
		__mem_cgroup_free(mem);
4382 4383 4384
		if (parent)
			mem_cgroup_put(parent);
	}
4385 4386
}

4387 4388 4389 4390 4391
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4392 4393 4394 4395 4396 4397 4398 4399 4400
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4401

4402 4403 4404
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4405
	if (!mem_cgroup_disabled() && really_do_swap_account)
4406 4407 4408 4409 4410 4411 4412 4413
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4439
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4440 4441
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4442
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4443
	long error = -ENOMEM;
4444
	int node;
B
Balbir Singh 已提交
4445

4446 4447
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4448
		return ERR_PTR(error);
4449

4450 4451 4452
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4453

4454
	/* root ? */
4455
	if (cont->parent == NULL) {
4456
		int cpu;
4457
		enable_swap_cgroup();
4458
		parent = NULL;
4459
		root_mem_cgroup = mem;
4460 4461
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4462 4463 4464 4465 4466
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4467
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4468
	} else {
4469
		parent = mem_cgroup_from_cont(cont->parent);
4470
		mem->use_hierarchy = parent->use_hierarchy;
4471
		mem->oom_kill_disable = parent->oom_kill_disable;
4472
	}
4473

4474 4475 4476
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4477 4478 4479 4480 4481 4482 4483
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4484 4485 4486 4487
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4488
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4489
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4490
	INIT_LIST_HEAD(&mem->oom_notify);
4491

K
KOSAKI Motohiro 已提交
4492 4493
	if (parent)
		mem->swappiness = get_swappiness(parent);
4494
	atomic_set(&mem->refcnt, 1);
4495
	mem->move_charge_at_immigrate = 0;
4496
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4497
	return &mem->css;
4498
free_out:
4499
	__mem_cgroup_free(mem);
4500
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4501
	return ERR_PTR(error);
B
Balbir Singh 已提交
4502 4503
}

4504
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4505 4506 4507
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4508 4509

	return mem_cgroup_force_empty(mem, false);
4510 4511
}

B
Balbir Singh 已提交
4512 4513 4514
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4515 4516 4517
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4518 4519 4520 4521 4522
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4523 4524 4525 4526 4527 4528 4529 4530
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4531 4532
}

4533
#ifdef CONFIG_MMU
4534
/* Handlers for move charge at task migration. */
4535 4536
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4537
{
4538 4539
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4540 4541
	struct mem_cgroup *mem = mc.to;

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
A
Andrea Arcangeli 已提交
4577 4578
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
					      PAGE_SIZE);
4579 4580 4581 4582 4583
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4584 4585 4586 4587 4588 4589 4590 4591
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4592
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4593 4594 4595 4596 4597 4598
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4599 4600 4601
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4602 4603 4604 4605 4606
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4607
	swp_entry_t	ent;
4608 4609 4610 4611 4612
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4613
	MC_TARGET_SWAP,
4614 4615
};

D
Daisuke Nishimura 已提交
4616 4617
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4618
{
D
Daisuke Nishimura 已提交
4619
	struct page *page = vm_normal_page(vma, addr, ptent);
4620

D
Daisuke Nishimura 已提交
4621 4622 4623 4624 4625 4626
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4627 4628
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4647 4648
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4649
		return NULL;
4650
	}
D
Daisuke Nishimura 已提交
4651 4652 4653 4654 4655 4656
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4702 4703
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4704 4705 4706

	if (!page && !ent.val)
		return 0;
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4722 4723
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4724 4725 4726 4727
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

A
Andrea Arcangeli 已提交
4740
	VM_BUG_ON(pmd_trans_huge(*pmd));
4741 4742 4743 4744 4745 4746 4747
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4748 4749 4750
	return 0;
}

4751 4752 4753 4754 4755
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4756
	down_read(&mm->mmap_sem);
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4768
	up_read(&mm->mmap_sem);
4769 4770 4771 4772 4773 4774 4775 4776 4777

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4778 4779 4780 4781 4782
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4783 4784
}

4785 4786
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4787
{
4788 4789 4790
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4791
	/* we must uncharge all the leftover precharges from mc.to */
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4803
	}
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4838
	spin_lock(&mc.lock);
4839 4840
	mc.from = NULL;
	mc.to = NULL;
4841
	spin_unlock(&mc.lock);
4842
	mem_cgroup_end_move(from);
4843 4844
}

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4863 4864 4865 4866
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4867
			VM_BUG_ON(mc.moved_charge);
4868
			VM_BUG_ON(mc.moved_swap);
4869
			mem_cgroup_start_move(from);
4870
			spin_lock(&mc.lock);
4871 4872
			mc.from = from;
			mc.to = mem;
4873
			spin_unlock(&mc.lock);
4874
			/* We set mc.moving_task later */
4875 4876 4877 4878

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4879 4880
		}
		mmput(mm);
4881 4882 4883 4884 4885 4886 4887 4888 4889
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4890
	mem_cgroup_clear_mc();
4891 4892
}

4893 4894 4895
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4896
{
4897 4898 4899 4900 4901 4902
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
A
Andrea Arcangeli 已提交
4903
	VM_BUG_ON(pmd_trans_huge(*pmd));
4904 4905 4906 4907 4908 4909 4910
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4911
		swp_entry_t ent;
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4923
			if (!mem_cgroup_move_account(pc,
4924
					mc.from, mc.to, false, PAGE_SIZE)) {
4925
				mc.precharge--;
4926 4927
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4928 4929 4930 4931 4932
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4933 4934
		case MC_TARGET_SWAP:
			ent = target.ent;
4935 4936
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4937
				mc.precharge--;
4938 4939 4940
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4941
			break;
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4956
		ret = mem_cgroup_do_precharge(1);
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5000
	up_read(&mm->mmap_sem);
5001 5002
}

B
Balbir Singh 已提交
5003 5004 5005
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5006 5007
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
5008
{
5009 5010 5011
	struct mm_struct *mm;

	if (!mc.to)
5012 5013 5014
		/* no need to move charge */
		return;

5015 5016 5017 5018 5019
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
5020
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5021
}
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
5044

B
Balbir Singh 已提交
5045 5046 5047 5048
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5049
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5050 5051
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5052 5053
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5054
	.attach = mem_cgroup_move_task,
5055
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5056
	.use_id = 1,
B
Balbir Singh 已提交
5057
};
5058 5059

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5060 5061 5062
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5063
	if (!(*s) || !strcmp(s, "=1"))
5064
		really_do_swap_account = 1;
5065
	else if (!strcmp(s, "=0"))
5066 5067 5068 5069
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
5070 5071 5072

static int __init disable_swap_account(char *s)
{
5073
	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5074
	enable_swap_account("=0");
5075 5076 5077 5078
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif