memcontrol.c 51.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/mutex.h>
31
#include <linux/slab.h>
32 33 34
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
35
#include <linux/seq_file.h>
36
#include <linux/vmalloc.h>
37
#include <linux/mm_inline.h>
38
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include "internal.h"
B
Balbir Singh 已提交
40

41 42
#include <asm/uaccess.h>

43 44
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
45

46 47 48 49 50 51 52 53 54
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif


55 56 57 58 59 60 61 62 63
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
64 65
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
66 67 68 69 70 71 72 73 74

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
75
	struct mem_cgroup_stat_cpu cpustat[0];
76 77 78 79 80
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
81
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
82 83
		enum mem_cgroup_stat_index idx, int val)
{
84
	stat->count[idx] += val;
85 86 87 88 89 90 91 92 93 94 95 96
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

97 98 99 100
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
101 102 103
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
104 105
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
106 107

	struct zone_reclaim_stat reclaim_stat;
108 109 110 111 112 113 114 115 116 117 118 119
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
120 121 122 123 124 125 126
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
127 128 129
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
130 131 132 133 134 135 136
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
137 138 139 140
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
141 142 143 144
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
145
	struct mem_cgroup_lru_info info;
146

147
	int	prev_priority;	/* for recording reclaim priority */
148 149 150 151 152 153

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
	 * reclaimed from. Protected by cgroup_lock()
	 */
	struct mem_cgroup *last_scanned_child;
154 155 156 157
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
158
	unsigned long	last_oom_jiffies;
159 160
	int		obsolete;
	atomic_t	refcnt;
161 162 163

	unsigned int inactive_ratio;

164
	/*
165
	 * statistics. This must be placed at the end of memcg.
166 167
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
168 169
};

170 171 172
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
173
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
174
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
175
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
176 177 178
	NR_CHARGE_TYPE,
};

179 180 181 182
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
183 184
static const unsigned long
pcg_default_flags[NR_CHARGE_TYPE] = {
K
KAMEZAWA Hiroyuki 已提交
185 186 187
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
	PCGF_USED | PCGF_LOCK, /* Anon */
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
188
	0, /* FORCE */
189 190
};

191 192 193 194 195 196 197 198 199 200
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);

201 202 203
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
204 205 206
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
207
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
208
	int cpu = get_cpu();
209

K
KAMEZAWA Hiroyuki 已提交
210
	cpustat = &stat->cpustat[cpu];
211
	if (PageCgroupCache(pc))
212
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
213
	else
214
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
215 216

	if (charge)
217
		__mem_cgroup_stat_add_safe(cpustat,
218 219
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
220
		__mem_cgroup_stat_add_safe(cpustat,
221
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
K
KAMEZAWA Hiroyuki 已提交
222
	put_cpu();
223 224
}

225
static struct mem_cgroup_per_zone *
226 227 228 229 230
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

231
static struct mem_cgroup_per_zone *
232 233 234 235 236
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
237

238 239 240
	if (!mem)
		return NULL;

241 242 243 244
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
245
					enum lru_list idx)
246 247 248 249 250 251 252 253 254 255 256
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
257 258
}

259
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
260 261 262 263 264 265
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

266
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
267
{
268 269 270 271 272 273 274 275
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

276 277 278 279
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

K
KAMEZAWA Hiroyuki 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
293

K
KAMEZAWA Hiroyuki 已提交
294 295 296 297 298
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup *mem;
	struct mem_cgroup_per_zone *mz;
299

300
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
301 302 303 304 305 306 307
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
	if (list_empty(&pc->lru))
		return;
	mz = page_cgroup_zoneinfo(pc);
	mem = pc->mem_cgroup;
308
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
K
KAMEZAWA Hiroyuki 已提交
309 310
	list_del_init(&pc->lru);
	return;
311 312
}

K
KAMEZAWA Hiroyuki 已提交
313
void mem_cgroup_del_lru(struct page *page)
314
{
K
KAMEZAWA Hiroyuki 已提交
315 316
	mem_cgroup_del_lru_list(page, page_lru(page));
}
317

K
KAMEZAWA Hiroyuki 已提交
318 319 320 321
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
322

323
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
324
		return;
325

K
KAMEZAWA Hiroyuki 已提交
326 327 328 329 330 331 332
	pc = lookup_page_cgroup(page);
	smp_rmb();
	/* unused page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
333 334
}

K
KAMEZAWA Hiroyuki 已提交
335
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
336
{
K
KAMEZAWA Hiroyuki 已提交
337 338
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
339

340
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
341 342 343 344 345
		return;
	pc = lookup_page_cgroup(page);
	/* barrier to sync with "charge" */
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
346
		return;
347

K
KAMEZAWA Hiroyuki 已提交
348
	mz = page_cgroup_zoneinfo(pc);
349
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
K
KAMEZAWA Hiroyuki 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	list_add(&pc->lru, &mz->lists[lru]);
}
/*
 * To add swapcache into LRU. Be careful to all this function.
 * zone->lru_lock shouldn't be held and irq must not be disabled.
 */
static void mem_cgroup_lru_fixup(struct page *page)
{
	if (!isolate_lru_page(page))
		putback_lru_page(page);
}

void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
365
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
366 367 368
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
369 370
}

371 372 373 374 375
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;

	task_lock(task);
376
	ret = task->mm && mm_match_cgroup(task->mm, mem);
377 378 379 380
	task_unlock(task);
	return ret;
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
/*
 * Calculate mapped_ratio under memory controller. This will be used in
 * vmscan.c for deteremining we have to reclaim mapped pages.
 */
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
{
	long total, rss;

	/*
	 * usage is recorded in bytes. But, here, we assume the number of
	 * physical pages can be represented by "long" on any arch.
	 */
	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	return (int)((rss * 100L) / total);
}
397

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
	return mem->prev_priority;
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	mem->prev_priority = priority;
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);

	if (inactive * memcg->inactive_ratio < active)
		return 1;

	return 0;
}

431 432 433 434 435 436 437 438 439 440 441
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

469 470 471 472 473
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
474
					int active, int file)
475 476 477 478 479 480
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
481
	struct page_cgroup *pc, *tmp;
482 483 484
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
485
	int lru = LRU_FILE * !!file + !!active;
486

487
	BUG_ON(!mem_cont);
488
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
489
	src = &mz->lists[lru];
490

491 492
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
493
		if (scan >= nr_to_scan)
494
			break;
K
KAMEZAWA Hiroyuki 已提交
495 496

		page = pc->page;
497 498
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
499
		if (unlikely(!PageLRU(page)))
500 501
			continue;

H
Hugh Dickins 已提交
502
		scan++;
503
		if (__isolate_lru_page(page, mode, file) == 0) {
504 505 506 507 508 509 510 511 512
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	*scanned = scan;
	return nr_taken;
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

/*
 * This routine finds the DFS walk successor. This routine should be
 * called with cgroup_mutex held
 */
static struct mem_cgroup *
mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
{
	struct cgroup *cgroup, *curr_cgroup, *root_cgroup;

	curr_cgroup = curr->css.cgroup;
	root_cgroup = root_mem->css.cgroup;

	if (!list_empty(&curr_cgroup->children)) {
		/*
		 * Walk down to children
		 */
		mem_cgroup_put(curr);
		cgroup = list_entry(curr_cgroup->children.next,
						struct cgroup, sibling);
		curr = mem_cgroup_from_cont(cgroup);
		mem_cgroup_get(curr);
		goto done;
	}

visit_parent:
	if (curr_cgroup == root_cgroup) {
		mem_cgroup_put(curr);
		curr = root_mem;
		mem_cgroup_get(curr);
		goto done;
	}

	/*
	 * Goto next sibling
	 */
	if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
		mem_cgroup_put(curr);
		cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
						sibling);
		curr = mem_cgroup_from_cont(cgroup);
		mem_cgroup_get(curr);
		goto done;
	}

	/*
	 * Go up to next parent and next parent's sibling if need be
	 */
	curr_cgroup = curr_cgroup->parent;
	goto visit_parent;

done:
	root_mem->last_scanned_child = curr;
	return curr;
}

/*
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
{
	struct cgroup *cgroup;
	struct mem_cgroup *ret;
	bool obsolete = (root_mem->last_scanned_child &&
				root_mem->last_scanned_child->obsolete);

	/*
	 * Scan all children under the mem_cgroup mem
	 */
	cgroup_lock();
	if (list_empty(&root_mem->css.cgroup->children)) {
		ret = root_mem;
		goto done;
	}

	if (!root_mem->last_scanned_child || obsolete) {

		if (obsolete)
			mem_cgroup_put(root_mem->last_scanned_child);

		cgroup = list_first_entry(&root_mem->css.cgroup->children,
				struct cgroup, sibling);
		ret = mem_cgroup_from_cont(cgroup);
		mem_cgroup_get(ret);
	} else
		ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
						root_mem);

done:
	root_mem->last_scanned_child = ret;
	cgroup_unlock();
	return ret;
}

612 613 614 615 616 617 618 619 620 621 622 623
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * Dance down the hierarchy if needed to reclaim memory. We remember the
 * last child we reclaimed from, so that we don't end up penalizing
 * one child extensively based on its position in the children list.
 *
 * root_mem is the original ancestor that we've been reclaim from.
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
						gfp_t gfp_mask, bool noswap)
{
	struct mem_cgroup *next_mem;
	int ret = 0;

	/*
	 * Reclaim unconditionally and don't check for return value.
	 * We need to reclaim in the current group and down the tree.
	 * One might think about checking for children before reclaiming,
	 * but there might be left over accounting, even after children
	 * have left.
	 */
	ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap);
645
	if (mem_cgroup_check_under_limit(root_mem))
646
		return 0;
647 648
	if (!root_mem->use_hierarchy)
		return ret;
649 650 651 652 653 654 655 656 657 658 659 660

	next_mem = mem_cgroup_get_first_node(root_mem);

	while (next_mem != root_mem) {
		if (next_mem->obsolete) {
			mem_cgroup_put(next_mem);
			cgroup_lock();
			next_mem = mem_cgroup_get_first_node(root_mem);
			cgroup_unlock();
			continue;
		}
		ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap);
661
		if (mem_cgroup_check_under_limit(root_mem))
662 663 664 665 666 667 668 669
			return 0;
		cgroup_lock();
		next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
		cgroup_unlock();
	}
	return ret;
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
686 687 688
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
689
 */
690
static int __mem_cgroup_try_charge(struct mm_struct *mm,
691 692
			gfp_t gfp_mask, struct mem_cgroup **memcg,
			bool oom)
693
{
694
	struct mem_cgroup *mem, *mem_over_limit;
695
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
696
	struct res_counter *fail_res;
697 698 699 700 701 702 703

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

704
	/*
705 706
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
707 708 709
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
710
	if (likely(!*memcg)) {
711 712
		rcu_read_lock();
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
713 714 715 716
		if (unlikely(!mem)) {
			rcu_read_unlock();
			return 0;
		}
717 718 719 720
		/*
		 * For every charge from the cgroup, increment reference count
		 */
		css_get(&mem->css);
721
		*memcg = mem;
722 723
		rcu_read_unlock();
	} else {
724 725
		mem = *memcg;
		css_get(&mem->css);
726
	}
727

728 729 730
	while (1) {
		int ret;
		bool noswap = false;
731

732
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
733 734 735
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
736 737
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
							&fail_res);
738 739 740 741 742
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			noswap = true;
743 744 745 746 747 748 749
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

750
		if (!(gfp_mask & __GFP_WAIT))
751
			goto nomem;
752

753 754
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
							noswap);
755 756

		/*
757 758 759 760 761
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
762
		 *
763
		 */
764 765
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
766 767

		if (!nr_retries--) {
768
			if (oom) {
769 770
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
				mem_over_limit->last_oom_jiffies = jiffies;
771
			}
772
			goto nomem;
773
		}
774
	}
775 776 777 778 779
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
780

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
/**
 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
 * @gfp_mask: gfp_mask for reclaim.
 * @memcg: a pointer to memory cgroup which is charged against.
 *
 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
 * memory cgroup from @mm is got and stored in *memcg.
 *
 * Returns 0 if success. -ENOMEM at failure.
 * This call can invoke OOM-Killer.
 */

int mem_cgroup_try_charge(struct mm_struct *mm,
			  gfp_t mask, struct mem_cgroup **memcg)
{
	return __mem_cgroup_try_charge(mm, mask, memcg, true);
}

800 801 802 803 804 805 806 807 808 809 810 811
/*
 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
812 813 814 815 816

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		res_counter_uncharge(&mem->res, PAGE_SIZE);
817 818
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
819
		css_put(&mem->css);
820
		return;
821
	}
822
	pc->mem_cgroup = mem;
K
KAMEZAWA Hiroyuki 已提交
823
	smp_wmb();
824
	pc->flags = pcg_default_flags[ctype];
825

K
KAMEZAWA Hiroyuki 已提交
826
	mem_cgroup_charge_statistics(mem, pc, true);
827 828

	unlock_page_cgroup(pc);
829
}
830

831 832 833 834 835 836 837
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
838
 * - page is not on LRU (isolate_page() is useful.)
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
855
	VM_BUG_ON(PageLRU(pc->page));
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

K
KAMEZAWA Hiroyuki 已提交
871 872 873 874 875 876 877 878 879
	css_put(&from->css);
	res_counter_uncharge(&from->res, PAGE_SIZE);
	mem_cgroup_charge_statistics(from, pc, false);
	if (do_swap_account)
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	css_get(&to->css);
	ret = 0;
880 881 882 883 884 885 886 887 888 889 890 891 892
out:
	unlock_page_cgroup(pc);
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
893
	struct page *page = pc->page;
894 895 896 897 898 899 900 901 902
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
903

904 905
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
906

907
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
908
	if (ret || !parent)
909 910
		return ret;

K
KAMEZAWA Hiroyuki 已提交
911 912 913 914 915 916 917
	if (!get_page_unless_zero(page))
		return -EBUSY;

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
918 919 920

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
921
	/* drop extra refcnt by try_charge() (move_account increment one) */
922
	css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
923 924 925 926
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
		return 0;
927
	}
K
KAMEZAWA Hiroyuki 已提交
928 929 930 931 932 933
	/* uncharge if move fails */
cancel:
	res_counter_uncharge(&parent->res, PAGE_SIZE);
	if (do_swap_account)
		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
	put_page(page);
934 935 936
	return ret;
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
958
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
959
	if (ret || !mem)
960 961 962
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
963 964 965
	return 0;
}

966 967
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
968
{
969
	if (mem_cgroup_disabled())
970
		return 0;
971 972
	if (PageCompound(page))
		return 0;
973 974 975 976 977 978 979 980 981 982 983
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
984
	return mem_cgroup_charge_common(page, mm, gfp_mask,
985
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
986 987
}

988 989
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
990
{
991
	if (mem_cgroup_disabled())
992
		return 0;
993 994
	if (PageCompound(page))
		return 0;
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1007 1008 1009 1010 1011 1012 1013

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1014 1015
			return 0;
		}
1016
		unlock_page_cgroup(pc);
1017 1018
	}

1019
	if (unlikely(!mm))
1020
		mm = &init_mm;
1021

1022 1023
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1024
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1025 1026 1027
	else
		return mem_cgroup_charge_common(page, mm, gfp_mask,
				MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
1028 1029
}

1030 1031 1032 1033 1034 1035 1036
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
	swp_entry_t     ent;

1037
	if (mem_cgroup_disabled())
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;

	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;

	ent.val = page_private(page);

	mem = lookup_swap_cgroup(ent);
	if (!mem || mem->obsolete)
		goto charge_cur_mm;
	*ptr = mem;
	return __mem_cgroup_try_charge(NULL, mask, ptr, true);
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
}

K
KAMEZAWA Hiroyuki 已提交
1064
#ifdef CONFIG_SWAP
1065

K
KAMEZAWA Hiroyuki 已提交
1066 1067 1068 1069 1070
int mem_cgroup_cache_charge_swapin(struct page *page,
			struct mm_struct *mm, gfp_t mask, bool locked)
{
	int ret = 0;

1071
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
	if (!locked)
		lock_page(page);
	/*
	 * If not locked, the page can be dropped from SwapCache until
	 * we reach here.
	 */
	if (PageSwapCache(page)) {
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		struct mem_cgroup *mem = NULL;
		swp_entry_t ent;

		ent.val = page_private(page);
		if (do_swap_account) {
			mem = lookup_swap_cgroup(ent);
			if (mem && mem->obsolete)
				mem = NULL;
			if (mem)
				mm = NULL;
		}
K
KAMEZAWA Hiroyuki 已提交
1093
		ret = mem_cgroup_charge_common(page, mm, mask,
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
				MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);

		if (!ret && do_swap_account) {
			/* avoid double counting */
			mem = swap_cgroup_record(ent, NULL);
			if (mem) {
				res_counter_uncharge(&mem->memsw, PAGE_SIZE);
				mem_cgroup_put(mem);
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1104 1105 1106
	}
	if (!locked)
		unlock_page(page);
K
KAMEZAWA Hiroyuki 已提交
1107 1108
	/* add this page(page_cgroup) to the LRU we want. */
	mem_cgroup_lru_fixup(page);
K
KAMEZAWA Hiroyuki 已提交
1109 1110 1111 1112 1113

	return ret;
}
#endif

1114 1115 1116 1117
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	struct page_cgroup *pc;

1118
	if (mem_cgroup_disabled())
1119 1120 1121 1122 1123
		return;
	if (!ptr)
		return;
	pc = lookup_page_cgroup(page);
	__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
	 * Fix it by uncharging from memsw. This SwapCache is stable
	 * because we're still under lock_page().
	 */
	if (do_swap_account) {
		swp_entry_t ent = {.val = page_private(page)};
		struct mem_cgroup *memcg;
		memcg = swap_cgroup_record(ent, NULL);
		if (memcg) {
			/* If memcg is obsolete, memcg can be != ptr */
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
			mem_cgroup_put(memcg);
		}

	}
K
KAMEZAWA Hiroyuki 已提交
1141 1142
	/* add this page(page_cgroup) to the LRU we want. */
	mem_cgroup_lru_fixup(page);
1143 1144 1145 1146
}

void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1147
	if (mem_cgroup_disabled())
1148 1149 1150 1151
		return;
	if (!mem)
		return;
	res_counter_uncharge(&mem->res, PAGE_SIZE);
1152 1153
	if (do_swap_account)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1154 1155 1156 1157
	css_put(&mem->css);
}


1158
/*
1159
 * uncharge if !page_mapped(page)
1160
 */
1161
static struct mem_cgroup *
1162
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1163
{
H
Hugh Dickins 已提交
1164
	struct page_cgroup *pc;
1165
	struct mem_cgroup *mem = NULL;
1166
	struct mem_cgroup_per_zone *mz;
1167

1168
	if (mem_cgroup_disabled())
1169
		return NULL;
1170

K
KAMEZAWA Hiroyuki 已提交
1171
	if (PageSwapCache(page))
1172
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1173

1174
	/*
1175
	 * Check if our page_cgroup is valid
1176
	 */
1177 1178
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1179
		return NULL;
1180

1181
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1182

1183 1184
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1202
	}
K
KAMEZAWA Hiroyuki 已提交
1203

1204 1205 1206 1207
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
1208
	mem_cgroup_charge_statistics(mem, pc, false);
1209
	ClearPageCgroupUsed(pc);
1210

1211
	mz = page_cgroup_zoneinfo(pc);
1212
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1213

K
KAMEZAWA Hiroyuki 已提交
1214 1215 1216
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1217

1218
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1219 1220 1221

unlock_out:
	unlock_page_cgroup(pc);
1222
	return NULL;
1223 1224
}

1225 1226
void mem_cgroup_uncharge_page(struct page *page)
{
1227 1228 1229 1230 1231
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1232 1233 1234 1235 1236 1237
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1238
	VM_BUG_ON(page->mapping);
1239 1240 1241
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/*
 * called from __delete_from_swap_cache() and drop "page" account.
 * memcg information is recorded to swap_cgroup of "ent"
 */
void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
{
	struct mem_cgroup *memcg;

	memcg = __mem_cgroup_uncharge_common(page,
					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
	/* record memcg information */
	if (do_swap_account && memcg) {
		swap_cgroup_record(ent, memcg);
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1257 1258
	if (memcg)
		css_put(&memcg->css);
1259 1260 1261 1262 1263 1264 1265 1266
}

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1267
{
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	struct mem_cgroup *memcg;

	if (!do_swap_account)
		return;

	memcg = swap_cgroup_record(ent, NULL);
	if (memcg) {
		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
		mem_cgroup_put(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1278
}
1279
#endif
K
KAMEZAWA Hiroyuki 已提交
1280

1281
/*
1282 1283
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
1284
 */
1285
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1286 1287
{
	struct page_cgroup *pc;
1288 1289
	struct mem_cgroup *mem = NULL;
	int ret = 0;
1290

1291
	if (mem_cgroup_disabled())
1292 1293
		return 0;

1294 1295 1296
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
1297 1298 1299
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
1300
	unlock_page_cgroup(pc);
1301

1302
	if (mem) {
K
KAMEZAWA Hiroyuki 已提交
1303
		ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
1304 1305
		css_put(&mem->css);
	}
1306
	*ptr = mem;
1307
	return ret;
1308
}
1309

1310
/* remove redundant charge if migration failed*/
1311 1312
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
1313
{
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;

	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
1338
	if (unused)
1339 1340 1341
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
1342
	/*
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
1357
	 */
1358 1359
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
1360
}
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/*
 * A call to try to shrink memory usage under specified resource controller.
 * This is typically used for page reclaiming for shmem for reducing side
 * effect of page allocation from shmem, which is used by some mem_cgroup.
 */
int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
{
	struct mem_cgroup *mem;
	int progress = 0;
	int retry = MEM_CGROUP_RECLAIM_RETRIES;

1373
	if (mem_cgroup_disabled())
1374
		return 0;
1375 1376
	if (!mm)
		return 0;
1377

1378 1379
	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1380 1381 1382 1383
	if (unlikely(!mem)) {
		rcu_read_unlock();
		return 0;
	}
1384 1385 1386 1387
	css_get(&mem->css);
	rcu_read_unlock();

	do {
1388
		progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
1389
		progress += mem_cgroup_check_under_limit(mem);
1390 1391 1392 1393 1394 1395 1396 1397
	} while (!progress && --retry);

	css_put(&mem->css);
	if (!retry)
		return -ENOMEM;
	return 0;
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
/*
 * The inactive anon list should be small enough that the VM never has to
 * do too much work, but large enough that each inactive page has a chance
 * to be referenced again before it is swapped out.
 *
 * this calculation is straightforward porting from
 * page_alloc.c::setup_per_zone_inactive_ratio().
 * it describe more detail.
 */
static void mem_cgroup_set_inactive_ratio(struct mem_cgroup *memcg)
{
	unsigned int gb, ratio;

	gb = res_counter_read_u64(&memcg->res, RES_LIMIT) >> 30;
	if (gb)
		ratio = int_sqrt(10 * gb);
	else
		ratio = 1;

	memcg->inactive_ratio = ratio;

}

1421 1422
static DEFINE_MUTEX(set_limit_mutex);

1423
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1424
				unsigned long long val)
1425 1426 1427 1428
{

	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
	int progress;
1429
	u64 memswlimit;
1430 1431
	int ret = 0;

1432
	while (retry_count) {
1433 1434 1435 1436
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
1447 1448
			break;
		}
1449 1450 1451 1452 1453 1454
		ret = res_counter_set_limit(&memcg->res, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1455
		progress = try_to_free_mem_cgroup_pages(memcg,
K
KAMEZAWA Hiroyuki 已提交
1456
				GFP_KERNEL, false);
1457 1458
  		if (!progress)			retry_count--;
	}
1459 1460 1461 1462

	if (!ret)
		mem_cgroup_set_inactive_ratio(memcg);

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	return ret;
}

int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
				unsigned long long val)
{
	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
	u64 memlimit, oldusage, curusage;
	int ret;

	if (!do_swap_account)
		return -EINVAL;

	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

		oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
K
KAMEZAWA Hiroyuki 已提交
1500
		try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true);
1501 1502
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
		if (curusage >= oldusage)
1503 1504 1505 1506 1507
			retry_count--;
	}
	return ret;
}

1508 1509 1510 1511
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
1512
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
1513
				int node, int zid, enum lru_list lru)
1514
{
K
KAMEZAWA Hiroyuki 已提交
1515 1516
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
1517
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
1518
	unsigned long flags, loop;
1519
	struct list_head *list;
1520
	int ret = 0;
1521

K
KAMEZAWA Hiroyuki 已提交
1522 1523
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
1524
	list = &mz->lists[lru];
1525

1526 1527 1528 1529 1530 1531
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
1532
		spin_lock_irqsave(&zone->lru_lock, flags);
1533
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
1534
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1535
			break;
1536 1537 1538 1539 1540
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
1541
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1542 1543
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1544
		spin_unlock_irqrestore(&zone->lru_lock, flags);
1545

K
KAMEZAWA Hiroyuki 已提交
1546
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1547
		if (ret == -ENOMEM)
1548
			break;
1549 1550 1551 1552 1553 1554 1555

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
1556
	}
K
KAMEZAWA Hiroyuki 已提交
1557

1558 1559 1560
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
1561 1562 1563 1564 1565 1566
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
1567
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1568
{
1569 1570 1571
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1572
	struct cgroup *cgrp = mem->css.cgroup;
1573

1574
	css_get(&mem->css);
1575 1576

	shrink = 0;
1577 1578 1579
	/* should free all ? */
	if (free_all)
		goto try_to_free;
1580
move_account:
1581
	while (mem->res.usage > 0) {
1582
		ret = -EBUSY;
1583 1584 1585 1586
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
1587
			goto out;
1588 1589
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
1590 1591 1592
		ret = 0;
		for_each_node_state(node, N_POSSIBLE) {
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1593
				enum lru_list l;
1594 1595
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
1596
							node, zid, l);
1597 1598 1599
					if (ret)
						break;
				}
1600
			}
1601 1602 1603 1604 1605 1606
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
1607
		cond_resched();
1608 1609 1610 1611 1612
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
1613 1614

try_to_free:
1615 1616
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1617 1618 1619
		ret = -EBUSY;
		goto out;
	}
1620 1621
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
1622 1623 1624 1625
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
1626 1627 1628 1629 1630

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
1631
		progress = try_to_free_mem_cgroup_pages(mem,
K
KAMEZAWA Hiroyuki 已提交
1632
						  GFP_KERNEL, false);
1633
		if (!progress) {
1634
			nr_retries--;
1635 1636 1637
			/* maybe some writeback is necessary */
			congestion_wait(WRITE, HZ/10);
		}
1638 1639

	}
K
KAMEZAWA Hiroyuki 已提交
1640
	lru_add_drain();
1641 1642 1643 1644 1645
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
1646 1647
}

1648 1649 1650 1651 1652 1653
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

1692
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
1693
{
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	u64 val = 0;
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
		val = res_counter_read_u64(&mem->res, name);
		break;
	case _MEMSWAP:
		if (do_swap_account)
			val = res_counter_read_u64(&mem->memsw, name);
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
1713
}
1714 1715 1716 1717
/*
 * The user of this function is...
 * RES_LIMIT.
 */
1718 1719
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
1720
{
1721
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1722
	int type, name;
1723 1724 1725
	unsigned long long val;
	int ret;

1726 1727 1728
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
1729 1730 1731
	case RES_LIMIT:
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
1732 1733 1734
		if (ret)
			break;
		if (type == _MEM)
1735
			ret = mem_cgroup_resize_limit(memcg, val);
1736 1737
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
1738 1739 1740 1741 1742 1743
		break;
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
1744 1745
}

1746
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1747 1748
{
	struct mem_cgroup *mem;
1749
	int type, name;
1750 1751

	mem = mem_cgroup_from_cont(cont);
1752 1753 1754
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
1755
	case RES_MAX_USAGE:
1756 1757 1758 1759
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
1760 1761
		break;
	case RES_FAILCNT:
1762 1763 1764 1765
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
1766 1767
		break;
	}
1768
	return 0;
1769 1770
}

1771 1772 1773 1774 1775 1776
static const struct mem_cgroup_stat_desc {
	const char *msg;
	u64 unit;
} mem_cgroup_stat_desc[] = {
	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1777 1778
	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1779 1780
};

1781 1782
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
	struct mem_cgroup_stat *stat = &mem_cont->stat;
	int i;

	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
		s64 val;

		val = mem_cgroup_read_stat(stat, i);
		val *= mem_cgroup_stat_desc[i].unit;
1793
		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1794
	}
1795 1796
	/* showing # of active pages */
	{
1797 1798
		unsigned long active_anon, inactive_anon;
		unsigned long active_file, inactive_file;
L
Lee Schermerhorn 已提交
1799
		unsigned long unevictable;
1800 1801 1802 1803 1804 1805 1806 1807 1808

		inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_INACTIVE_ANON);
		active_anon = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_ACTIVE_ANON);
		inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_INACTIVE_FILE);
		active_file = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_ACTIVE_FILE);
L
Lee Schermerhorn 已提交
1809 1810 1811
		unevictable = mem_cgroup_get_all_zonestat(mem_cont,
							LRU_UNEVICTABLE);

1812 1813 1814 1815
		cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
		cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
		cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
		cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
L
Lee Schermerhorn 已提交
1816 1817
		cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);

1818
	}
K
KOSAKI Motohiro 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

#ifdef CONFIG_DEBUG_VM
	cb->fill(cb, "inactive_ratio", mem_cont->inactive_ratio);

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

1849 1850 1851
	return 0;
}

1852

B
Balbir Singh 已提交
1853 1854
static struct cftype mem_cgroup_files[] = {
	{
1855
		.name = "usage_in_bytes",
1856
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1857
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
1858
	},
1859 1860
	{
		.name = "max_usage_in_bytes",
1861
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1862
		.trigger = mem_cgroup_reset,
1863 1864
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
1865
	{
1866
		.name = "limit_in_bytes",
1867
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1868
		.write_string = mem_cgroup_write,
1869
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
1870 1871 1872
	},
	{
		.name = "failcnt",
1873
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1874
		.trigger = mem_cgroup_reset,
1875
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
1876
	},
1877 1878
	{
		.name = "stat",
1879
		.read_map = mem_control_stat_show,
1880
	},
1881 1882 1883 1884
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
1885 1886 1887 1888 1889
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
B
Balbir Singh 已提交
1890 1891
};

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

1933 1934 1935
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
1936
	struct mem_cgroup_per_zone *mz;
1937
	enum lru_list l;
1938
	int zone, tmp = node;
1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
1947 1948 1949
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1950 1951
	if (!pn)
		return 1;
1952

1953 1954
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
1955 1956 1957

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
1958 1959
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
1960
	}
1961 1962 1963
	return 0;
}

1964 1965 1966 1967 1968
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

1969 1970 1971 1972 1973 1974
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

1975 1976 1977
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
1978
	int size = mem_cgroup_size();
1979

1980 1981
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
1982
	else
1983
		mem = vmalloc(size);
1984 1985

	if (mem)
1986
		memset(mem, 0, size);
1987 1988 1989
	return mem;
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
 * entry which points to this memcg will be ignore at swapin.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

2004 2005
static void mem_cgroup_free(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
2006 2007
	int node;

2008 2009
	if (atomic_read(&mem->refcnt) > 0)
		return;
K
KAMEZAWA Hiroyuki 已提交
2010 2011 2012 2013 2014


	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

2015
	if (mem_cgroup_size() < PAGE_SIZE)
2016 2017 2018 2019 2020
		kfree(mem);
	else
		vfree(mem);
}

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
	if (atomic_dec_and_test(&mem->refcnt)) {
		if (!mem->obsolete)
			return;
		mem_cgroup_free(mem);
	}
}

2035

2036 2037 2038
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
2039
	if (!mem_cgroup_disabled() && really_do_swap_account)
2040 2041 2042 2043 2044 2045 2046 2047
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

B
Balbir Singh 已提交
2048 2049 2050
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
2051
	struct mem_cgroup *mem, *parent;
2052
	int node;
B
Balbir Singh 已提交
2053

2054 2055 2056
	mem = mem_cgroup_alloc();
	if (!mem)
		return ERR_PTR(-ENOMEM);
2057

2058 2059 2060
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
2061
	/* root ? */
2062
	if (cont->parent == NULL) {
2063
		enable_swap_cgroup();
2064
		parent = NULL;
2065
	} else {
2066
		parent = mem_cgroup_from_cont(cont->parent);
2067 2068
		mem->use_hierarchy = parent->use_hierarchy;
	}
2069

2070 2071 2072 2073 2074 2075 2076
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
2077
	mem_cgroup_set_inactive_ratio(mem);
2078 2079
	mem->last_scanned_child = NULL;

B
Balbir Singh 已提交
2080
	return &mem->css;
2081 2082
free_out:
	for_each_node_state(node, N_POSSIBLE)
2083
		free_mem_cgroup_per_zone_info(mem, node);
2084
	mem_cgroup_free(mem);
2085
	return ERR_PTR(-ENOMEM);
B
Balbir Singh 已提交
2086 2087
}

2088 2089 2090 2091
static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2092
	mem->obsolete = 1;
2093
	mem_cgroup_force_empty(mem, false);
2094 2095
}

B
Balbir Singh 已提交
2096 2097 2098
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2099
	mem_cgroup_free(mem_cgroup_from_cont(cont));
B
Balbir Singh 已提交
2100 2101 2102 2103 2104
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2105 2106 2107 2108 2109 2110 2111 2112
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
2113 2114
}

B
Balbir Singh 已提交
2115 2116 2117 2118 2119 2120
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
	/*
2121 2122
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
2123 2124 2125
	 */
}

B
Balbir Singh 已提交
2126 2127 2128 2129
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
2130
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
2131 2132
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
2133
	.attach = mem_cgroup_move_task,
2134
	.early_init = 0,
B
Balbir Singh 已提交
2135
};
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif