memcontrol.c 28.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
24
#include <linux/smp.h>
25
#include <linux/page-flags.h>
26
#include <linux/backing-dev.h>
27 28
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
29 30 31
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
32
#include <linux/seq_file.h>
B
Balbir Singh 已提交
33

34 35
#include <asm/uaccess.h>

B
Balbir Singh 已提交
36
struct cgroup_subsys mem_cgroup_subsys;
37
static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
B
Balbir Singh 已提交
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx, int val)
{
	int cpu = smp_processor_id();
	stat->cpustat[cpu].count[idx] += val;
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

80 81 82 83 84 85 86 87 88 89 90 91
/*
 * per-zone information in memory controller.
 */

enum mem_cgroup_zstat_index {
	MEM_CGROUP_ZSTAT_ACTIVE,
	MEM_CGROUP_ZSTAT_INACTIVE,

	NR_MEM_CGROUP_ZSTAT,
};

struct mem_cgroup_per_zone {
92 93 94 95
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
	spinlock_t		lru_lock;
96 97
	struct list_head	active_list;
	struct list_head	inactive_list;
98 99 100 101 102 103 104 105 106 107 108 109 110
	unsigned long count[NR_MEM_CGROUP_ZSTAT];
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
111 112 113 114 115 116 117
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 119 120
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
121 122 123 124 125 126 127
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
128 129 130 131
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
132
	struct mem_cgroup_lru_info info;
133

134
	int	prev_priority;	/* for recording reclaim priority */
135 136 137 138
	/*
	 * statistics.
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
139 140
};

141 142
/*
 * We use the lower bit of the page->page_cgroup pointer as a bit spin
143 144 145 146
 * lock.  We need to ensure that page->page_cgroup is at least two
 * byte aligned (based on comments from Nick Piggin).  But since
 * bit_spin_lock doesn't actually set that lock bit in a non-debug
 * uniprocessor kernel, we should avoid setting it here too.
147 148
 */
#define PAGE_CGROUP_LOCK_BIT 	0x0
149 150 151 152 153
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
#define PAGE_CGROUP_LOCK 	(1 << PAGE_CGROUP_LOCK_BIT)
#else
#define PAGE_CGROUP_LOCK	0x0
#endif
154

B
Balbir Singh 已提交
155 156 157 158 159 160 161 162
/*
 * A page_cgroup page is associated with every page descriptor. The
 * page_cgroup helps us identify information about the cgroup
 */
struct page_cgroup {
	struct list_head lru;		/* per cgroup LRU list */
	struct page *page;
	struct mem_cgroup *mem_cgroup;
163 164
	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
					/* mapped and cached states     */
165
	int	 flags;
B
Balbir Singh 已提交
166
};
167
#define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
168
#define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
B
Balbir Singh 已提交
169

170 171 172 173 174 175 176 177 178 179
static inline int page_cgroup_nid(struct page_cgroup *pc)
{
	return page_to_nid(pc->page);
}

static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
{
	return page_zonenum(pc->page);
}

180 181 182 183 184 185 186 187
enum {
	MEM_CGROUP_TYPE_UNSPEC = 0,
	MEM_CGROUP_TYPE_MAPPED,
	MEM_CGROUP_TYPE_CACHED,
	MEM_CGROUP_TYPE_ALL,
	MEM_CGROUP_TYPE_MAX,
};

188 189 190 191 192
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
};

193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
/*
 * Always modified under lru lock. Then, not necessary to preempt_disable()
 */
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
					bool charge)
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	VM_BUG_ON(!irqs_disabled());

	if (flags & PAGE_CGROUP_FLAG_CACHE)
		__mem_cgroup_stat_add_safe(stat,
					MEM_CGROUP_STAT_CACHE, val);
	else
		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
}

static inline struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	BUG_ON(!mem->info.nodeinfo[nid]);
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

static inline struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
					enum mem_cgroup_zstat_index idx)
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
241 242
}

243
static struct mem_cgroup init_mem_cgroup;
B
Balbir Singh 已提交
244 245 246 247 248 249 250 251 252

static inline
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static inline
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
{
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_task(p);
	css_get(&mem->css);
	mm->mem_cgroup = mem;
}

void mm_free_cgroup(struct mm_struct *mm)
{
	css_put(&mm->mem_cgroup->css);
}

274 275 276 277 278 279
static inline int page_cgroup_locked(struct page *page)
{
	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
					&page->page_cgroup);
}

280
static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
281
{
282 283
	VM_BUG_ON(!page_cgroup_locked(page));
	page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
284 285 286 287
}

struct page_cgroup *page_get_page_cgroup(struct page *page)
{
288 289 290 291
	return (struct page_cgroup *)
		(page->page_cgroup & ~PAGE_CGROUP_LOCK);
}

292
static void __always_inline lock_page_cgroup(struct page *page)
293 294 295 296 297
{
	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
	VM_BUG_ON(!page_cgroup_locked(page));
}

298
static void __always_inline unlock_page_cgroup(struct page *page)
299 300 301 302
{
	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}

303 304 305 306 307 308 309 310 311
/*
 * Clear page->page_cgroup member under lock_page_cgroup().
 * If given "pc" value is different from one page->page_cgroup,
 * page->cgroup is not cleared.
 * Returns a value of page->page_cgroup at lock taken.
 * A can can detect failure of clearing by following
 *  clear_page_cgroup(page, pc) == pc
 */

312 313
static struct page_cgroup *clear_page_cgroup(struct page *page,
						struct page_cgroup *pc)
314 315 316 317 318 319 320 321 322 323 324
{
	struct page_cgroup *ret;
	/* lock and clear */
	lock_page_cgroup(page);
	ret = page_get_page_cgroup(page);
	if (likely(ret == pc))
		page_assign_page_cgroup(page, NULL);
	unlock_page_cgroup(page);
	return ret;
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
static void __mem_cgroup_remove_list(struct page_cgroup *pc)
{
	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (from)
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
	else
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;

	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
	list_del_init(&pc->lru);
}

static void __mem_cgroup_add_list(struct page_cgroup *pc)
{
	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (!to) {
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
346
		list_add(&pc->lru, &mz->inactive_list);
347 348
	} else {
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
349
		list_add(&pc->lru, &mz->active_list);
350 351 352 353
	}
	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
}

354
static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
355
{
356 357 358 359 360 361 362 363
	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (from)
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
	else
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;

364
	if (active) {
365
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
366
		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
367
		list_move(&pc->lru, &mz->active_list);
368
	} else {
369
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
370
		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
371
		list_move(&pc->lru, &mz->inactive_list);
372
	}
373 374
}

375 376 377 378 379
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;

	task_lock(task);
380
	ret = task->mm && mm_match_cgroup(task->mm, mem);
381 382 383 384
	task_unlock(task);
	return ret;
}

385 386 387
/*
 * This routine assumes that the appropriate zone's lru lock is already held
 */
388
void mem_cgroup_move_lists(struct page *page, bool active)
389
{
390
	struct page_cgroup *pc;
391 392 393
	struct mem_cgroup_per_zone *mz;
	unsigned long flags;

394
	pc = page_get_page_cgroup(page);
395 396 397
	if (!pc)
		return;

398 399
	mz = page_cgroup_zoneinfo(pc);
	spin_lock_irqsave(&mz->lru_lock, flags);
400
	__mem_cgroup_move_lists(pc, active);
401
	spin_unlock_irqrestore(&mz->lru_lock, flags);
402 403
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
/*
 * Calculate mapped_ratio under memory controller. This will be used in
 * vmscan.c for deteremining we have to reclaim mapped pages.
 */
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
{
	long total, rss;

	/*
	 * usage is recorded in bytes. But, here, we assume the number of
	 * physical pages can be represented by "long" on any arch.
	 */
	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	return (int)((rss * 100L) / total);
}
420 421 422 423 424 425 426 427 428 429 430 431 432 433
/*
 * This function is called from vmscan.c. In page reclaiming loop. balance
 * between active and inactive list is calculated. For memory controller
 * page reclaiming, we should use using mem_cgroup's imbalance rather than
 * zone's global lru imbalance.
 */
long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
{
	unsigned long active, inactive;
	/* active and inactive are the number of pages. 'long' is ok.*/
	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
	return (long) (active / (inactive + 1));
}
434

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
	return mem->prev_priority;
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	mem->prev_priority = priority;
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Calculate # of pages to be scanned in this priority/zone.
 * See also vmscan.c
 *
 * priority starts from "DEF_PRIORITY" and decremented in each loop.
 * (see include/linux/mmzone.h)
 */

long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
				   struct zone *zone, int priority)
{
	long nr_active;
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);

	nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
	return (nr_active >> priority);
}

long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
					struct zone *zone, int priority)
{
	long nr_inactive;
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);

	nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);

	return (nr_inactive >> priority);
}

487 488 489 490 491 492 493 494 495 496 497 498
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
					int active)
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
499
	struct page_cgroup *pc, *tmp;
500 501 502
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
503

504
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
505
	if (active)
506
		src = &mz->active_list;
507
	else
508 509
		src = &mz->inactive_list;

510

511
	spin_lock(&mz->lru_lock);
512 513
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
514
		if (scan >= nr_to_scan)
515
			break;
516 517
		page = pc->page;

H
Hugh Dickins 已提交
518
		if (unlikely(!PageLRU(page)))
519 520
			continue;

521 522 523 524 525 526 527 528 529
		if (PageActive(page) && !active) {
			__mem_cgroup_move_lists(pc, true);
			continue;
		}
		if (!PageActive(page) && active) {
			__mem_cgroup_move_lists(pc, false);
			continue;
		}

H
Hugh Dickins 已提交
530 531
		scan++;
		list_move(&pc->lru, &pc_list);
532 533 534 535 536 537 538 539

		if (__isolate_lru_page(page, mode) == 0) {
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	list_splice(&pc_list, src);
540
	spin_unlock(&mz->lru_lock);
541 542 543 544 545

	*scanned = scan;
	return nr_taken;
}

546 547 548 549 550 551
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
552 553
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype)
554 555
{
	struct mem_cgroup *mem;
556
	struct page_cgroup *pc;
557 558
	unsigned long flags;
	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
559
	struct mem_cgroup_per_zone *mz;
560 561 562 563 564 565 566 567

	/*
	 * Should page_cgroup's go to their own slab?
	 * One could optimize the performance of the charging routine
	 * by saving a bit in the page_flags and using it as a lock
	 * to see if the cgroup page already has a page_cgroup associated
	 * with it
	 */
568
retry:
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
	/*
	 * The page_cgroup exists and
	 * the page has already been accounted.
	 */
	if (pc) {
		if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
			/* this page is under being uncharged ? */
			unlock_page_cgroup(page);
			cpu_relax();
			goto retry;
		} else {
			unlock_page_cgroup(page);
			goto done;
584
		}
585
	}
586
	unlock_page_cgroup(page);
587

588
	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
589 590 591 592
	if (pc == NULL)
		goto err;

	/*
593 594
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
595 596 597 598 599 600
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
	if (!mm)
		mm = &init_mm;

601
	rcu_read_lock();
602 603 604 605 606 607 608 609 610 611 612 613
	mem = rcu_dereference(mm->mem_cgroup);
	/*
	 * For every charge from the cgroup, increment reference
	 * count
	 */
	css_get(&mem->css);
	rcu_read_unlock();

	/*
	 * If we created the page_cgroup, we should free it on exceeding
	 * the cgroup limit.
	 */
614
	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
615 616
		if (!(gfp_mask & __GFP_WAIT))
			goto out;
617 618

		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
619 620 621 622 623 624 625 626 627 628 629
			continue;

		/*
 		 * try_to_free_mem_cgroup_pages() might not give us a full
 		 * picture of reclaim. Some pages are reclaimed and might be
 		 * moved to swap cache or just unmapped from the cgroup.
 		 * Check the limit again to see if the reclaim reduced the
 		 * current usage of the cgroup before giving up
 		 */
		if (res_counter_check_under_limit(&mem->res))
			continue;
630 631 632 633

		if (!nr_retries--) {
			mem_cgroup_out_of_memory(mem, gfp_mask);
			goto out;
634
		}
635
		congestion_wait(WRITE, HZ/10);
636 637 638 639 640
	}

	atomic_set(&pc->ref_cnt, 1);
	pc->mem_cgroup = mem;
	pc->page = page;
641
	pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
642 643
	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
		pc->flags |= PAGE_CGROUP_FLAG_CACHE;
644

645 646 647
	lock_page_cgroup(page);
	if (page_get_page_cgroup(page)) {
		unlock_page_cgroup(page);
648
		/*
649 650
		 * Another charge has been added to this page already.
		 * We take lock_page_cgroup(page) again and read
651 652 653 654 655 656 657
		 * page->cgroup, increment refcnt.... just retry is OK.
		 */
		res_counter_uncharge(&mem->res, PAGE_SIZE);
		css_put(&mem->css);
		kfree(pc);
		goto retry;
	}
658 659
	page_assign_page_cgroup(page, pc);
	unlock_page_cgroup(page);
660

661 662
	mz = page_cgroup_zoneinfo(pc);
	spin_lock_irqsave(&mz->lru_lock, flags);
663
	/* Update statistics vector */
664
	__mem_cgroup_add_list(pc);
665
	spin_unlock_irqrestore(&mz->lru_lock, flags);
666

667 668
done:
	return 0;
669 670
out:
	css_put(&mem->css);
671 672 673 674 675
	kfree(pc);
err:
	return -ENOMEM;
}

676 677 678 679 680 681 682
int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
			gfp_t gfp_mask)
{
	return mem_cgroup_charge_common(page, mm, gfp_mask,
			MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

683 684 685
/*
 * See if the cached pages should be charged at all?
 */
686 687
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
688
{
689
	int ret = 0;
690 691 692
	if (!mm)
		mm = &init_mm;

693
	ret = mem_cgroup_charge_common(page, mm, gfp_mask,
694
				MEM_CGROUP_CHARGE_TYPE_CACHE);
695
	return ret;
696 697
}

698 699
/*
 * Uncharging is always a welcome operation, we never complain, simply
700
 * uncharge. This routine should be called with lock_page_cgroup held
701 702 703 704
 */
void mem_cgroup_uncharge(struct page_cgroup *pc)
{
	struct mem_cgroup *mem;
705
	struct mem_cgroup_per_zone *mz;
706
	struct page *page;
707
	unsigned long flags;
708

709
	/*
710
	 * Check if our page_cgroup is valid
711
	 */
712 713 714 715 716
	if (!pc)
		return;

	if (atomic_dec_and_test(&pc->ref_cnt)) {
		page = pc->page;
717
		mz = page_cgroup_zoneinfo(pc);
718 719
		/*
		 * get page->cgroup and clear it under lock.
720
		 * force_empty can drop page->cgroup without checking refcnt.
721
		 */
722
		unlock_page_cgroup(page);
723 724 725 726
		if (clear_page_cgroup(page, pc) == pc) {
			mem = pc->mem_cgroup;
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
727
			spin_lock_irqsave(&mz->lru_lock, flags);
728
			__mem_cgroup_remove_list(pc);
729
			spin_unlock_irqrestore(&mz->lru_lock, flags);
730 731
			kfree(pc);
		}
732
		lock_page_cgroup(page);
733
	}
734
}
735

736 737 738 739 740 741 742
void mem_cgroup_uncharge_page(struct page *page)
{
	lock_page_cgroup(page);
	mem_cgroup_uncharge(page_get_page_cgroup(page));
	unlock_page_cgroup(page);
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/*
 * Returns non-zero if a page (under migration) has valid page_cgroup member.
 * Refcnt of page_cgroup is incremented.
 */

int mem_cgroup_prepare_migration(struct page *page)
{
	struct page_cgroup *pc;
	int ret = 0;
	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
	if (pc && atomic_inc_not_zero(&pc->ref_cnt))
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

void mem_cgroup_end_migration(struct page *page)
{
762 763 764 765
	struct page_cgroup *pc;

	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
766
	mem_cgroup_uncharge(pc);
767
	unlock_page_cgroup(page);
768 769 770 771 772 773 774 775 776 777
}
/*
 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
 * And no race with uncharge() routines because page_cgroup for *page*
 * has extra one reference by mem_cgroup_prepare_migration.
 */

void mem_cgroup_page_migration(struct page *page, struct page *newpage)
{
	struct page_cgroup *pc;
778 779
	struct mem_cgroup *mem;
	unsigned long flags;
780
	struct mem_cgroup_per_zone *mz;
781 782 783 784
retry:
	pc = page_get_page_cgroup(page);
	if (!pc)
		return;
785
	mem = pc->mem_cgroup;
786
	mz = page_cgroup_zoneinfo(pc);
787 788
	if (clear_page_cgroup(page, pc) != pc)
		goto retry;
789
	spin_lock_irqsave(&mz->lru_lock, flags);
790 791

	__mem_cgroup_remove_list(pc);
792 793
	spin_unlock_irqrestore(&mz->lru_lock, flags);

794 795 796 797
	pc->page = newpage;
	lock_page_cgroup(newpage);
	page_assign_page_cgroup(newpage, pc);
	unlock_page_cgroup(newpage);
798

799 800 801 802
	mz = page_cgroup_zoneinfo(pc);
	spin_lock_irqsave(&mz->lru_lock, flags);
	__mem_cgroup_add_list(pc);
	spin_unlock_irqrestore(&mz->lru_lock, flags);
803 804
	return;
}
805

806 807 808 809 810 811 812
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * This routine ignores page_cgroup->ref_cnt.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
#define FORCE_UNCHARGE_BATCH	(128)
static void
813 814 815
mem_cgroup_force_empty_list(struct mem_cgroup *mem,
			    struct mem_cgroup_per_zone *mz,
			    int active)
816 817 818 819 820
{
	struct page_cgroup *pc;
	struct page *page;
	int count;
	unsigned long flags;
821 822 823 824 825 826
	struct list_head *list;

	if (active)
		list = &mz->active_list;
	else
		list = &mz->inactive_list;
827

828 829
	if (list_empty(list))
		return;
830 831
retry:
	count = FORCE_UNCHARGE_BATCH;
832
	spin_lock_irqsave(&mz->lru_lock, flags);
833 834 835 836 837 838 839 840 841

	while (--count && !list_empty(list)) {
		pc = list_entry(list->prev, struct page_cgroup, lru);
		page = pc->page;
		/* Avoid race with charge */
		atomic_set(&pc->ref_cnt, 0);
		if (clear_page_cgroup(page, pc) == pc) {
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
842
			__mem_cgroup_remove_list(pc);
843 844 845 846
			kfree(pc);
		} else 	/* being uncharged ? ...do relax */
			break;
	}
847
	spin_unlock_irqrestore(&mz->lru_lock, flags);
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	if (!list_empty(list)) {
		cond_resched();
		goto retry;
	}
	return;
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */

int mem_cgroup_force_empty(struct mem_cgroup *mem)
{
	int ret = -EBUSY;
863
	int node, zid;
864 865 866 867 868 869
	css_get(&mem->css);
	/*
	 * page reclaim code (kswapd etc..) will move pages between
`	 * active_list <-> inactive_list while we don't take a lock.
	 * So, we have to do loop here until all lists are empty.
	 */
870
	while (mem->res.usage > 0) {
871 872
		if (atomic_read(&mem->css.cgroup->count) > 0)
			goto out;
873 874 875 876 877
		for_each_node_state(node, N_POSSIBLE)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				struct mem_cgroup_per_zone *mz;
				mz = mem_cgroup_zoneinfo(mem, node, zid);
				/* drop all page_cgroup in active_list */
878
				mem_cgroup_force_empty_list(mem, mz, 1);
879
				/* drop all page_cgroup in inactive_list */
880
				mem_cgroup_force_empty_list(mem, mz, 0);
881
			}
882 883 884 885 886 887 888 889 890
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
}



891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
{
	*tmp = memparse(buf, &buf);
	if (*buf != '\0')
		return -EINVAL;

	/*
	 * Round up the value to the closest page size
	 */
	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
	return 0;
}

static ssize_t mem_cgroup_read(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			char __user *userbuf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
907 908
{
	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
909 910
				cft->private, userbuf, nbytes, ppos,
				NULL);
B
Balbir Singh 已提交
911 912 913 914 915 916 917
}

static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
				struct file *file, const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
918 919
				cft->private, userbuf, nbytes, ppos,
				mem_cgroup_write_strategy);
B
Balbir Singh 已提交
920 921
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
static ssize_t mem_force_empty_write(struct cgroup *cont,
				struct cftype *cft, struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	int ret;
	ret = mem_cgroup_force_empty(mem);
	if (!ret)
		ret = nbytes;
	return ret;
}

/*
 * Note: This should be removed if cgroup supports write-only file.
 */

static ssize_t mem_force_empty_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return -EINVAL;
}


948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
static const struct mem_cgroup_stat_desc {
	const char *msg;
	u64 unit;
} mem_cgroup_stat_desc[] = {
	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
};

static int mem_control_stat_show(struct seq_file *m, void *arg)
{
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
	struct mem_cgroup_stat *stat = &mem_cont->stat;
	int i;

	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
		s64 val;

		val = mem_cgroup_read_stat(stat, i);
		val *= mem_cgroup_stat_desc[i].unit;
		seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
				(long long)val);
	}
971 972 973 974 975 976 977 978 979 980 981
	/* showing # of active pages */
	{
		unsigned long active, inactive;

		inactive = mem_cgroup_get_all_zonestat(mem_cont,
						MEM_CGROUP_ZSTAT_INACTIVE);
		active = mem_cgroup_get_all_zonestat(mem_cont,
						MEM_CGROUP_ZSTAT_ACTIVE);
		seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
		seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
	}
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	return 0;
}

static const struct file_operations mem_control_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_stat_open(struct inode *unused, struct file *file)
{
	/* XXX __d_cont */
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_stat_file_operations;
	return single_open(file, mem_control_stat_show, cont);
}



B
Balbir Singh 已提交
1002 1003
static struct cftype mem_cgroup_files[] = {
	{
1004
		.name = "usage_in_bytes",
B
Balbir Singh 已提交
1005 1006 1007 1008
		.private = RES_USAGE,
		.read = mem_cgroup_read,
	},
	{
1009
		.name = "limit_in_bytes",
B
Balbir Singh 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018
		.private = RES_LIMIT,
		.write = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "failcnt",
		.private = RES_FAILCNT,
		.read = mem_cgroup_read,
	},
1019 1020 1021 1022 1023
	{
		.name = "force_empty",
		.write = mem_force_empty_write,
		.read = mem_force_empty_read,
	},
1024 1025 1026 1027
	{
		.name = "stat",
		.open = mem_control_stat_open,
	},
B
Balbir Singh 已提交
1028 1029
};

1030 1031 1032
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	struct mem_cgroup_per_zone *mz;
	int zone;
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
	if (node_state(node, N_HIGH_MEMORY))
		pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
	else
		pn = kmalloc(sizeof(*pn), GFP_KERNEL);
1047 1048
	if (!pn)
		return 1;
1049

1050 1051
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
1052 1053 1054 1055 1056

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
		INIT_LIST_HEAD(&mz->active_list);
		INIT_LIST_HEAD(&mz->inactive_list);
1057
		spin_lock_init(&mz->lru_lock);
1058
	}
1059 1060 1061
	return 0;
}

1062 1063 1064 1065 1066 1067
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}


1068 1069
static struct mem_cgroup init_mem_cgroup;

B
Balbir Singh 已提交
1070 1071 1072 1073
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct mem_cgroup *mem;
1074
	int node;
B
Balbir Singh 已提交
1075

1076 1077 1078 1079 1080 1081 1082
	if (unlikely((cont->parent) == NULL)) {
		mem = &init_mem_cgroup;
		init_mm.mem_cgroup = mem;
	} else
		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);

	if (mem == NULL)
1083
		return ERR_PTR(-ENOMEM);
B
Balbir Singh 已提交
1084 1085

	res_counter_init(&mem->res);
1086

1087 1088 1089 1090 1091 1092
	memset(&mem->info, 0, sizeof(mem->info));

	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;

B
Balbir Singh 已提交
1093
	return &mem->css;
1094 1095
free_out:
	for_each_node_state(node, N_POSSIBLE)
1096
		free_mem_cgroup_per_zone_info(mem, node);
1097 1098
	if (cont->parent != NULL)
		kfree(mem);
1099
	return ERR_PTR(-ENOMEM);
B
Balbir Singh 已提交
1100 1101
}

1102 1103 1104 1105 1106 1107 1108
static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	mem_cgroup_force_empty(mem);
}

B
Balbir Singh 已提交
1109 1110 1111
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
1112 1113 1114 1115
	int node;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	for_each_node_state(node, N_POSSIBLE)
1116
		free_mem_cgroup_per_zone_info(mem, node);
1117

B
Balbir Singh 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	kfree(mem_cgroup_from_cont(cont));
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, mem_cgroup_files,
					ARRAY_SIZE(mem_cgroup_files));
}

B
Balbir Singh 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
	struct mm_struct *mm;
	struct mem_cgroup *mem, *old_mem;

	mm = get_task_mm(p);
	if (mm == NULL)
		return;

	mem = mem_cgroup_from_cont(cont);
	old_mem = mem_cgroup_from_cont(old_cont);

	if (mem == old_mem)
		goto out;

	/*
	 * Only thread group leaders are allowed to migrate, the mm_struct is
	 * in effect owned by the leader
	 */
	if (p->tgid != p->pid)
		goto out;

	css_get(&mem->css);
	rcu_assign_pointer(mm->mem_cgroup, mem);
	css_put(&old_mem->css);

out:
	mmput(mm);
	return;
}

B
Balbir Singh 已提交
1162 1163 1164 1165
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
1166
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
1167 1168
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
1169
	.attach = mem_cgroup_move_task,
1170
	.early_init = 0,
B
Balbir Singh 已提交
1171
};