intel_lrc.c 71.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_mocs.h"
141

142 143 144 145 146 147 148 149 150 151 152 153 154
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
155

156 157 158 159 160
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

190
#define CTX_REG(reg_state, pos, reg, val) do { \
191
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
192 193 194 195
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
196
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
197 198
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
199
} while (0)
200

201
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
202 203
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
204
} while (0)
205

206 207
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
208
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
209

210 211
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
212
#define WA_TAIL_DWORDS 2
213
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
C
Chris Wilson 已提交
214
#define PREEMPT_ID 0x1
215

216
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
217
					    struct intel_engine_cs *engine);
218 219 220 221
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
222

223 224
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
225
 * @dev_priv: i915 device private
226 227 228
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
229
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
230 231 232
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
233
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
234
{
235 236 237
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
238
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
239 240
		return 1;

241
	if (INTEL_GEN(dev_priv) >= 9)
242 243
		return 1;

244 245 246
	if (enable_execlists == 0)
		return 0;

247
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
248
	    USES_PPGTT(dev_priv))
249 250 251 252
		return 1;

	return 0;
}
253

254
/**
255 256 257
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
258
 * @engine: Engine the descriptor will be used with
259
 *
260 261 262 263 264
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
265 266
 * This is what a descriptor looks like, from LSB to MSB::
 *
267
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
268 269 270 271
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
272
 */
273
static void
274
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
275
				   struct intel_engine_cs *engine)
276
{
277
	struct intel_context *ce = &ctx->engine[engine->id];
278
	u64 desc;
279

280
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
281

282
	desc = ctx->desc_template;				/* bits  0-11 */
283
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
284
								/* bits 12-31 */
285
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
286

287
	ce->lrc_desc = desc;
288 289
}

290 291 292 293
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
294
{
295
	struct intel_engine_execlists * const execlists = &engine->execlists;
296 297 298 299
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

300
	if (unlikely(execlists->no_priolist))
301 302 303 304 305
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
306
	parent = &execlists->queue.rb_node;
307 308 309 310 311 312 313 314 315
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
316
			return p;
317 318 319 320
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
321
		p = &execlists->default_priolist;
322 323 324 325 326 327 328 329 330 331 332 333 334 335
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
336
			execlists->no_priolist = true;
337 338 339 340 341
			goto find_priolist;
		}
	}

	p->priority = prio;
342
	INIT_LIST_HEAD(&p->requests);
343
	rb_link_node(&p->node, rb, parent);
344
	rb_insert_color(&p->node, &execlists->queue);
345 346

	if (first)
347
		execlists->first = &p->node;
348

349
	return ptr_pack_bits(p, first, 1);
350 351
}

352 353 354 355 356 357
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

358
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
359 360
{
	struct drm_i915_gem_request *rq, *rn;
361 362
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
363 364 365 366 367 368 369 370 371 372 373 374

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

375 376 377 378 379 380 381 382 383 384 385
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
386 387 388
	}
}

389
void
390 391 392 393 394 395 396 397 398 399
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

400 401 402
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
403
{
404 405 406 407 408 409
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
410

411 412
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
413 414
}

415 416 417 418 419 420 421 422 423
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

424
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
425
{
426
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
427 428
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
429
	u32 *reg_state = ce->lrc_reg_state;
430

431
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
432

433 434 435 436 437
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
438
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
439
		execlists_update_context_pdps(ppgtt, reg_state);
440 441

	return ce->lrc_desc;
442 443
}

C
Chris Wilson 已提交
444 445 446 447 448 449
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

450
static void execlists_submit_ports(struct intel_engine_cs *engine)
451
{
452
	struct execlist_port *port = engine->execlists.port;
453
	u32 __iomem *elsp =
454 455
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
456

457
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
458 459 460 461 462 463 464 465 466 467 468 469
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
470 471 472 473 474

			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x\n",
				  engine->name, n,
				  rq->ctx->hw_id, count,
				  rq->global_seqno);
475 476 477 478
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
479

C
Chris Wilson 已提交
480
		elsp_write(desc, elsp);
481
	}
482 483
}

484
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
485
{
486
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
487
		i915_gem_context_force_single_submission(ctx));
488
}
489

490 491 492 493 494
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
495

496 497
	if (ctx_single_port_submission(prev))
		return false;
498

499
	return true;
500 501
}

502 503 504 505 506 507 508 509 510 511 512
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

C
Chris Wilson 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	u32 __iomem *elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;

	GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));

	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
	ce->ring->tail += WA_TAIL_BYTES;
	ce->ring->tail &= (ce->ring->size - 1);
	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;

529
	GEM_TRACE("\n");
C
Chris Wilson 已提交
530 531 532 533 534 535
	for (n = execlists_num_ports(&engine->execlists); --n; )
		elsp_write(0, elsp);

	elsp_write(ce->lrc_desc, elsp);
}

536
static void execlists_dequeue(struct intel_engine_cs *engine)
537
{
538 539
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
540 541
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
C
Chris Wilson 已提交
542
	struct drm_i915_gem_request *last = port_request(port);
543
	struct rb_node *rb;
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
565
	 */
566

567
	spin_lock_irq(&engine->timeline->lock);
568 569
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582
	if (!rb)
		goto unlock;

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
		if (port_count(&port[0]) > 1)
			goto unlock;

583
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
C
Chris Wilson 已提交
584 585 586 587 588 589 590
		    rb_entry(rb, struct i915_priolist, node)->priority >
		    max(last->priotree.priority, 0)) {
			/*
			 * Switch to our empty preempt context so
			 * the state of the GPU is known (idle).
			 */
			inject_preempt_context(engine);
591 592
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
			goto unlock;
		} else {
			/*
			 * In theory, we could coalesce more requests onto
			 * the second port (the first port is active, with
			 * no preemptions pending). However, that means we
			 * then have to deal with the possible lite-restore
			 * of the second port (as we submit the ELSP, there
			 * may be a context-switch) but also we may complete
			 * the resubmission before the context-switch. Ergo,
			 * coalescing onto the second port will cause a
			 * preemption event, but we cannot predict whether
			 * that will affect port[0] or port[1].
			 *
			 * If the second port is already active, we can wait
			 * until the next context-switch before contemplating
			 * new requests. The GPU will be busy and we should be
			 * able to resubmit the new ELSP before it idles,
			 * avoiding pipeline bubbles (momentary pauses where
			 * the driver is unable to keep up the supply of new
			 * work).
			 */
			if (port_count(&port[1]))
				goto unlock;

			/* WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == req:TAIL as we resubmit the
			 * request. See gen8_emit_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
	}

	do {
630 631 632 633 634 635 636 637 638 639 640 641 642 643
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
644
			 */
645 646 647 648 649 650
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
651
				if (port == last_port) {
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
676 677

				GEM_BUG_ON(port_isset(port));
678
			}
679

680 681
			INIT_LIST_HEAD(&rq->priotree.link);
			__i915_gem_request_submit(rq);
682
			trace_i915_gem_request_in(rq, port_index(port, execlists));
683 684
			last = rq;
			submit = true;
685
		}
686

687
		rb = rb_next(rb);
688
		rb_erase(&p->node, &execlists->queue);
689 690
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
691
			kmem_cache_free(engine->i915->priorities, p);
C
Chris Wilson 已提交
692
	} while (rb);
693
done:
694
	execlists->first = rb;
695
	if (submit)
696
		port_assign(port, last);
C
Chris Wilson 已提交
697
unlock:
698
	spin_unlock_irq(&engine->timeline->lock);
699

700 701
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
702
		execlists_submit_ports(engine);
703
	}
704 705
}

706
void
707
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
708
{
709
	struct execlist_port *port = execlists->port;
710
	unsigned int num_ports = execlists_num_ports(execlists);
711

712
	while (num_ports-- && port_isset(port)) {
713 714
		struct drm_i915_gem_request *rq = port_request(port);

715
		GEM_BUG_ON(!execlists->active);
716
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
717 718
		i915_gem_request_put(rq);

719 720 721
		memset(port, 0, sizeof(*port));
		port++;
	}
722 723
}

724 725
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
726
	struct intel_engine_execlists * const execlists = &engine->execlists;
727 728 729 730 731 732 733
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
734
	execlists_cancel_port_requests(execlists);
735 736 737 738 739 740 741 742 743

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
744
	rb = execlists->first;
745 746 747 748 749 750 751 752 753 754 755
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
756
		rb_erase(&p->node, &execlists->queue);
757 758 759 760 761 762 763
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

764

765 766
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
767
	GEM_BUG_ON(port_isset(execlists->port));
768 769 770 771 772 773 774 775 776 777 778 779

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

780
/*
781 782 783
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
784
static void intel_lrc_irq_handler(unsigned long data)
785
{
786 787
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
788
	struct execlist_port * const port = execlists->port;
789
	struct drm_i915_private *dev_priv = engine->i915;
790

791 792 793 794 795 796 797 798 799
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

800
	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
801

802 803 804 805 806
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
807 808 809
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
810
		unsigned int head, tail;
811

812
		if (unlikely(execlists->csb_use_mmio)) {
813 814
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
815
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
816 817
		}

818 819 820 821 822 823 824 825 826 827 828
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
829
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
830 831 832
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
833
			execlists->csb_head = head;
834 835 836 837 838
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

839
			head = execlists->csb_head;
840 841
			tail = READ_ONCE(buf[write_idx]);
		}
842 843 844 845
		GEM_TRACE("%s cs-irq head=%d [%d], tail=%d [%d]\n",
			  engine->name,
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))),
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))));
846

847
		while (head != tail) {
848
			struct drm_i915_gem_request *rq;
849
			unsigned int status;
850
			unsigned int count;
851 852 853

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

872
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
873 874 875
			GEM_TRACE("%s csb[%dd]: status=0x%08x:0x%08x\n",
				  engine->name, head,
				  status, buf[2*head + 1]);
876 877 878
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

C
Chris Wilson 已提交
879 880
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE &&
			    buf[2*head + 1] == PREEMPT_ID) {
881 882
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
883

884 885 886 887
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
888 889 890 891
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
892 893
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
894 895
				continue;

896 897 898
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

899
			/* Check the context/desc id for this event matches */
900
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
901

902
			rq = port_unpack(port, &count);
903 904 905 906
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
				  engine->name,
				  rq->ctx->hw_id, count,
				  rq->global_seqno);
907 908
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
909
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
910 911 912 913 914
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
915

916
				execlists_port_complete(execlists, port);
917 918
			} else {
				port_set(port, port_pack(rq, count));
919
			}
920

921 922
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
923
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
924 925 926
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
927
		}
928

929 930
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
931 932 933
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
934 935
	}

936
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
937
		execlists_dequeue(engine);
938

939
	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
940 941
}

942 943 944 945 946 947 948
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
C
Chris Wilson 已提交
949
	if (ptr_unmask_bits(p, 1))
950
		tasklet_hi_schedule(&engine->execlists.irq_tasklet);
951 952
}

953
static void execlists_submit_request(struct drm_i915_gem_request *request)
954
{
955
	struct intel_engine_cs *engine = request->engine;
956
	unsigned long flags;
957

958 959
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
960

961
	insert_request(engine, &request->priotree, request->priotree.priority);
962

963
	GEM_BUG_ON(!engine->execlists.first);
964 965
	GEM_BUG_ON(list_empty(&request->priotree.link));

966
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
967 968
}

969 970 971 972 973
static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
{
	return container_of(pt, struct drm_i915_gem_request, priotree);
}

974 975 976
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
977
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
978 979

	GEM_BUG_ON(!locked);
980 981

	if (engine != locked) {
982 983
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
984 985 986 987 988 989 990
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
991
	struct intel_engine_cs *engine;
992 993 994 995
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

996 997
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

998 999 1000
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1001 1002
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

1027 1028 1029 1030 1031 1032
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1033 1034 1035
			if (i915_gem_request_completed(pt_to_request(p->signaler)))
				continue;

1036
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1037 1038
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1039
		}
1040

1041
		list_safe_reset_next(dep, p, dfs_link);
1042 1043
	}

1044 1045 1046 1047 1048
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1049
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1050 1051 1052 1053 1054 1055 1056
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1057 1058 1059
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1072 1073 1074
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
1075
		}
1076 1077
	}

1078
	spin_unlock_irq(&engine->timeline->lock);
1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1104 1105 1106
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1107
{
1108
	struct intel_context *ce = &ctx->engine[engine->id];
1109
	void *vaddr;
1110
	int ret;
1111

1112
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1113

1114 1115
	if (likely(ce->pin_count++))
		goto out;
1116
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1117

1118 1119 1120 1121 1122
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
1123
	GEM_BUG_ON(!ce->state);
1124

1125
	ret = __context_pin(ctx, ce->state);
1126
	if (ret)
1127
		goto err;
1128

1129
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1130 1131
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1132
		goto unpin_vma;
1133 1134
	}

1135
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1136
	if (ret)
1137
		goto unpin_map;
1138

1139
	intel_lr_context_descriptor_update(ctx, engine);
1140

1141 1142
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1143
		i915_ggtt_offset(ce->ring->vma);
1144

1145
	ce->state->obj->pin_global++;
1146
	i915_gem_context_get(ctx);
1147 1148
out:
	return ce->ring;
1149

1150
unpin_map:
1151 1152 1153
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1154
err:
1155
	ce->pin_count = 0;
1156
	return ERR_PTR(ret);
1157 1158
}

1159 1160
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1161
{
1162
	struct intel_context *ce = &ctx->engine[engine->id];
1163

1164
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1165
	GEM_BUG_ON(ce->pin_count == 0);
1166

1167
	if (--ce->pin_count)
1168
		return;
1169

1170
	intel_ring_unpin(ce->ring);
1171

1172
	ce->state->obj->pin_global--;
1173 1174
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1175

1176
	i915_gem_context_put(ctx);
1177 1178
}

1179
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1180 1181 1182
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1183
	int ret;
1184

1185 1186
	GEM_BUG_ON(!ce->pin_count);

1187 1188 1189 1190 1191 1192
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1193 1194 1195
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1224 1225
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1226
{
1227 1228 1229 1230 1231 1232 1233 1234 1235
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1236 1237 1238 1239
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1240 1241 1242 1243 1244 1245 1246

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1247 1248
}

1249 1250 1251 1252 1253 1254
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1255
 *
1256 1257
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1258
 *
1259 1260 1261 1262
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1263
 */
1264
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1265
{
1266
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1267
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1268

1269
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1270 1271
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1272

1273 1274
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1275 1276 1277 1278 1279 1280 1281
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1282

C
Chris Wilson 已提交
1283 1284
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1285
	/* Pad to end of cacheline */
1286 1287
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1288 1289 1290 1291 1292 1293 1294

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1295
	return batch;
1296 1297
}

1298
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1299
{
C
Chris Wilson 已提交
1300 1301
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1302
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1303
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1304

1305
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1306 1307 1308 1309 1310
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1311

1312 1313
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1314
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1315 1316 1317 1318 1319 1320 1321
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1322
	}
1323

1324
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1339 1340 1341 1342 1343 1344
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1345 1346
	}

C
Chris Wilson 已提交
1347 1348
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1349
	/* Pad to end of cacheline */
1350 1351
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1352

1353
	return batch;
1354 1355
}

1356 1357 1358
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1359
{
1360 1361 1362
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1363

1364
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1365 1366
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1367

1368
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1369 1370 1371
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1372 1373
	}

1374 1375 1376 1377 1378
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1379
	return 0;
1380 1381 1382 1383

err:
	i915_gem_object_put(obj);
	return err;
1384 1385
}

1386
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1387
{
1388
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1389 1390
}

1391 1392
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1393
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1394
{
1395
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1396 1397 1398
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1399
	struct page *page;
1400 1401
	void *batch, *batch_ptr;
	unsigned int i;
1402
	int ret;
1403

1404 1405
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1406

1407
	switch (INTEL_GEN(engine->i915)) {
1408 1409
	case 10:
		return 0;
1410 1411
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1412
		wa_bb_fn[1] = NULL;
1413 1414 1415
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1416
		wa_bb_fn[1] = NULL;
1417 1418 1419
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1420
		return 0;
1421
	}
1422

1423
	ret = lrc_setup_wa_ctx(engine);
1424 1425 1426 1427 1428
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1429
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1430
	batch = batch_ptr = kmap_atomic(page);
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1443 1444
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1445
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1446 1447
	}

1448 1449
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1450 1451
	kunmap_atomic(batch);
	if (ret)
1452
		lrc_destroy_wa_ctx(engine);
1453 1454 1455 1456

	return ret;
}

1457 1458 1459 1460 1461 1462 1463 1464
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1465
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1466
{
1467
	struct drm_i915_private *dev_priv = engine->i915;
1468
	struct intel_engine_execlists * const execlists = &engine->execlists;
1469 1470 1471 1472 1473
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1474

1475
	intel_engine_reset_breadcrumbs(engine);
1476
	intel_engine_init_hangcheck(engine);
1477

1478 1479
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1480
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1481 1482 1483
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1484

1485
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1486

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1500
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1501
	execlists->csb_head = -1;
1502
	execlists->active = 0;
1503

1504
	/* After a GPU reset, we may have requests to replay */
1505
	if (execlists->first)
1506
		tasklet_schedule(&execlists->irq_tasklet);
1507

1508
	return 0;
1509 1510
}

1511
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1512
{
1513
	struct drm_i915_private *dev_priv = engine->i915;
1514 1515
	int ret;

1516
	ret = gen8_init_common_ring(engine);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1530
	return init_workarounds_ring(engine);
1531 1532
}

1533
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1534 1535 1536
{
	int ret;

1537
	ret = gen8_init_common_ring(engine);
1538 1539 1540
	if (ret)
		return ret;

1541
	return init_workarounds_ring(engine);
1542 1543
}

1544 1545 1546
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1547
	struct intel_engine_execlists * const execlists = &engine->execlists;
1548
	struct intel_context *ce;
1549
	unsigned long flags;
1550

1551 1552
	spin_lock_irqsave(&engine->timeline->lock, flags);

1553 1554 1555 1556 1557 1558 1559 1560 1561
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1562
	execlists_cancel_port_requests(execlists);
1563

1564
	/* Push back any incomplete requests for replay after the reset. */
1565
	__unwind_incomplete_requests(engine);
1566

1567
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1579
	if (!request || request->fence.error != -EIO)
1580
		return;
1581

1582 1583 1584 1585 1586 1587 1588
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1589
	ce = &request->ctx->engine[engine->id];
1590 1591 1592
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1593
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1594 1595
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1596
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1597

1598 1599 1600
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1601
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1602
	unwind_wa_tail(request);
1603 1604
}

1605 1606 1607
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1608
	struct intel_engine_cs *engine = req->engine;
1609
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1610 1611
	u32 *cs;
	int i;
1612

1613 1614 1615
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1616

1617
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1618
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1619 1620
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1621 1622 1623 1624
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1625 1626
	}

1627 1628
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1629 1630 1631 1632

	return 0;
}

1633
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1634
			      u64 offset, u32 len,
1635
			      const unsigned int flags)
1636
{
1637
	u32 *cs;
1638 1639
	int ret;

1640 1641 1642 1643
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1644 1645
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1646
	if (req->ctx->ppgtt &&
1647 1648 1649 1650 1651 1652
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1653

1654
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1655 1656
	}

1657 1658 1659
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1678 1679
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1680
	/* FIXME(BDW): Address space and security selectors. */
1681 1682 1683
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1684 1685 1686
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
1687 1688 1689 1690

	return 0;
}

1691
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1692
{
1693
	struct drm_i915_private *dev_priv = engine->i915;
1694 1695 1696
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1697 1698
}

1699
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1700
{
1701
	struct drm_i915_private *dev_priv = engine->i915;
1702
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1703 1704
}

1705
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1706
{
1707
	u32 cmd, *cs;
1708

1709 1710 1711
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1712 1713 1714

	cmd = MI_FLUSH_DW + 1;

1715 1716 1717 1718 1719 1720 1721
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1722
	if (mode & EMIT_INVALIDATE) {
1723
		cmd |= MI_INVALIDATE_TLB;
1724
		if (request->engine->id == VCS)
1725
			cmd |= MI_INVALIDATE_BSD;
1726 1727
	}

1728 1729 1730 1731 1732
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1733 1734 1735 1736

	return 0;
}

1737
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1738
				  u32 mode)
1739
{
1740
	struct intel_engine_cs *engine = request->engine;
1741 1742
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1743
	bool vf_flush_wa = false, dc_flush_wa = false;
1744
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1745
	int len;
1746 1747 1748

	flags |= PIPE_CONTROL_CS_STALL;

1749
	if (mode & EMIT_FLUSH) {
1750 1751
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1752
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1753
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1754 1755
	}

1756
	if (mode & EMIT_INVALIDATE) {
1757 1758 1759 1760 1761 1762 1763 1764 1765
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1766 1767 1768 1769
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1770
		if (IS_GEN9(request->i915))
1771
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1772 1773 1774 1775

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1776
	}
1777

M
Mika Kuoppala 已提交
1778 1779 1780 1781 1782 1783 1784 1785
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1786 1787 1788
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1789

1790 1791
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1792

1793 1794 1795
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1796

1797
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1798

1799 1800
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1801

1802
	intel_ring_advance(request, cs);
1803 1804 1805 1806

	return 0;
}

1807 1808 1809 1810 1811
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1812
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1813
{
C
Chris Wilson 已提交
1814 1815
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1816 1817
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1818
}
1819

1820
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1821
{
1822 1823
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1824

1825 1826
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1827 1828 1829
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1830
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1831

1832
	gen8_emit_wa_tail(request, cs);
1833
}
1834 1835
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1836
static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1837
					u32 *cs)
1838
{
1839 1840 1841
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1842 1843
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1844 1845 1846
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1847
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1848

1849
	gen8_emit_wa_tail(request, cs);
1850
}
1851
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1852

1853
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1854 1855 1856
{
	int ret;

1857
	ret = intel_ring_workarounds_emit(req);
1858 1859 1860
	if (ret)
		return ret;

1861 1862 1863 1864 1865 1866 1867 1868
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1869
	return i915_gem_render_state_emit(req);
1870 1871
}

1872 1873
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1874
 * @engine: Engine Command Streamer.
1875
 */
1876
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1877
{
1878
	struct drm_i915_private *dev_priv;
1879

1880 1881 1882 1883
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1884 1885
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
		tasklet_kill(&engine->execlists.irq_tasklet);
1886

1887
	dev_priv = engine->i915;
1888

1889 1890
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1891
	}
1892

1893 1894
	if (engine->cleanup)
		engine->cleanup(engine);
1895

1896
	intel_engine_cleanup_common(engine);
1897

1898
	lrc_destroy_wa_ctx(engine);
1899
	engine->i915 = NULL;
1900 1901
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1902 1903
}

1904
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1905
{
1906
	engine->submit_request = execlists_submit_request;
1907
	engine->cancel_requests = execlists_cancel_requests;
1908
	engine->schedule = execlists_schedule;
1909
	engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1910 1911 1912

	engine->park = NULL;
	engine->unpark = NULL;
1913 1914
}

1915
static void
1916
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1917 1918
{
	/* Default vfuncs which can be overriden by each engine. */
1919
	engine->init_hw = gen8_init_common_ring;
1920
	engine->reset_hw = reset_common_ring;
1921 1922 1923 1924

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1925 1926
	engine->request_alloc = execlists_request_alloc;

1927
	engine->emit_flush = gen8_emit_flush;
1928
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1929
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1930 1931

	engine->set_default_submission = execlists_set_default_submission;
1932

1933 1934
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1935
	engine->emit_bb_start = gen8_emit_bb_start;
1936 1937
}

1938
static inline void
1939
logical_ring_default_irqs(struct intel_engine_cs *engine)
1940
{
1941
	unsigned shift = engine->irq_shift;
1942 1943
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1944 1945
}

1946 1947 1948 1949 1950 1951
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1952 1953
	intel_engine_setup_common(engine);

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1969
	engine->execlists.fw_domains = fw_domains;
1970

1971
	tasklet_init(&engine->execlists.irq_tasklet,
1972 1973 1974 1975 1976 1977
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1978
static int logical_ring_init(struct intel_engine_cs *engine)
1979 1980 1981
{
	int ret;

1982
	ret = intel_engine_init_common(engine);
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1993
int logical_render_ring_init(struct intel_engine_cs *engine)
1994 1995 1996 1997
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1998 1999
	logical_ring_setup(engine);

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2010 2011
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2012

2013
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2028
	return logical_ring_init(engine);
2029 2030
}

2031
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2032 2033 2034 2035
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2036 2037
}

2038
static u32
2039
make_rpcs(struct drm_i915_private *dev_priv)
2040 2041 2042 2043 2044 2045 2046
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2047
	if (INTEL_GEN(dev_priv) < 9)
2048 2049 2050 2051 2052 2053 2054 2055
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2056
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2057
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2058
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2059 2060 2061 2062
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2063
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2064
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2065
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2066 2067 2068 2069
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2070 2071
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2072
			GEN8_RPCS_EU_MIN_SHIFT;
2073
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2074 2075 2076 2077 2078 2079 2080
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2081
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2082 2083 2084
{
	u32 indirect_ctx_offset;

2085
	switch (INTEL_GEN(engine->i915)) {
2086
	default:
2087
		MISSING_CASE(INTEL_GEN(engine->i915));
2088
		/* fall through */
2089 2090 2091 2092
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2106
static void execlists_init_reg_state(u32 *regs,
2107 2108 2109
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2110
{
2111 2112
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2142 2143
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2144 2145 2146
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2147
		if (wa_ctx->indirect_ctx.size) {
2148
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2149

2150
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2151 2152
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2153

2154
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2155
				intel_lr_indirect_ctx_offset(engine) << 6;
2156 2157 2158 2159 2160
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2161

2162
			regs[CTX_BB_PER_CTX_PTR + 1] =
2163
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2164
		}
2165
	}
2166 2167 2168 2169

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2170
	/* PDP values well be assigned later if needed */
2171 2172 2173 2174 2175 2176 2177 2178
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2179

2180
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2181 2182 2183 2184
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2185
		ASSIGN_CTX_PML4(ppgtt, regs);
2186 2187
	}

2188 2189 2190 2191
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2192 2193

		i915_oa_init_reg_state(engine, ctx, regs);
2194
	}
2195 2196 2197 2198 2199 2200 2201 2202 2203
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2204
	u32 *regs;
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2219
	ctx_obj->mm.dirty = true;
2220

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2239 2240
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2241 2242 2243 2244 2245
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2246

2247
	i915_gem_object_unpin_map(ctx_obj);
2248 2249 2250 2251

	return 0;
}

2252
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2253
					    struct intel_engine_cs *engine)
2254
{
2255
	struct drm_i915_gem_object *ctx_obj;
2256
	struct intel_context *ce = &ctx->engine[engine->id];
2257
	struct i915_vma *vma;
2258
	uint32_t context_size;
2259
	struct intel_ring *ring;
2260 2261
	int ret;

2262
	WARN_ON(ce->state);
2263

2264
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2265

2266 2267 2268 2269 2270
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2271

2272
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2273
	if (IS_ERR(ctx_obj)) {
2274
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2275
		return PTR_ERR(ctx_obj);
2276 2277
	}

2278
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2279 2280 2281 2282 2283
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2284
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2285 2286
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2287
		goto error_deref_obj;
2288 2289
	}

2290
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2291 2292
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2293
		goto error_ring_free;
2294 2295
	}

2296
	ce->ring = ring;
2297
	ce->state = vma;
2298 2299

	return 0;
2300

2301
error_ring_free:
2302
	intel_ring_free(ring);
2303
error_deref_obj:
2304
	i915_gem_object_put(ctx_obj);
2305
	return ret;
2306
}
2307

2308
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2309
{
2310
	struct intel_engine_cs *engine;
2311
	struct i915_gem_context *ctx;
2312
	enum intel_engine_id id;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2324
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2325
		for_each_engine(engine, dev_priv, id) {
2326 2327
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2328

2329 2330
			if (!ce->state)
				continue;
2331

2332 2333 2334 2335
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2336

2337 2338 2339
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2340

C
Chris Wilson 已提交
2341
			ce->state->obj->mm.dirty = true;
2342
			i915_gem_object_unpin_map(ce->state->obj);
2343

2344
			intel_ring_reset(ce->ring, 0);
2345
		}
2346 2347
	}
}