intel_lrc.c 76.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138
#include "intel_mocs.h"
139

140
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 142 143
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

187 188 189 190 191
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
192

193
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
enum {
	ADVANCED_CONTEXT = 0,
211
	LEGACY_32B_CONTEXT,
212 213 214
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
215 216 217 218
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
219 220 221 222 223 224 225
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
226
#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
227

228
static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 230 231
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
		struct drm_i915_gem_object *default_ctx_obj);

232

233 234 235 236 237 238
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
239
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 241 242
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
243 244
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
245 246
	WARN_ON(i915.enable_ppgtt == -1);

247 248 249 250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

253 254 255
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

256 257 258
	if (enable_execlists == 0)
		return 0;

259 260
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
261 262 263 264
		return 1;

	return 0;
}
265

266 267 268 269 270 271 272 273 274 275 276 277
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx_obj: Logical Ring Context backing object.
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * Return: 20-bits globally unique context ID.
 */
278 279
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
280 281
	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
			LRC_PPHWSP_PN * PAGE_SIZE;
282 283 284 285 286 287

	/* LRCA is required to be 4K aligned so the more significant 20 bits
	 * are globally unique */
	return lrca >> 12;
}

288 289 290 291
static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;

292
	return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
293
		IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
294 295 296
	       (ring->id == VCS || ring->id == VCS2);
}

297 298
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
299
{
300
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
301
	uint64_t desc;
302 303
	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
			LRC_PPHWSP_PN * PAGE_SIZE;
304 305

	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
306 307

	desc = GEN8_CTX_VALID;
308
	desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
309 310
	if (IS_GEN8(ctx_obj->base.dev))
		desc |= GEN8_CTX_L3LLC_COHERENT;
311 312 313 314 315 316 317 318
	desc |= GEN8_CTX_PRIVILEGE;
	desc |= lrca;
	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* desc |= GEN8_CTX_FORCE_RESTORE; */

319
	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
320
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
321
	if (disable_lite_restore_wa(ring))
322 323
		desc |= GEN8_CTX_FORCE_RESTORE;

324 325 326
	return desc;
}

327 328
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
329
{
330 331

	struct intel_engine_cs *ring = rq0->ring;
332 333
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
334
	uint64_t desc[2];
335

336
	if (rq1) {
337
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
338 339 340 341
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
342

343
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
344
	rq0->elsp_submitted++;
345

346
	/* You must always write both descriptors in the order below. */
347 348
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
349 350
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
351

352
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
353
	/* The context is automatically loaded after the following */
354
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
355

356
	/* ELSP is a wo register, use another nearby reg for posting */
357
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
358 359
	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
360 361
}

362
static int execlists_update_context(struct drm_i915_gem_request *rq)
363
{
364 365 366 367
	struct intel_engine_cs *ring = rq->ring;
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
368 369 370
	struct page *page;
	uint32_t *reg_state;

371 372 373 374
	BUG_ON(!ctx_obj);
	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
	WARN_ON(!i915_gem_obj_is_pinned(rb_obj));

375
	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
376 377
	reg_state = kmap_atomic(page);

378 379
	reg_state[CTX_RING_TAIL+1] = rq->tail;
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
380

381 382 383 384 385 386
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* True 32b PPGTT with dynamic page allocation: update PDP
		 * registers and point the unallocated PDPs to scratch page.
		 * PML4 is allocated during ppgtt init, so this is not needed
		 * in 48-bit mode.
		 */
387 388 389 390 391 392
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

393 394 395 396 397
	kunmap_atomic(reg_state);

	return 0;
}

398 399
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
400
{
401
	execlists_update_context(rq0);
402

403
	if (rq1)
404
		execlists_update_context(rq1);
405

406
	execlists_elsp_write(rq0, rq1);
407 408
}

409 410
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
411 412
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
413 414

	assert_spin_locked(&ring->execlist_lock);
415

416 417 418 419 420 421
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));

422 423 424 425 426 427 428 429
	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
430
		} else if (req0->ctx == cursor->ctx) {
431 432
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
433
			cursor->elsp_submitted = req0->elsp_submitted;
434 435
			list_move_tail(&req0->execlist_link,
				       &ring->execlist_retired_req_list);
436 437 438 439 440 441 442
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

443 444 445 446 447
	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
		/*
		 * WaIdleLiteRestore: make sure we never cause a lite
		 * restore with HEAD==TAIL
		 */
448
		if (req0->elsp_submitted) {
449 450 451 452 453 454 455 456 457 458 459 460 461 462
			/*
			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
			 * as we resubmit the request. See gen8_emit_request()
			 * for where we prepare the padding after the end of the
			 * request.
			 */
			struct intel_ringbuffer *ringbuf;

			ringbuf = req0->ctx->engine[ring->id].ringbuf;
			req0->tail += 8;
			req0->tail &= ringbuf->size - 1;
		}
	}

463 464
	WARN_ON(req1 && req1->elsp_submitted);

465
	execlists_submit_requests(req0, req1);
466 467
}

468 469 470
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
471
	struct drm_i915_gem_request *head_req;
472 473 474 475

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
476
					    struct drm_i915_gem_request,
477 478 479 480
					    execlist_link);

	if (head_req != NULL) {
		struct drm_i915_gem_object *ctx_obj =
481
				head_req->ctx->engine[ring->id].state;
482
		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
483 484 485 486
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
487 488
				list_move_tail(&head_req->execlist_link,
					       &ring->execlist_retired_req_list);
489 490
				return true;
			}
491 492 493 494 495 496
		}
	}

	return false;
}

B
Ben Widawsky 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509
static void get_context_status(struct intel_engine_cs *ring,
			       u8 read_pointer,
			       u32 *status, u32 *context_id)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;

	if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
		return;

	*status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
	*context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
}

510
/**
511
 * intel_lrc_irq_handler() - handle Context Switch interrupts
512 513 514 515 516
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
517
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
518 519 520 521 522
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
523
	u32 status = 0;
524 525 526 527 528 529
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
530
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
531
	if (read_pointer > write_pointer)
532
		write_pointer += GEN8_CSB_ENTRIES;
533 534 535 536

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
B
Ben Widawsky 已提交
537 538 539

		get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
				   &status, &status_id);
540

541 542 543
		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
			continue;

544 545 546 547 548 549 550 551
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

B
Ben Widawsky 已提交
552 553
		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		    (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
554 555 556 557 558
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

559 560 561 562 563 564
	if (disable_lite_restore_wa(ring)) {
		/* Prevent a ctx to preempt itself */
		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
		    (submit_contexts != 0))
			execlists_context_unqueue(ring);
	} else if (submit_contexts != 0) {
565
		execlists_context_unqueue(ring);
566
	}
567 568 569

	spin_unlock(&ring->execlist_lock);

570 571 572
	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");

573
	ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
574

575 576
	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
577
	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
578 579
		   _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				 ring->next_context_status_buffer << 8));
580 581
}

582
static int execlists_context_queue(struct drm_i915_gem_request *request)
583
{
584
	struct intel_engine_cs *ring = request->ring;
585
	struct drm_i915_gem_request *cursor;
586
	int num_elements = 0;
587

588 589 590
	if (request->ctx != ring->default_context)
		intel_lr_context_pin(request);

591 592
	i915_gem_request_reference(request);

593
	spin_lock_irq(&ring->execlist_lock);
594

595 596 597 598 599
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
600
		struct drm_i915_gem_request *tail_req;
601 602

		tail_req = list_last_entry(&ring->execlist_queue,
603
					   struct drm_i915_gem_request,
604 605
					   execlist_link);

606
		if (request->ctx == tail_req->ctx) {
607
			WARN(tail_req->elsp_submitted != 0,
608
				"More than 2 already-submitted reqs queued\n");
609 610
			list_move_tail(&tail_req->execlist_link,
				       &ring->execlist_retired_req_list);
611 612 613
		}
	}

614
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
615
	if (num_elements == 0)
616 617
		execlists_context_unqueue(ring);

618
	spin_unlock_irq(&ring->execlist_lock);
619 620 621 622

	return 0;
}

623
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
624
{
625
	struct intel_engine_cs *ring = req->ring;
626 627 628 629 630 631 632
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

633
	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
634 635 636 637 638 639 640
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

641
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
642 643
				 struct list_head *vmas)
{
644
	const unsigned other_rings = ~intel_ring_flag(req->ring);
645 646 647 648 649 650 651 652
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

653
		if (obj->active & other_rings) {
654
			ret = i915_gem_object_sync(obj, req->ring, &req);
655 656 657
			if (ret)
				return ret;
		}
658 659 660 661 662 663 664 665 666 667 668 669 670

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
671
	return logical_ring_invalidate_all_caches(req);
672 673
}

674
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
675 676 677
{
	int ret;

678 679
	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;

680
	if (request->ctx != request->ring->default_context) {
681
		ret = intel_lr_context_pin(request);
682
		if (ret)
683 684 685
			return ret;
	}

686 687 688 689 690 691 692 693 694 695 696 697 698
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

699 700 701
	return 0;
}

702
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
703
				       int bytes)
704
{
705 706 707
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *ring = req->ring;
	struct drm_i915_gem_request *target;
708 709
	unsigned space;
	int ret;
710 711 712 713

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

714 715 716
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

717
	list_for_each_entry(target, &ring->request_list, list) {
718 719 720 721 722
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
723
		if (target->ringbuf != ringbuf)
724 725 726
			continue;

		/* Would completion of this request free enough space? */
727
		space = __intel_ring_space(target->postfix, ringbuf->tail,
728 729
					   ringbuf->size);
		if (space >= bytes)
730 731 732
			break;
	}

733
	if (WARN_ON(&target->list == &ring->request_list))
734 735
		return -ENOSPC;

736
	ret = i915_wait_request(target);
737 738 739
	if (ret)
		return ret;

740 741
	ringbuf->space = space;
	return 0;
742 743 744 745
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
746
 * @request: Request to advance the logical ringbuffer of.
747 748 749 750 751 752 753
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
static void
754
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
755
{
756
	struct intel_engine_cs *ring = request->ring;
757
	struct drm_i915_private *dev_priv = request->i915;
758

759
	intel_logical_ring_advance(request->ringbuf);
760

761 762
	request->tail = request->ringbuf->tail;

763 764 765
	if (intel_ring_stopped(ring))
		return;

766 767 768 769
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
770 771
}

772
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
773 774 775 776 777 778 779 780 781 782 783 784 785
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

786
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
787
{
788
	struct intel_ringbuffer *ringbuf = req->ringbuf;
789 790 791 792
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
793

794 795 796 797
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
798

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So only need to to wait for the
			 * reserved size after flushing out the remainder.
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
			need_wrap = true;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
818
		}
819 820
	}

821 822
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
823 824
		if (unlikely(ret))
			return ret;
825 826 827

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
828 829 830 831 832 833 834 835
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
836
 * @req: The request to start some new work for
837 838 839 840 841 842 843 844 845
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
846
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
847
{
848
	struct drm_i915_private *dev_priv;
849 850
	int ret;

851 852 853
	WARN_ON(req == NULL);
	dev_priv = req->ring->dev->dev_private;

854 855 856 857 858
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

859
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
860 861 862
	if (ret)
		return ret;

863
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
864 865 866
	return 0;
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

882 883 884 885 886 887 888 889 890 891
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
892
 * @dispatch_flags: translated execbuffer call flags.
893 894 895 896 897 898
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
899
int intel_execlists_submission(struct i915_execbuffer_params *params,
900
			       struct drm_i915_gem_execbuffer2 *args,
901
			       struct list_head *vmas)
902
{
903 904
	struct drm_device       *dev = params->dev;
	struct intel_engine_cs  *ring = params->ring;
905
	struct drm_i915_private *dev_priv = dev->dev_private;
906 907
	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
	u64 exec_start;
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

943
	ret = execlists_move_to_gpu(params->request, vmas);
944 945 946 947 948
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
949
		ret = intel_logical_ring_begin(params->request, 4);
950 951 952 953 954
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
955
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
956 957 958 959 960 961
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

962 963 964
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

965
	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
966 967 968
	if (ret)
		return ret;

969
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
970

971
	i915_gem_execbuffer_move_to_active(vmas, params->request);
972
	i915_gem_execbuffer_retire_commands(params);
973

974 975 976
	return 0;
}

977 978
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
979
	struct drm_i915_gem_request *req, *tmp;
980 981 982 983 984 985 986
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
987
	spin_lock_irq(&ring->execlist_lock);
988
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
989
	spin_unlock_irq(&ring->execlist_lock);
990 991

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
992 993 994 995 996 997
		struct intel_context *ctx = req->ctx;
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
			intel_lr_context_unpin(req);
998
		list_del(&req->execlist_link);
999
		i915_gem_request_unreference(req);
1000 1001 1002
	}
}

1003 1004
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1023 1024
}

1025
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1026
{
1027
	struct intel_engine_cs *ring = req->ring;
1028 1029 1030 1031 1032
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

1033
	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1034 1035 1036 1037 1038 1039 1040
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

1041 1042 1043
static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
		struct drm_i915_gem_object *ctx_obj,
		struct intel_ringbuffer *ringbuf)
1044
{
1045 1046
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1047 1048 1049
	int ret = 0;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1050 1051 1052 1053
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
		return ret;
1054

1055 1056 1057
	ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
	if (ret)
		goto unpin_ctx_obj;
1058

1059
	ctx_obj->dirty = true;
1060

1061 1062 1063
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1064

1065 1066 1067 1068
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

	return ret;
}

static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
{
	int ret = 0;
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;

	if (rq->ctx->engine[ring->id].pin_count++ == 0) {
		ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
		if (ret)
			goto reset_pin_count;
	}
	return ret;

1087
reset_pin_count:
1088
	rq->ctx->engine[ring->id].pin_count = 0;
1089 1090 1091
	return ret;
}

1092
void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1093
{
1094 1095 1096 1097
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;

1098 1099
	if (ctx_obj) {
		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1100
		if (--rq->ctx->engine[ring->id].pin_count == 0) {
1101
			intel_unpin_ringbuffer_obj(ringbuf);
1102
			i915_gem_object_ggtt_unpin(ctx_obj);
1103
		}
1104 1105 1106
	}
}

1107
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1108 1109
{
	int ret, i;
1110 1111
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1112 1113 1114 1115
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1116
	if (w->count == 0)
1117 1118 1119
		return 0;

	ring->gpu_caches_dirty = true;
1120
	ret = logical_ring_flush_all_caches(req);
1121 1122 1123
	if (ret)
		return ret;

1124
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1125 1126 1127 1128 1129
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1130
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1131 1132 1133 1134 1135 1136 1137
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1138
	ret = logical_ring_flush_all_caches(req);
1139 1140 1141 1142 1143 1144
	if (ret)
		return ret;

	return 0;
}

1145
#define wa_ctx_emit(batch, index, cmd)					\
1146
	do {								\
1147 1148
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1149 1150
			return -ENOSPC;					\
		}							\
1151
		batch[__index] = (cmd);					\
1152 1153
	} while (0)

V
Ville Syrjälä 已提交
1154
#define wa_ctx_emit_reg(batch, index, reg) \
1155
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1179 1180 1181 1182 1183 1184
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1185
	if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1186 1187
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1188
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1189
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1190
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1191 1192 1193 1194
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1195
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1206
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1207
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1208
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1209 1210
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);
1211 1212 1213 1214

	return index;
}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1253
 *
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1267
	uint32_t scratch_addr;
1268 1269
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1270
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1271
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1272

1273 1274
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
	if (IS_BROADWELL(ring->dev)) {
1275 1276 1277 1278
		int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
		if (rc < 0)
			return rc;
		index = rc;
1279 1280
	}

1281 1282 1283 1284
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;

1285 1286 1287 1288 1289 1290 1291 1292 1293
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1294

1295 1296
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1297
		wa_ctx_emit(batch, index, MI_NOOP);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1315
 * @batch: page in which WA are loaded
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1332
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1333
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1334

1335
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1336 1337 1338 1339

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1340 1341 1342 1343 1344
static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1345
	int ret;
1346
	struct drm_device *dev = ring->dev;
1347 1348
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1349
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1350
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1351
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1352
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1353

1354 1355 1356 1357 1358 1359
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
	if (ret < 0)
		return ret;
	index = ret;

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1372
	struct drm_device *dev = ring->dev;
1373 1374
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1375
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1376
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1377
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1378
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1379
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1380 1381 1382 1383 1384
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1385
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1386
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1387
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1388 1389
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1390 1391 1392 1393 1394
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
{
	int ret;

	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
	if (!ring->wa_ctx.obj) {
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		return ret;
	}

	return 0;
}

static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
{
	if (ring->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		ring->wa_ctx.obj = NULL;
	}
}

static int intel_init_workaround_bb(struct intel_engine_cs *ring)
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;

	WARN_ON(ring->id != RCS);

1435
	/* update this when WA for higher Gen are added */
1436 1437 1438
	if (INTEL_INFO(ring->dev)->gen > 9) {
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
			  INTEL_INFO(ring->dev)->gen);
1439
		return 0;
1440
	}
1441

1442 1443 1444 1445 1446 1447
	/* some WA perform writes to scratch page, ensure it is valid */
	if (ring->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
		return -EINVAL;
	}

1448 1449 1450 1451 1452 1453
	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1454
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	batch = kmap_atomic(page);
	offset = 0;

	if (INTEL_INFO(ring->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen8_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	} else if (INTEL_INFO(ring->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen9_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	}

out:
	kunmap_atomic(batch);
	if (ret)
		lrc_destroy_wa_ctx_obj(ring);

	return ret;
}

1496 1497 1498 1499
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1500
	u8 next_context_status_buffer_hw;
1501

1502 1503 1504
	lrc_setup_hardware_status_page(ring,
				ring->default_context->engine[ring->id].state);

1505 1506 1507
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1508 1509 1510 1511
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1522 1523
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1524
	 */
1525 1526
	next_context_status_buffer_hw =
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

	ring->next_context_status_buffer = next_context_status_buffer_hw;
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1564
	return init_workarounds_ring(ring);
1565 1566
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1594
		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1595
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1596
		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1597 1598 1599 1600 1601 1602 1603 1604 1605
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1606
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1607
			      u64 offset, unsigned dispatch_flags)
1608
{
1609
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1610
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1611 1612
	int ret;

1613 1614 1615 1616
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1617 1618
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1619 1620
	if (req->ctx->ppgtt &&
	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1621 1622
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1623 1624 1625 1626
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1627 1628 1629 1630

		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
	}

1631
	ret = intel_logical_ring_begin(req, 4);
1632 1633 1634 1635
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1636 1637 1638 1639
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1640 1641 1642 1643 1644 1645 1646 1647
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1648 1649 1650 1651 1652 1653
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1654
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1681
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1682 1683 1684
			   u32 invalidate_domains,
			   u32 unused)
{
1685
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1686 1687 1688 1689 1690 1691
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1692
	ret = intel_logical_ring_begin(request, 4);
1693 1694 1695 1696 1697
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1722
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1723 1724 1725
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1726
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1727 1728
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1729
	bool vf_flush_wa = false;
1730 1731 1732 1733 1734 1735 1736 1737
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1738
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1751 1752 1753 1754 1755 1756 1757
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
		if (IS_GEN9(ring->dev))
			vf_flush_wa = true;
	}
1758

1759
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1760 1761 1762
	if (ret)
		return ret;

1763 1764 1765 1766 1767 1768 1769 1770 1771
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{

	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */

	if (!lazy_coherency)
		intel_flush_status_page(ring, I915_GEM_HWS_INDEX);

	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
	intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
}

1821
static int gen8_emit_request(struct drm_i915_gem_request *request)
1822
{
1823
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1824 1825 1826 1827
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1828 1829 1830 1831 1832
	/*
	 * Reserve space for 2 NOOPs at the end of each request to be
	 * used as a workaround for not being allowed to do lite
	 * restore with HEAD==TAIL (WaIdleLiteRestore).
	 */
1833
	ret = intel_logical_ring_begin(request, 8);
1834 1835 1836
	if (ret)
		return ret;

1837
	cmd = MI_STORE_DWORD_IMM_GEN4;
1838 1839 1840 1841 1842 1843 1844
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1845
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1846 1847
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1848
	intel_logical_ring_advance_and_submit(request);
1849

1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

1858 1859 1860
	return 0;
}

1861
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1862 1863 1864 1865
{
	struct render_state so;
	int ret;

1866
	ret = i915_gem_render_state_prepare(req->ring, &so);
1867 1868 1869 1870 1871 1872
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1873
	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1874
				       I915_DISPATCH_SECURE);
1875 1876 1877
	if (ret)
		goto out;

1878 1879 1880 1881 1882 1883
	ret = req->ring->emit_bb_start(req,
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1884
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1885 1886 1887 1888 1889 1890

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1891
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1892 1893 1894
{
	int ret;

1895
	ret = intel_logical_ring_workarounds_emit(req);
1896 1897 1898
	if (ret)
		return ret;

1899 1900 1901 1902 1903 1904 1905 1906
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1907
	return intel_lr_context_render_state_init(req);
1908 1909
}

1910 1911 1912 1913 1914 1915
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1916 1917
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1918
	struct drm_i915_private *dev_priv;
1919

1920 1921 1922
	if (!intel_ring_initialized(ring))
		return;

1923 1924
	dev_priv = ring->dev->dev_private;

1925 1926 1927 1928
	if (ring->buffer) {
		intel_logical_ring_stop(ring);
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
	}
1929 1930 1931 1932 1933

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);
1934
	i915_gem_batch_pool_fini(&ring->batch_pool);
1935 1936 1937 1938 1939

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1940 1941

	lrc_destroy_wa_ctx_obj(ring);
1942
	ring->dev = NULL;
1943 1944
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
static void
logical_ring_default_vfuncs(struct drm_device *dev,
			    struct intel_engine_cs *ring)
{
	/* Default vfuncs which can be overriden by each engine. */
	ring->init_hw = gen8_init_common_ring;
	ring->emit_request = gen8_emit_request;
	ring->emit_flush = gen8_emit_flush;
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
	ring->emit_bb_start = gen8_emit_bb_start;
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
}

static int
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1967
{
1968 1969 1970 1971 1972 1973 1974 1975
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
1976
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1977 1978
	init_waitqueue_head(&ring->irq_queue);

1979
	INIT_LIST_HEAD(&ring->buffers);
1980
	INIT_LIST_HEAD(&ring->execlist_queue);
1981
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1982 1983
	spin_lock_init(&ring->execlist_lock);

1984 1985
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
1986
		goto error;
1987

1988 1989
	ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
	if (ret)
1990
		goto error;
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

	/* As this is the default context, always pin it */
	ret = intel_lr_context_do_pin(
			ring,
			ring->default_context->engine[ring->id].state,
			ring->default_context->engine[ring->id].ringbuf);
	if (ret) {
		DRM_ERROR(
			"Failed to pin and map ringbuffer %s: %d\n",
			ring->name, ret);
2001
		goto error;
2002
	}
2003

2004 2005 2006 2007
	return 0;

error:
	intel_logical_ring_cleanup(ring);
2008
	return ret;
2009 2010 2011 2012 2013 2014
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2015
	int ret;
2016 2017 2018 2019 2020 2021

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
2022 2023 2024 2025
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2026

2027 2028 2029
	logical_ring_default_vfuncs(dev, ring);

	/* Override some for render ring. */
2030 2031 2032 2033
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
2034
	ring->init_context = gen8_init_rcs_context;
2035
	ring->cleanup = intel_fini_pipe_control;
2036
	ring->emit_flush = gen8_emit_flush_render;
2037

2038
	ring->dev = dev;
2039 2040

	ret = intel_init_pipe_control(ring);
2041 2042 2043
	if (ret)
		return ret;

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	ret = intel_init_workaround_bb(ring);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2055 2056
	ret = logical_ring_init(dev, ring);
	if (ret) {
2057
		lrc_destroy_wa_ctx_obj(ring);
2058
	}
2059 2060

	return ret;
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2073 2074
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2075

2076
	logical_ring_default_vfuncs(dev, ring);
2077

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2091 2092
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2093

2094
	logical_ring_default_vfuncs(dev, ring);
2095

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2109 2110
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2111

2112
	logical_ring_default_vfuncs(dev, ring);
2113

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2127 2128
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2129

2130
	logical_ring_default_vfuncs(dev, ring);
2131

2132 2133 2134
	return logical_ring_init(dev, ring);
}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2235 2236 2237 2238
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
2239 2240
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2241
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2242 2243 2244 2245
	struct page *page;
	uint32_t *reg_state;
	int ret;

2246 2247 2248
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2265
	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2266 2267 2268 2269 2270 2271 2272
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2273 2274 2275 2276 2277 2278 2279 2280
	reg_state[CTX_LRI_HEADER_0] =
		MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					  CTX_CTRL_RS_CTX_ENABLE));
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2281 2282 2283
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
		       RING_BB_PPGTT);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2294
	if (ring->id == RCS) {
2295 2296 2297
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		if (ring->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2313
	}
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
	/* PDP values well be assigned later if needed */
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2325

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

2344 2345
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2346 2347
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2348 2349 2350 2351 2352 2353 2354 2355
	}

	kunmap_atomic(reg_state);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2356 2357 2358 2359 2360 2361 2362 2363
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2364 2365
void intel_lr_context_free(struct intel_context *ctx)
{
2366 2367
	int i;

2368
	for (i = 0; i < I915_NUM_RINGS; i++) {
2369
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2370

2371
		if (ctx_obj) {
2372 2373 2374 2375
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

2376 2377 2378 2379 2380 2381 2382
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
			WARN_ON(ctx->engine[ring->id].pin_count);
			intel_ringbuffer_free(ringbuf);
			drm_gem_object_unreference(&ctx_obj->base);
2383 2384 2385 2386
		}
	}
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2401
uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2402 2403 2404
{
	int ret = 0;

2405
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2406 2407 2408

	switch (ring->id) {
	case RCS:
2409 2410 2411 2412
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2423 2424
}

2425
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2426 2427 2428
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2429
	struct page *page;
2430

2431 2432 2433 2434 2435
	/* The HWSP is part of the default context object in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
			+ LRC_PPHWSP_PN * PAGE_SIZE;
	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
	ring->status_page.page_addr = kmap(page);
2436 2437 2438 2439 2440 2441 2442
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

2443
/**
2444
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2445 2446 2447 2448 2449 2450 2451 2452 2453
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2454
 * Return: non-zero on error.
2455
 */
2456 2457

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2458 2459
				     struct intel_engine_cs *ring)
{
2460 2461 2462
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2463
	struct intel_ringbuffer *ringbuf;
2464 2465
	int ret;

2466
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2467
	WARN_ON(ctx->engine[ring->id].state);
2468

2469
	context_size = round_up(intel_lr_context_size(ring), 4096);
2470

2471 2472 2473
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2474
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2475 2476 2477
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2478 2479
	}

2480 2481 2482
	ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2483
		goto error_deref_obj;
2484 2485 2486 2487 2488
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2489
		goto error_ringbuf;
2490 2491 2492
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
2493
	ctx->engine[ring->id].state = ctx_obj;
2494

2495 2496
	if (ctx != ring->default_context && ring->init_context) {
		struct drm_i915_gem_request *req;
2497

2498 2499 2500 2501 2502 2503
		ret = i915_gem_request_alloc(ring,
			ctx, &req);
		if (ret) {
			DRM_ERROR("ring create req: %d\n",
				ret);
			goto error_ringbuf;
2504 2505
		}

2506 2507 2508 2509 2510 2511 2512 2513
		ret = ring->init_context(req);
		if (ret) {
			DRM_ERROR("ring init context: %d\n",
				ret);
			i915_gem_request_cancel(req);
			goto error_ringbuf;
		}
		i915_add_request_no_flush(req);
2514
	}
2515
	return 0;
2516

2517 2518
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2519
error_deref_obj:
2520
	drm_gem_object_unreference(&ctx_obj->base);
2521 2522
	ctx->engine[ring->id].ringbuf = NULL;
	ctx->engine[ring->id].state = NULL;
2523
	return ret;
2524
}
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
2548
		page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}