intel_lrc.c 75.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232 233
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

234
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
235
					    struct intel_engine_cs *engine);
236
static int intel_lr_context_pin(struct i915_gem_context *ctx,
237
				struct intel_engine_cs *engine);
238

239 240 241 242 243 244
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
245
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 247 248
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
249
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
250
{
251 252 253
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
254
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
255 256
		return 1;

257
	if (INTEL_GEN(dev_priv) >= 9)
258 259
		return 1;

260 261 262
	if (enable_execlists == 0)
		return 0;

263
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && USES_PPGTT(dev_priv))
264 265 266 267
		return 1;

	return 0;
}
268

269
static void
270
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271
{
272
	struct drm_i915_private *dev_priv = engine->i915;
273

274
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
275
		engine->idle_lite_restore_wa = ~0;
276

277 278
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
279
					(engine->id == VCS || engine->id == VCS2);
280

281
	engine->ctx_desc_template = GEN8_CTX_VALID;
282
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
283
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
284
	if (IS_GEN8(dev_priv))
285 286
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287 288 289 290 291 292 293

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294 295
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 297
}

298
/**
299 300
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
301
 *
302
 * @ctx: Context to work on
303
 * @engine: Engine the descriptor will be used with
304
 *
305 306 307 308 309 310
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
311
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
312
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
313
 *    bits 32-52:    ctx ID, a globally unique tag
314 315
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
316
 */
317
static void
318
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
319
				   struct intel_engine_cs *engine)
320
{
321
	struct intel_context *ce = &ctx->engine[engine->id];
322
	u64 desc;
323

324
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
325

326
	desc = engine->ctx_desc_template;			/* bits  0-11 */
327 328
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
329
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
330

331
	ce->lrc_desc = desc;
332 333
}

334
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
335
				     struct intel_engine_cs *engine)
336
{
337
	return ctx->engine[engine->id].lrc_desc;
338
}
339

340 341
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
342
{
343

344
	struct intel_engine_cs *engine = rq0->engine;
345
	struct drm_i915_private *dev_priv = rq0->i915;
346
	uint64_t desc[2];
347

348
	if (rq1) {
349
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
350 351 352 353
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
354

355
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
356
	rq0->elsp_submitted++;
357

358
	/* You must always write both descriptors in the order below. */
359 360
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
361

362
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
363
	/* The context is automatically loaded after the following */
364
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
365

366
	/* ELSP is a wo register, use another nearby reg for posting */
367
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
368 369
}

370 371 372 373 374 375 376 377 378 379
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
380
{
381
	struct intel_engine_cs *engine = rq->engine;
382
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
383
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
384

385
	reg_state[CTX_RING_TAIL+1] = rq->tail;
386

387 388 389 390 391 392 393
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
394 395
}

396 397
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
398
{
399
	struct drm_i915_private *dev_priv = rq0->i915;
400
	unsigned int fw_domains = rq0->engine->fw_domains;
401

402
	execlists_update_context(rq0);
403

404
	if (rq1)
405
		execlists_update_context(rq1);
406

407
	spin_lock_irq(&dev_priv->uncore.lock);
408
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
409

410
	execlists_elsp_write(rq0, rq1);
411

412
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
413
	spin_unlock_irq(&dev_priv->uncore.lock);
414 415
}

416
static void execlists_context_unqueue(struct intel_engine_cs *engine)
417
{
418
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
419
	struct drm_i915_gem_request *cursor, *tmp;
420

421
	assert_spin_locked(&engine->execlist_lock);
422

423 424 425 426
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
427
	WARN_ON(!intel_irqs_enabled(engine->i915));
428

429
	/* Try to read in pairs */
430
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
431 432 433
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
434
		} else if (req0->ctx == cursor->ctx) {
435 436
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
437
			cursor->elsp_submitted = req0->elsp_submitted;
438 439
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
440 441 442
			req0 = cursor;
		} else {
			req1 = cursor;
443
			WARN_ON(req1->elsp_submitted);
444 445 446 447
			break;
		}
	}

448 449 450
	if (unlikely(!req0))
		return;

451
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
452
		/*
453 454 455 456 457 458
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
459
		 */
460
		struct intel_ringbuffer *ringbuf;
461

462
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
463 464
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
465 466
	}

467
	execlists_submit_requests(req0, req1);
468 469
}

470
static unsigned int
471
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
472
{
473
	struct drm_i915_gem_request *head_req;
474

475
	assert_spin_locked(&engine->execlist_lock);
476

477
	head_req = list_first_entry_or_null(&engine->execlist_queue,
478
					    struct drm_i915_gem_request,
479 480
					    execlist_link);

481 482
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
483 484 485 486 487 488

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

489 490
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
491

492
	return 1;
493 494
}

495
static u32
496
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
497
		   u32 *context_id)
B
Ben Widawsky 已提交
498
{
499
	struct drm_i915_private *dev_priv = engine->i915;
500
	u32 status;
B
Ben Widawsky 已提交
501

502 503
	read_pointer %= GEN8_CSB_ENTRIES;

504
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
505 506 507

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
508

509
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
510 511 512
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
513 514
}

515
/**
516
 * intel_lrc_irq_handler() - handle Context Switch interrupts
517
 * @engine: Engine Command Streamer to handle.
518 519 520 521
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
522
static void intel_lrc_irq_handler(unsigned long data)
523
{
524
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
525
	struct drm_i915_private *dev_priv = engine->i915;
526
	u32 status_pointer;
527
	unsigned int read_pointer, write_pointer;
528 529
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
530 531
	unsigned int submit_contexts = 0;

532
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
533

534
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
535

536
	read_pointer = engine->next_context_status_buffer;
537
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
538
	if (read_pointer > write_pointer)
539
		write_pointer += GEN8_CSB_ENTRIES;
540 541

	while (read_pointer < write_pointer) {
542 543 544 545 546 547
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
548

549 550 551 552 553 554 555 556
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

557
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
558 559 560 561 562 563 564

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
565 566 567 568 569
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

570
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
571 572
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
573
				execlists_check_remove_request(engine, csb[i][1]);
574 575
	}

576
	if (submit_contexts) {
577
		if (!engine->disable_lite_restore_wa ||
578 579
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
580
	}
581

582
	spin_unlock(&engine->execlist_lock);
583 584 585

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
586 587
}

588
static void execlists_context_queue(struct drm_i915_gem_request *request)
589
{
590
	struct intel_engine_cs *engine = request->engine;
591
	struct drm_i915_gem_request *cursor;
592
	int num_elements = 0;
593

594
	spin_lock_bh(&engine->execlist_lock);
595

596
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
597 598 599 600
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
601
		struct drm_i915_gem_request *tail_req;
602

603
		tail_req = list_last_entry(&engine->execlist_queue,
604
					   struct drm_i915_gem_request,
605 606
					   execlist_link);

607
		if (request->ctx == tail_req->ctx) {
608
			WARN(tail_req->elsp_submitted != 0,
609
				"More than 2 already-submitted reqs queued\n");
610 611
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
612 613 614
		}
	}

615
	i915_gem_request_reference(request);
616
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
617
	request->ctx_hw_id = request->ctx->hw_id;
618
	if (num_elements == 0)
619
		execlists_context_unqueue(engine);
620

621
	spin_unlock_bh(&engine->execlist_lock);
622 623
}

624
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
625
{
626
	struct intel_engine_cs *engine = req->engine;
627 628 629 630
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
631
	if (engine->gpu_caches_dirty)
632 633
		flush_domains = I915_GEM_GPU_DOMAINS;

634
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
635 636 637
	if (ret)
		return ret;

638
	engine->gpu_caches_dirty = false;
639 640 641
	return 0;
}

642
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
643 644
				 struct list_head *vmas)
{
645
	const unsigned other_rings = ~intel_engine_flag(req->engine);
646 647 648 649 650 651 652 653
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

654
		if (obj->active & other_rings) {
655
			ret = i915_gem_object_sync(obj, req->engine, &req);
656 657 658
			if (ret)
				return ret;
		}
659 660 661 662 663 664 665 666 667 668 669 670 671

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
672
	return logical_ring_invalidate_all_caches(req);
673 674
}

675
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
676
{
677
	struct intel_engine_cs *engine = request->engine;
678
	struct intel_context *ce = &request->ctx->engine[engine->id];
679
	int ret;
680

681 682 683 684
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
685
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
686

687
	if (!ce->state) {
688 689 690 691 692
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

693
	request->ringbuf = ce->ringbuf;
694

695 696 697 698 699 700
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
701
		ret = i915_guc_wq_check_space(request);
702 703 704 705
		if (ret)
			return ret;
	}

706 707 708
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
709

710 711 712 713
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

714
	if (!ce->initialised) {
715 716 717 718
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

719
		ce->initialised = true;
720 721 722 723 724 725 726 727 728
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

729
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
730 731 732
	return 0;

err_unpin:
733
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
734
	return ret;
735 736 737 738
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
739
 * @request: Request to advance the logical ringbuffer of.
740 741 742 743 744 745
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
746
static int
747
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
748
{
749
	struct intel_ringbuffer *ringbuf = request->ringbuf;
750
	struct intel_engine_cs *engine = request->engine;
751

752 753
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
754

755 756 757 758 759 760 761 762 763
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
764

765
	if (intel_engine_stopped(engine))
766
		return 0;
767

768 769 770 771 772 773 774 775
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
776

777 778
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
779 780
	else
		execlists_context_queue(request);
781 782

	return 0;
783 784
}

785 786 787 788 789 790 791 792 793 794
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
795
 * @dispatch_flags: translated execbuffer call flags.
796 797 798 799 800 801
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
802
int intel_execlists_submission(struct i915_execbuffer_params *params,
803
			       struct drm_i915_gem_execbuffer2 *args,
804
			       struct list_head *vmas)
805
{
806
	struct drm_device       *dev = params->dev;
807
	struct intel_engine_cs *engine = params->engine;
808
	struct drm_i915_private *dev_priv = dev->dev_private;
809
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
810
	u64 exec_start;
811 812 813 814 815 816 817 818 819 820
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
821
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

846
	ret = execlists_move_to_gpu(params->request, vmas);
847 848 849
	if (ret)
		return ret;

850
	if (engine == &dev_priv->engine[RCS] &&
851
	    instp_mode != dev_priv->relative_constants_mode) {
852
		ret = intel_ring_begin(params->request, 4);
853 854 855 856 857
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
858
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
859 860 861 862 863 864
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

865 866 867
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

868
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
869 870 871
	if (ret)
		return ret;

872
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
873

874
	i915_gem_execbuffer_move_to_active(vmas, params->request);
875

876 877 878
	return 0;
}

879
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
880
{
881
	struct drm_i915_gem_request *req, *tmp;
882
	LIST_HEAD(cancel_list);
883

884
	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
885

886
	spin_lock_bh(&engine->execlist_lock);
887
	list_replace_init(&engine->execlist_queue, &cancel_list);
888
	spin_unlock_bh(&engine->execlist_lock);
889

890
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
891
		list_del(&req->execlist_link);
892
		i915_gem_request_unreference(req);
893 894 895
	}
}

896
void intel_logical_ring_stop(struct intel_engine_cs *engine)
897
{
898
	struct drm_i915_private *dev_priv = engine->i915;
899 900
	int ret;

901
	if (!intel_engine_initialized(engine))
902 903
		return;

904
	ret = intel_engine_idle(engine);
905
	if (ret)
906
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
907
			  engine->name, ret);
908 909

	/* TODO: Is this correct with Execlists enabled? */
910 911 912
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
913 914
		return;
	}
915
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
916 917
}

918
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
919
{
920
	struct intel_engine_cs *engine = req->engine;
921 922
	int ret;

923
	if (!engine->gpu_caches_dirty)
924 925
		return 0;

926
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
927 928 929
	if (ret)
		return ret;

930
	engine->gpu_caches_dirty = false;
931 932 933
	return 0;
}

934
static int intel_lr_context_pin(struct i915_gem_context *ctx,
935
				struct intel_engine_cs *engine)
936
{
937
	struct drm_i915_private *dev_priv = ctx->i915;
938
	struct intel_context *ce = &ctx->engine[engine->id];
939 940
	void *vaddr;
	u32 *lrc_reg_state;
941
	int ret;
942

943
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
944

945
	if (ce->pin_count++)
946 947
		return 0;

948 949
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
950
	if (ret)
951
		goto err;
952

953
	vaddr = i915_gem_object_pin_map(ce->state);
954 955
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
956 957 958
		goto unpin_ctx_obj;
	}

959 960
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

961
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
962
	if (ret)
963
		goto unpin_map;
964

965
	i915_gem_context_reference(ctx);
966
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
967
	intel_lr_context_descriptor_update(ctx, engine);
968 969 970 971

	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
972

973 974 975
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
976

977
	return 0;
978

979
unpin_map:
980
	i915_gem_object_unpin_map(ce->state);
981
unpin_ctx_obj:
982
	i915_gem_object_ggtt_unpin(ce->state);
983
err:
984
	ce->pin_count = 0;
985 986 987
	return ret;
}

988
void intel_lr_context_unpin(struct i915_gem_context *ctx,
989
			    struct intel_engine_cs *engine)
990
{
991
	struct intel_context *ce = &ctx->engine[engine->id];
992

993
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
994
	GEM_BUG_ON(ce->pin_count == 0);
995

996
	if (--ce->pin_count)
997
		return;
998

999
	intel_unpin_ringbuffer_obj(ce->ringbuf);
1000

1001 1002
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
1003

1004 1005 1006
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
1007

1008
	i915_gem_context_unreference(ctx);
1009 1010
}

1011
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1012 1013
{
	int ret, i;
1014
	struct intel_engine_cs *engine = req->engine;
1015
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1016
	struct i915_workarounds *w = &req->i915->workarounds;
1017

1018
	if (w->count == 0)
1019 1020
		return 0;

1021
	engine->gpu_caches_dirty = true;
1022
	ret = logical_ring_flush_all_caches(req);
1023 1024 1025
	if (ret)
		return ret;

1026
	ret = intel_ring_begin(req, w->count * 2 + 2);
1027 1028 1029 1030 1031
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1032
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1033 1034 1035 1036 1037 1038
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1039
	engine->gpu_caches_dirty = true;
1040
	ret = logical_ring_flush_all_caches(req);
1041 1042 1043 1044 1045 1046
	if (ret)
		return ret;

	return 0;
}

1047
#define wa_ctx_emit(batch, index, cmd)					\
1048
	do {								\
1049 1050
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1051 1052
			return -ENOSPC;					\
		}							\
1053
		batch[__index] = (cmd);					\
1054 1055
	} while (0)

V
Ville Syrjälä 已提交
1056
#define wa_ctx_emit_reg(batch, index, reg) \
1057
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1075
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1076 1077 1078 1079 1080
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1081 1082 1083 1084 1085 1086
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1087
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0))
1088 1089
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1090
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1091
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1092
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1093
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1094 1095 1096
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1097
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1108
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1109
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1110
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1111
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1112
	wa_ctx_emit(batch, index, 0);
1113 1114 1115 1116

	return index;
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1155
 *
1156 1157 1158 1159 1160 1161 1162 1163
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1164
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1165 1166 1167 1168
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1169
	uint32_t scratch_addr;
1170 1171
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1172
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1173
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1174

1175
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1176
	if (IS_BROADWELL(engine->i915)) {
1177
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1178 1179 1180
		if (rc < 0)
			return rc;
		index = rc;
1181 1182
	}

1183 1184
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1185
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1196

1197 1198
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1199
		wa_ctx_emit(batch, index, MI_NOOP);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1217
 * @batch: page in which WA are loaded
1218 1219 1220 1221 1222 1223 1224 1225 1226
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1227
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1228 1229 1230 1231 1232 1233
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1234
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1235
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1236

1237
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1238 1239 1240 1241

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1242
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1243 1244 1245 1246
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1247
	int ret;
1248 1249
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1250
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1251 1252
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1253
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1254

1255
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1256
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1257 1258 1259 1260
	if (ret < 0)
		return ret;
	index = ret;

1261 1262 1263 1264 1265 1266 1267
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1268
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1269 1270 1271 1272 1273 1274
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1275
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1276 1277
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1278
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1279
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1280 1281 1282 1283 1284
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1285
	/* WaClearTdlStateAckDirtyBits:bxt */
1286
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1304
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1305 1306
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1307 1308
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1309 1310 1311 1312 1313
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1314
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1315 1316 1317
{
	int ret;

1318
	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1319
						   PAGE_ALIGN(size));
1320
	if (IS_ERR(engine->wa_ctx.obj)) {
1321
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1322 1323 1324
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1325 1326
	}

1327
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1328 1329 1330
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1331
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1332 1333 1334 1335 1336 1337
		return ret;
	}

	return 0;
}

1338
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1339
{
1340 1341 1342 1343
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1344 1345 1346
	}
}

1347
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1348 1349 1350 1351 1352
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1353
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1354

1355
	WARN_ON(engine->id != RCS);
1356

1357
	/* update this when WA for higher Gen are added */
1358
	if (INTEL_GEN(engine->i915) > 9) {
1359
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1360
			  INTEL_GEN(engine->i915));
1361
		return 0;
1362
	}
1363

1364
	/* some WA perform writes to scratch page, ensure it is valid */
1365 1366
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1367 1368 1369
		return -EINVAL;
	}

1370
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1371 1372 1373 1374 1375
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1376
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1377 1378 1379
	batch = kmap_atomic(page);
	offset = 0;

1380
	if (IS_GEN8(engine->i915)) {
1381
		ret = gen8_init_indirectctx_bb(engine,
1382 1383 1384 1385 1386 1387
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1388
		ret = gen8_init_perctx_bb(engine,
1389 1390 1391 1392 1393
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1394
	} else if (IS_GEN9(engine->i915)) {
1395
		ret = gen9_init_indirectctx_bb(engine,
1396 1397 1398 1399 1400 1401
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1402
		ret = gen9_init_perctx_bb(engine,
1403 1404 1405 1406 1407
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1408 1409 1410 1411 1412
	}

out:
	kunmap_atomic(batch);
	if (ret)
1413
		lrc_destroy_wa_ctx_obj(engine);
1414 1415 1416 1417

	return ret;
}

1418 1419
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1420
	struct drm_i915_private *dev_priv = engine->i915;
1421 1422 1423 1424 1425 1426

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1427
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1428
{
1429
	struct drm_i915_private *dev_priv = engine->i915;
1430
	unsigned int next_context_status_buffer_hw;
1431

1432
	lrc_init_hws(engine);
1433

1434 1435 1436
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1437

1438
	I915_WRITE(RING_MODE_GEN7(engine),
1439 1440
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1441
	POSTING_READ(RING_MODE_GEN7(engine));
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1452 1453
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1454
	 */
1455
	next_context_status_buffer_hw =
1456
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1457 1458 1459 1460 1461 1462 1463 1464 1465

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1466 1467
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1468

1469
	intel_engine_init_hangcheck(engine);
1470

1471
	return intel_mocs_init_engine(engine);
1472 1473
}

1474
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1475
{
1476
	struct drm_i915_private *dev_priv = engine->i915;
1477 1478
	int ret;

1479
	ret = gen8_init_common_ring(engine);
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1493
	return init_workarounds_ring(engine);
1494 1495
}

1496
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1497 1498 1499
{
	int ret;

1500
	ret = gen8_init_common_ring(engine);
1501 1502 1503
	if (ret)
		return ret;

1504
	return init_workarounds_ring(engine);
1505 1506
}

1507 1508 1509
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1510
	struct intel_engine_cs *engine = req->engine;
1511 1512 1513 1514
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1515
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1516 1517 1518 1519 1520 1521 1522
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1523 1524
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1525
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1526 1527
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1528 1529 1530 1531 1532 1533 1534 1535 1536
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1537
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1538
			      u64 offset, unsigned dispatch_flags)
1539
{
1540
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1541
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1542 1543
	int ret;

1544 1545 1546 1547
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1548 1549
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1550
	if (req->ctx->ppgtt &&
1551
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1552
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1553
		    !intel_vgpu_active(req->i915)) {
1554 1555 1556 1557
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1558

1559
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1560 1561
	}

1562
	ret = intel_ring_begin(req, 4);
1563 1564 1565 1566
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1567 1568 1569 1570
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1571 1572 1573 1574 1575 1576 1577 1578
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1579
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1580
{
1581
	struct drm_i915_private *dev_priv = engine->i915;
1582 1583
	unsigned long flags;

1584
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1585 1586 1587
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1588 1589 1590 1591
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1592 1593 1594 1595 1596 1597
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1598
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1599
{
1600
	struct drm_i915_private *dev_priv = engine->i915;
1601 1602 1603
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1604 1605 1606
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1607 1608 1609 1610
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1611
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1612 1613 1614
			   u32 invalidate_domains,
			   u32 unused)
{
1615
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1616
	struct intel_engine_cs *engine = ringbuf->engine;
1617
	struct drm_i915_private *dev_priv = request->i915;
1618 1619 1620
	uint32_t cmd;
	int ret;

1621
	ret = intel_ring_begin(request, 4);
1622 1623 1624 1625 1626
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1627 1628 1629 1630 1631 1632 1633 1634 1635
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1636
		if (engine == &dev_priv->engine[VCS])
1637
			cmd |= MI_INVALIDATE_BSD;
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1651
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1652 1653 1654
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1655
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1656
	struct intel_engine_cs *engine = ringbuf->engine;
1657
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1658
	bool vf_flush_wa = false;
1659 1660 1661 1662 1663 1664 1665 1666
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1667
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1668
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1681 1682 1683 1684
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1685
		if (IS_GEN9(request->i915))
1686 1687
			vf_flush_wa = true;
	}
1688

1689
	ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1690 1691 1692
	if (ret)
		return ret;

1693 1694 1695 1696 1697 1698 1699 1700 1701
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1713
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1714
{
1715
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1716 1717
}

1718
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1719
{
1720
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1721 1722
}

1723
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1735
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1736 1737
}

1738
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1739
{
1740
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1741 1742

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1743
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1744 1745
}

1746 1747 1748 1749 1750 1751 1752
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1753
static int gen8_emit_request(struct drm_i915_gem_request *request)
1754
{
1755
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1756 1757
	int ret;

1758
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1759 1760 1761
	if (ret)
		return ret;

1762 1763
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1764 1765

	intel_logical_ring_emit(ringbuf,
1766 1767
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1768
				intel_hws_seqno_address(request->engine) |
1769
				MI_FLUSH_DW_USE_GTT);
1770
	intel_logical_ring_emit(ringbuf, 0);
1771
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1772 1773
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1774 1775
	return intel_logical_ring_advance_and_submit(request);
}
1776

1777 1778 1779 1780
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1781

1782
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1783 1784 1785
	if (ret)
		return ret;

1786 1787 1788
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1789 1790 1791 1792
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1793
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1794 1795 1796 1797
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1798 1799
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1800 1801
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1802 1803
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1804
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1805
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1806
	return intel_logical_ring_advance_and_submit(request);
1807 1808
}

1809
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1810 1811 1812 1813
{
	struct render_state so;
	int ret;

1814
	ret = i915_gem_render_state_prepare(req->engine, &so);
1815 1816 1817 1818 1819 1820
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1821
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1822
				       I915_DISPATCH_SECURE);
1823 1824 1825
	if (ret)
		goto out;

1826
	ret = req->engine->emit_bb_start(req,
1827 1828 1829 1830 1831
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1832
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1833 1834 1835 1836 1837 1838

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1839
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1840 1841 1842
{
	int ret;

1843
	ret = intel_logical_ring_workarounds_emit(req);
1844 1845 1846
	if (ret)
		return ret;

1847 1848 1849 1850 1851 1852 1853 1854
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1855
	return intel_lr_context_render_state_init(req);
1856 1857
}

1858 1859 1860 1861 1862 1863
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1864
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1865
{
1866
	struct drm_i915_private *dev_priv;
1867

1868
	if (!intel_engine_initialized(engine))
1869 1870
		return;

1871 1872 1873 1874 1875 1876 1877
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1878
	dev_priv = engine->i915;
1879

1880 1881 1882
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1883
	}
1884

1885 1886
	if (engine->cleanup)
		engine->cleanup(engine);
1887

1888 1889
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1890

1891
	if (engine->status_page.obj) {
1892
		i915_gem_object_unpin_map(engine->status_page.obj);
1893
		engine->status_page.obj = NULL;
1894
	}
1895
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1896

1897 1898 1899
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1900

1901
	lrc_destroy_wa_ctx_obj(engine);
1902
	engine->i915 = NULL;
1903 1904
}

1905
static void
1906
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1907 1908
{
	/* Default vfuncs which can be overriden by each engine. */
1909 1910 1911 1912 1913 1914
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1915 1916
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1917
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1918
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1919
		engine->set_seqno = bxt_a_set_seqno;
1920 1921 1922
	}
}

1923
static inline void
1924
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1925
{
1926 1927
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1928
	init_waitqueue_head(&engine->irq_queue);
1929 1930
}

1931
static int
1932 1933 1934
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1935
	void *hws;
1936 1937 1938 1939

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1940 1941 1942 1943
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1944
	engine->status_page.obj = dctx_obj;
1945 1946

	return 0;
1947 1948
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
static const struct logical_ring_info {
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
} logical_rings[] = {
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
	},
};

static struct intel_engine_cs *
logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
1995
{
1996
	const struct logical_ring_info *info = &logical_rings[id];
1997
	struct drm_i915_private *dev_priv = to_i915(dev);
1998
	struct intel_engine_cs *engine = &dev_priv->engine[id];
1999
	enum forcewake_domains fw_domains;
2000

2001 2002 2003 2004 2005
	engine->id = id;
	engine->name = info->name;
	engine->exec_id = info->exec_id;
	engine->guc_id = info->guc_id;
	engine->mmio_base = info->mmio_base;
2006

2007
	engine->i915 = dev_priv;
2008

2009 2010
	/* Intentionally left blank. */
	engine->buffer = NULL;
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine, info->irq_shift);

	intel_engine_init_hangcheck(engine);
2040
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2041 2042 2043 2044 2045 2046 2047

	return engine;
}

static int
logical_ring_init(struct intel_engine_cs *engine)
{
2048
	struct i915_gem_context *dctx = engine->i915->kernel_context;
2049 2050
	int ret;

2051
	ret = i915_cmd_parser_init_ring(engine);
2052
	if (ret)
2053
		goto error;
2054

2055
	ret = execlists_context_deferred_alloc(dctx, engine);
2056
	if (ret)
2057
		goto error;
2058 2059

	/* As this is the default context, always pin it */
2060
	ret = intel_lr_context_pin(dctx, engine);
2061
	if (ret) {
2062 2063
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2064
		goto error;
2065
	}
2066

2067
	/* And setup the hardware status page. */
2068 2069 2070 2071 2072
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2073

2074 2075 2076
	return 0;

error:
2077
	intel_logical_ring_cleanup(engine);
2078
	return ret;
2079 2080 2081 2082
}

static int logical_render_ring_init(struct drm_device *dev)
{
2083
	struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2084
	int ret;
2085

2086
	if (HAS_L3_DPF(dev))
2087
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2088

2089
	/* Override some for render ring. */
2090
	if (INTEL_INFO(dev)->gen >= 9)
2091
		engine->init_hw = gen9_init_render_ring;
2092
	else
2093 2094 2095 2096 2097
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2098

2099
	ret = intel_init_pipe_control(engine);
2100 2101 2102
	if (ret)
		return ret;

2103
	ret = intel_init_workaround_bb(engine);
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2114
	ret = logical_ring_init(engine);
2115
	if (ret) {
2116
		lrc_destroy_wa_ctx_obj(engine);
2117
	}
2118 2119

	return ret;
2120 2121 2122 2123
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
2124
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2125

2126
	return logical_ring_init(engine);
2127 2128 2129 2130
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
2131
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2132

2133
	return logical_ring_init(engine);
2134 2135 2136 2137
}

static int logical_blt_ring_init(struct drm_device *dev)
{
2138
	struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2139

2140
	return logical_ring_init(engine);
2141 2142 2143 2144
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
2145
	struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2146

2147
	return logical_ring_init(engine);
2148 2149
}

2150 2151 2152 2153 2154
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2155
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2156 2157 2158 2159
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2196
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2197
cleanup_blt_ring:
2198
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2199
cleanup_bsd_ring:
2200
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2201
cleanup_render_ring:
2202
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2203 2204 2205 2206

	return ret;
}

2207
static u32
2208
make_rpcs(struct drm_i915_private *dev_priv)
2209 2210 2211 2212 2213 2214 2215
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2216
	if (INTEL_GEN(dev_priv) < 9)
2217 2218 2219 2220 2221 2222 2223 2224
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2225
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2226
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2227
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2228 2229 2230 2231
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2232
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2233
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2234
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2235 2236 2237 2238
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2239 2240
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2241
			GEN8_RPCS_EU_MIN_SHIFT;
2242
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2243 2244 2245 2246 2247 2248 2249
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2250
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2251 2252 2253
{
	u32 indirect_ctx_offset;

2254
	switch (INTEL_GEN(engine->i915)) {
2255
	default:
2256
		MISSING_CASE(INTEL_GEN(engine->i915));
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2271
static int
2272
populate_lr_context(struct i915_gem_context *ctx,
2273
		    struct drm_i915_gem_object *ctx_obj,
2274 2275
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2276
{
2277
	struct drm_i915_private *dev_priv = ctx->i915;
2278
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2279 2280
	void *vaddr;
	u32 *reg_state;
2281 2282
	int ret;

2283 2284 2285
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2286 2287 2288 2289 2290 2291
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2292 2293 2294 2295
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2296 2297
		return ret;
	}
2298
	ctx_obj->dirty = true;
2299 2300 2301

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2302
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2303 2304 2305 2306 2307 2308

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2309
	reg_state[CTX_LRI_HEADER_0] =
2310 2311 2312
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2313 2314
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2315
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2316
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2317 2318 2319 2320
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2321 2322 2323
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2324 2325 2326 2327
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2328
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2329 2330 2331 2332 2333 2334
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2335
		       RING_BB_PPGTT);
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2351 2352 2353 2354 2355 2356 2357
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2358
				intel_lr_indirect_ctx_offset(engine) << 6;
2359 2360 2361 2362 2363

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2364
	}
2365
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2366 2367
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2368
	/* PDP values well be assigned later if needed */
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2385

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2398
		execlists_update_context_pdps(ppgtt, reg_state);
2399 2400
	}

2401
	if (engine->id == RCS) {
2402
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2403
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2404
			       make_rpcs(dev_priv));
2405 2406
	}

2407
	i915_gem_object_unpin_map(ctx_obj);
2408 2409 2410 2411

	return 0;
}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2426
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2427 2428 2429
{
	int ret = 0;

2430
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2431

2432
	switch (engine->id) {
2433
	case RCS:
2434
		if (INTEL_GEN(engine->i915) >= 9)
2435 2436 2437
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2448 2449
}

2450
/**
2451
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2452
 * @ctx: LR context to create.
2453
 * @engine: engine to be used with the context.
2454 2455 2456 2457 2458 2459 2460
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2461
 * Return: non-zero on error.
2462
 */
2463
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2464
					    struct intel_engine_cs *engine)
2465
{
2466
	struct drm_i915_gem_object *ctx_obj;
2467
	struct intel_context *ce = &ctx->engine[engine->id];
2468
	uint32_t context_size;
2469
	struct intel_ringbuffer *ringbuf;
2470 2471
	int ret;

2472
	WARN_ON(ce->state);
2473

2474
	context_size = round_up(intel_lr_context_size(engine), 4096);
2475

2476 2477 2478
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2479
	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2480
	if (IS_ERR(ctx_obj)) {
2481
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2482
		return PTR_ERR(ctx_obj);
2483 2484
	}

2485
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2486 2487
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2488
		goto error_deref_obj;
2489 2490
	}

2491
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2492 2493
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2494
		goto error_ringbuf;
2495 2496
	}

2497 2498 2499
	ce->ringbuf = ringbuf;
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2500 2501

	return 0;
2502

2503 2504
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2505
error_deref_obj:
2506
	drm_gem_object_unreference(&ctx_obj->base);
2507 2508
	ce->ringbuf = NULL;
	ce->state = NULL;
2509
	return ret;
2510
}
2511

2512
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2513
			    struct i915_gem_context *ctx)
2514
{
2515
	struct intel_engine_cs *engine;
2516

2517
	for_each_engine(engine, dev_priv) {
2518 2519
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2520
		void *vaddr;
2521 2522 2523 2524 2525
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2526 2527
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2528
			continue;
2529 2530 2531

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2532 2533 2534 2535

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2536
		i915_gem_object_unpin_map(ctx_obj);
2537

2538 2539
		ce->ringbuf->head = 0;
		ce->ringbuf->tail = 0;
2540 2541
	}
}