intel_lrc.c 62.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211

212 213 214
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

215 216
#define WA_TAIL_DWORDS 2

217
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218
					    struct intel_engine_cs *engine);
219 220 221 222
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226
 * @dev_priv: i915 device private
227 228 229
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
230
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
231 232 233
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
234
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235
{
236 237 238
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
239
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 241
		return 1;

242
	if (INTEL_GEN(dev_priv) >= 9)
243 244
		return 1;

245 246 247
	if (enable_execlists == 0)
		return 0;

248 249 250
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
251 252 253 254
		return 1;

	return 0;
}
255

256
/**
257 258 259
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
260
 * @engine: Engine the descriptor will be used with
261
 *
262 263 264 265 266
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
267 268
 * This is what a descriptor looks like, from LSB to MSB::
 *
269
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270 271 272 273
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
274
 */
275
static void
276
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277
				   struct intel_engine_cs *engine)
278
{
279
	struct intel_context *ce = &ctx->engine[engine->id];
280
	u64 desc;
281

282
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283

284
	desc = ctx->desc_template;				/* bits  0-11 */
285
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286
								/* bits 12-31 */
287
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
288

289
	ce->lrc_desc = desc;
290 291
}

292
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293
				     struct intel_engine_cs *engine)
294
{
295
	return ctx->engine[engine->id].lrc_desc;
296
}
297

298 299 300
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
301
{
302 303 304 305 306 307
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
308

309
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
310 311
}

312 313 314 315 316 317 318 319 320
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

321
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
322
{
323
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
324 325
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
326
	u32 *reg_state = ce->lrc_reg_state;
327

C
Chris Wilson 已提交
328
	reg_state[CTX_RING_TAIL+1] = rq->tail;
329

330 331 332 333 334
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
335
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
336
		execlists_update_context_pdps(ppgtt, reg_state);
337 338

	return ce->lrc_desc;
339 340
}

341
static void execlists_submit_ports(struct intel_engine_cs *engine)
342
{
343 344
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
345 346 347 348
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

349
	GEM_BUG_ON(port[0].count > 1);
350 351 352 353
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
354
	GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
355
	port[0].count++;
356 357 358 359 360 361

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
362
		GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
363
		port[1].count = 1;
364 365 366
	} else {
		desc[1] = 0;
	}
367
	GEM_BUG_ON(desc[0] == desc[1]);
368 369 370 371 372 373 374 375 376 377

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

378
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
379
{
380
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
381
		i915_gem_context_force_single_submission(ctx));
382
}
383

384 385 386 387 388
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
389

390 391
	if (ctx_single_port_submission(prev))
		return false;
392

393
	return true;
394 395
}

396
static void execlists_dequeue(struct intel_engine_cs *engine)
397
{
398
	struct drm_i915_gem_request *last;
399
	struct execlist_port *port = engine->execlist_port;
400
	unsigned long flags;
401
	struct rb_node *rb;
402 403 404 405 406 407
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
408
		 * as we resubmit the request. See gen8_emit_breadcrumb()
409 410 411 412
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
413

414
	GEM_BUG_ON(port[1].request);
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
435
	 */
436

437
	spin_lock_irqsave(&engine->timeline->lock, flags);
438 439 440 441 442
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

443 444 445
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
446
		 *
447 448 449 450
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
451
		 */
452 453 454 455 456 457 458 459 460 461 462 463 464
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
465 466
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
467 468 469 470 471 472 473
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
474

475 476 477 478 479
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

480
		__i915_gem_request_submit(cursor);
481 482 483 484 485
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
486
		engine->execlist_first = rb;
487
	}
488
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
489

490 491
	if (submit)
		execlists_submit_ports(engine);
492 493
}

494
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
495
{
496
	return !engine->execlist_port[0].request;
497 498
}

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

514 515 516 517 518 519
	for_each_engine(engine, dev_priv, id) {
		/* Interrupt/tasklet pending? */
		if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
			return false;

		/* Both ports drained, no more ELSP submission? */
520 521
		if (!execlists_elsp_idle(engine))
			return false;
522
	}
523 524 525 526

	return true;
}

527
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
528
{
529
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
530

531
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
532 533
}

534
/*
535 536 537
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
538
static void intel_lrc_irq_handler(unsigned long data)
539
{
540
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
541
	struct execlist_port *port = engine->execlist_port;
542
	struct drm_i915_private *dev_priv = engine->i915;
543

544
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
545

546
	while (test_and_clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
547 548 549 550 551 552 553 554 555
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
556 557 558
		if (head == tail)
			break;

559 560
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
561
		do {
562 563 564
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

582 583 584
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

585
			/* Check the context/desc id for this event matches */
586 587
			GEM_DEBUG_BUG_ON(readl(buf + 2 * idx + 1) !=
					 port[0].context_id);
588

589 590 591 592 593 594 595 596 597 598
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
599

600 601
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
602
		} while (head < tail);
603

604 605 606
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
607 608
	}

609 610
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
611

612
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
613 614
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

641
static void execlists_submit_request(struct drm_i915_gem_request *request)
642
{
643
	struct intel_engine_cs *engine = request->engine;
644
	unsigned long flags;
645

646 647
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
648

649
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
650
		engine->execlist_first = &request->priotree.node;
651
		if (execlists_elsp_ready(engine))
652 653
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
654

655
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
656 657
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

685 686
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

715
		list_safe_reset_next(dep, p, dfs_link);
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

756 757
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
758
{
759
	struct intel_context *ce = &ctx->engine[engine->id];
760
	unsigned int flags;
761
	void *vaddr;
762
	int ret;
763

764
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
765

766
	if (ce->pin_count++)
767 768
		return 0;

769 770 771 772 773
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
774
	GEM_BUG_ON(!ce->state);
775

776
	flags = PIN_GLOBAL | PIN_HIGH;
777 778
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
779 780

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
781
	if (ret)
782
		goto err;
783

784
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
785 786
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
787
		goto unpin_vma;
788 789
	}

790
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
791
	if (ret)
792
		goto unpin_map;
793

794
	intel_lr_context_descriptor_update(ctx, engine);
795

796 797
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
798
		i915_ggtt_offset(ce->ring->vma);
799

C
Chris Wilson 已提交
800
	ce->state->obj->mm.dirty = true;
801

802
	i915_gem_context_get(ctx);
803
	return 0;
804

805
unpin_map:
806 807 808
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
809
err:
810
	ce->pin_count = 0;
811 812 813
	return ret;
}

814 815
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
816
{
817
	struct intel_context *ce = &ctx->engine[engine->id];
818

819
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
820
	GEM_BUG_ON(ce->pin_count == 0);
821

822
	if (--ce->pin_count)
823
		return;
824

825
	intel_ring_unpin(ce->ring);
826

827 828
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
829

830
	i915_gem_context_put(ctx);
831 832
}

833
static int execlists_request_alloc(struct drm_i915_gem_request *request)
834 835 836
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
837
	u32 *cs;
838 839
	int ret;

840 841
	GEM_BUG_ON(!ce->pin_count);

842 843 844 845 846 847
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

848
	GEM_BUG_ON(!ce->ring);
849 850 851 852 853 854 855 856 857 858
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
859
			goto err;
860 861
	}

862 863 864
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
865
		goto err_unreserve;
866
	}
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
889
err:
890 891 892
	return ret;
}

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
909 910
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
911
{
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

	*batch++ = GFX_OP_PIPE_CONTROL(6);
	*batch++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_DC_FLUSH_ENABLE;
	*batch++ = 0;
	*batch++ = 0;
	*batch++ = 0;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
934 935
}

936 937 938 939 940 941
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
942
 *
943 944
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
945
 *
946 947 948 949
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
950
 */
951
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
952
{
953
	/* WaDisableCtxRestoreArbitration:bdw,chv */
954
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
955

956
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
957 958
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
959

960 961 962
	*batch++ = GFX_OP_PIPE_CONTROL(6);
	*batch++ = PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_GLOBAL_GTT_IVB |
		   PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE;
963 964
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
965 966 967 968
	*batch++ = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
	*batch++ = 0;
	*batch++ = 0;
	*batch++ = 0;
969

970
	/* Pad to end of cacheline */
971 972
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
973 974 975 976 977 978 979

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

980
	return batch;
981 982
}

983 984 985
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
986
 *
987
 *  The number of DWORDS written are returned using this field.
988 989 990 991
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
992
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
993
{
994
	/* WaDisableCtxRestoreArbitration:bdw,chv */
995 996
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
997

998
	return batch;
999 1000
}

1001
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1002
{
1003
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1004
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1005

1006
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1007 1008 1009 1010 1011
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1012

1013 1014
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1015 1016 1017 1018 1019 1020 1021 1022 1023
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
		*batch++ = GFX_OP_PIPE_CONTROL(6);
		*batch++ = PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_GLOBAL_GTT_IVB |
			   PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE;
		*batch++ = i915_ggtt_offset(engine->scratch) +
			   2 * CACHELINE_BYTES;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1024
	}
1025

1026
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1041 1042 1043 1044 1045 1046
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1047 1048
	}

1049
	/* Pad to end of cacheline */
1050 1051
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1052

1053
	return batch;
1054 1055
}

1056
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1057
{
1058
	*batch++ = MI_BATCH_BUFFER_END;
1059

1060
	return batch;
1061 1062
}

1063 1064 1065
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1066
{
1067 1068 1069
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1070

1071
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1072 1073
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1074

1075
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1076 1077 1078
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1079 1080
	}

1081 1082 1083 1084 1085
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1086
	return 0;
1087 1088 1089 1090

err:
	i915_gem_object_put(obj);
	return err;
1091 1092
}

1093
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1094
{
1095
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1096 1097
}

1098 1099
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1100
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1101
{
1102
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1103 1104 1105
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1106
	struct page *page;
1107 1108
	void *batch, *batch_ptr;
	unsigned int i;
1109
	int ret;
1110

1111 1112
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	switch (INTEL_GEN(engine->i915)) {
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1125
		return 0;
1126
	}
1127

1128
	ret = lrc_setup_wa_ctx(engine);
1129 1130 1131 1132 1133
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1134
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1135
	batch = batch_ptr = kmap_atomic(page);
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1150 1151
	}

1152 1153
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1154 1155
	kunmap_atomic(batch);
	if (ret)
1156
		lrc_destroy_wa_ctx(engine);
1157 1158 1159 1160

	return ret;
}

1161 1162 1163 1164 1165
static u32 port_seqno(struct execlist_port *port)
{
	return port->request ? port->request->global_seqno : 0;
}

1166
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1167
{
1168
	struct drm_i915_private *dev_priv = engine->i915;
1169 1170 1171 1172 1173
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1174

1175
	intel_engine_reset_breadcrumbs(engine);
1176
	intel_engine_init_hangcheck(engine);
1177

1178 1179
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1180 1181
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1182 1183 1184
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1185

1186
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1187

1188
	/* After a GPU reset, we may have requests to replay */
1189
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1190
	if (!execlists_elsp_idle(engine)) {
1191 1192 1193 1194
		DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
				 engine->name,
				 port_seqno(&engine->execlist_port[0]),
				 port_seqno(&engine->execlist_port[1]));
1195 1196
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1197
		execlists_submit_ports(engine);
1198
	}
1199 1200

	return 0;
1201 1202
}

1203
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1204
{
1205
	struct drm_i915_private *dev_priv = engine->i915;
1206 1207
	int ret;

1208
	ret = gen8_init_common_ring(engine);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1222
	return init_workarounds_ring(engine);
1223 1224
}

1225
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1226 1227 1228
{
	int ret;

1229
	ret = gen8_init_common_ring(engine);
1230 1231 1232
	if (ret)
		return ret;

1233
	return init_workarounds_ring(engine);
1234 1235
}

1236 1237 1238 1239
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1254

1255 1256 1257 1258 1259 1260 1261
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1262
	ce = &request->ctx->engine[engine->id];
1263 1264 1265
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1266
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1267 1268
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1269
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1286 1287 1288

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1289 1290
}

1291 1292 1293
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1294
	struct intel_engine_cs *engine = req->engine;
1295
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1296 1297
	u32 *cs;
	int i;
1298

1299 1300 1301
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1302

1303
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1304 1305 1306
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1307 1308 1309 1310
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1311 1312
	}

1313 1314
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1315 1316 1317 1318

	return 0;
}

1319
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1320 1321
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1322
{
1323
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1324
	u32 *cs;
1325 1326
	int ret;

1327 1328 1329 1330
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1331 1332
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1333
	if (req->ctx->ppgtt &&
1334
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1335
		if (!i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1336
		    !intel_vgpu_active(req->i915)) {
1337 1338 1339 1340
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1341

1342
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1343 1344
	}

1345 1346 1347
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1348 1349

	/* FIXME(BDW): Address space and security selectors. */
1350 1351 1352 1353 1354 1355
	*cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
		I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1356 1357 1358 1359

	return 0;
}

1360
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1361
{
1362
	struct drm_i915_private *dev_priv = engine->i915;
1363 1364 1365
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1366 1367
}

1368
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1369
{
1370
	struct drm_i915_private *dev_priv = engine->i915;
1371
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1372 1373
}

1374
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1375
{
1376
	u32 cmd, *cs;
1377

1378 1379 1380
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1381 1382 1383

	cmd = MI_FLUSH_DW + 1;

1384 1385 1386 1387 1388 1389 1390
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1391
	if (mode & EMIT_INVALIDATE) {
1392
		cmd |= MI_INVALIDATE_TLB;
1393
		if (request->engine->id == VCS)
1394
			cmd |= MI_INVALIDATE_BSD;
1395 1396
	}

1397 1398 1399 1400 1401
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1402 1403 1404 1405

	return 0;
}

1406
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1407
				  u32 mode)
1408
{
1409
	struct intel_engine_cs *engine = request->engine;
1410 1411
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1412
	bool vf_flush_wa = false, dc_flush_wa = false;
1413
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1414
	int len;
1415 1416 1417

	flags |= PIPE_CONTROL_CS_STALL;

1418
	if (mode & EMIT_FLUSH) {
1419 1420
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1421
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1422
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1423 1424
	}

1425
	if (mode & EMIT_INVALIDATE) {
1426 1427 1428 1429 1430 1431 1432 1433 1434
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1435 1436 1437 1438
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1439
		if (IS_GEN9(request->i915))
1440
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1441 1442 1443 1444

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1445
	}
1446

M
Mika Kuoppala 已提交
1447 1448 1449 1450 1451 1452 1453 1454
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1455 1456 1457
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1458

1459
	if (vf_flush_wa) {
1460 1461 1462 1463 1464 1465
		*cs++ = GFX_OP_PIPE_CONTROL(6);
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
1466 1467
	}

M
Mika Kuoppala 已提交
1468
	if (dc_flush_wa) {
1469 1470 1471 1472 1473 1474
		*cs++ = GFX_OP_PIPE_CONTROL(6);
		*cs++ = PIPE_CONTROL_DC_FLUSH_ENABLE;
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
M
Mika Kuoppala 已提交
1475 1476
	}

1477 1478 1479 1480 1481 1482
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = 0;
M
Mika Kuoppala 已提交
1483 1484

	if (dc_flush_wa) {
1485 1486 1487 1488 1489 1490
		*cs++ = GFX_OP_PIPE_CONTROL(6);
		*cs++ = PIPE_CONTROL_CS_STALL;
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
M
Mika Kuoppala 已提交
1491 1492
	}

1493
	intel_ring_advance(request, cs);
1494 1495 1496 1497

	return 0;
}

1498 1499 1500 1501 1502
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1503
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1504
{
1505 1506 1507
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1508
}
1509

1510
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1511
{
1512 1513
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1514

1515 1516 1517 1518 1519 1520 1521
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1522

1523
	gen8_emit_wa_tail(request, cs);
1524
}
1525

1526 1527
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1528
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1529
					u32 *cs)
1530
{
1531 1532 1533
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1534 1535 1536 1537
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1538 1539 1540 1541 1542 1543
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1544
	/* We're thrashing one dword of HWS. */
1545 1546 1547 1548
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1549

1550
	gen8_emit_wa_tail(request, cs);
1551 1552
}

1553 1554
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1555
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1556 1557 1558
{
	int ret;

1559
	ret = intel_ring_workarounds_emit(req);
1560 1561 1562
	if (ret)
		return ret;

1563 1564 1565 1566 1567 1568 1569 1570
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1571
	return i915_gem_render_state_emit(req);
1572 1573
}

1574 1575
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1576
 * @engine: Engine Command Streamer.
1577
 */
1578
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1579
{
1580
	struct drm_i915_private *dev_priv;
1581

1582 1583 1584 1585 1586 1587 1588
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1589
	dev_priv = engine->i915;
1590

1591 1592
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1593
	}
1594

1595 1596
	if (engine->cleanup)
		engine->cleanup(engine);
1597

1598 1599 1600
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1601
	}
1602 1603

	intel_engine_cleanup_common(engine);
1604

1605
	lrc_destroy_wa_ctx(engine);
1606
	engine->i915 = NULL;
1607 1608
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1609 1610
}

1611 1612 1613
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1614
	enum intel_engine_id id;
1615

1616
	for_each_engine(engine, dev_priv, id) {
1617
		engine->submit_request = execlists_submit_request;
1618 1619
		engine->schedule = execlists_schedule;
	}
1620 1621
}

1622
static void
1623
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1624 1625
{
	/* Default vfuncs which can be overriden by each engine. */
1626
	engine->init_hw = gen8_init_common_ring;
1627
	engine->reset_hw = reset_common_ring;
1628 1629 1630 1631

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1632 1633
	engine->request_alloc = execlists_request_alloc;

1634
	engine->emit_flush = gen8_emit_flush;
1635
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1636
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1637
	engine->submit_request = execlists_submit_request;
1638
	engine->schedule = execlists_schedule;
1639

1640 1641
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1642
	engine->emit_bb_start = gen8_emit_bb_start;
1643 1644
}

1645
static inline void
1646
logical_ring_default_irqs(struct intel_engine_cs *engine)
1647
{
1648
	unsigned shift = engine->irq_shift;
1649 1650
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1651 1652
}

1653
static int
1654
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1655
{
1656
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1657
	void *hws;
1658 1659

	/* The HWSP is part of the default context object in LRC mode. */
1660
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1661 1662
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1663 1664

	engine->status_page.page_addr = hws + hws_offset;
1665
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1666
	engine->status_page.vma = vma;
1667 1668

	return 0;
1669 1670
}

1671 1672 1673 1674 1675 1676
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1677 1678
	intel_engine_setup_common(engine);

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1703 1704 1705 1706 1707 1708
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1709
	ret = intel_engine_init_common(engine);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1727
int logical_render_ring_init(struct intel_engine_cs *engine)
1728 1729 1730 1731
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1732 1733
	logical_ring_setup(engine);

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1744
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1745
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1746

1747
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1762
	return logical_ring_init(engine);
1763 1764
}

1765
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1766 1767 1768 1769
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1770 1771
}

1772
static u32
1773
make_rpcs(struct drm_i915_private *dev_priv)
1774 1775 1776 1777 1778 1779 1780
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1781
	if (INTEL_GEN(dev_priv) < 9)
1782 1783 1784 1785 1786 1787 1788 1789
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1790
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1791
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1792
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1793 1794 1795 1796
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1797
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1798
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1799
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1800 1801 1802 1803
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1804 1805
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1806
			GEN8_RPCS_EU_MIN_SHIFT;
1807
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1808 1809 1810 1811 1812 1813 1814
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1815
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1816 1817 1818
{
	u32 indirect_ctx_offset;

1819
	switch (INTEL_GEN(engine->i915)) {
1820
	default:
1821
		MISSING_CASE(INTEL_GEN(engine->i915));
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1836 1837 1838 1839
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1840
{
1841 1842
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1843 1844 1845 1846 1847 1848

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1849
	reg_state[CTX_LRI_HEADER_0] =
1850 1851 1852
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1853 1854
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1855
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1856
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
1857 1858 1859 1860 1861 1862 1863 1864
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1865
		       RING_CTL_SIZE(ring->size) | RING_VALID);
1866 1867 1868 1869 1870 1871
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1872
		       RING_BB_PPGTT);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1886
		if (engine->wa_ctx.vma) {
1887
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1888
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1889 1890

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
1891 1892
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1893 1894

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1895
				intel_lr_indirect_ctx_offset(engine) << 6;
1896 1897

			reg_state[CTX_BB_PER_CTX_PTR+1] =
1898
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1899
		}
1900
	}
1901
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1902 1903
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1904
	/* PDP values well be assigned later if needed */
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
1921

1922
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1923 1924 1925 1926 1927 1928 1929
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	}

1930
	if (engine->id == RCS) {
1931
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1932
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1933
			       make_rpcs(dev_priv));
1934
	}
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
1958
	ctx_obj->mm.dirty = true;
1959 1960 1961 1962 1963 1964

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
1965

1966
	i915_gem_object_unpin_map(ctx_obj);
1967 1968 1969 1970

	return 0;
}

1971 1972
/**
 * intel_lr_context_size() - return the size of the context for an engine
1973
 * @engine: which engine to find the context size for
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
1985
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1986 1987 1988
{
	int ret = 0;

1989
	WARN_ON(INTEL_GEN(engine->i915) < 8);
1990

1991
	switch (engine->id) {
1992
	case RCS:
1993
		if (INTEL_GEN(engine->i915) >= 9)
1994 1995 1996
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2007 2008
}

2009
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2010
					    struct intel_engine_cs *engine)
2011
{
2012
	struct drm_i915_gem_object *ctx_obj;
2013
	struct intel_context *ce = &ctx->engine[engine->id];
2014
	struct i915_vma *vma;
2015
	uint32_t context_size;
2016
	struct intel_ring *ring;
2017 2018
	int ret;

2019
	WARN_ON(ce->state);
2020

2021 2022
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
2023

2024 2025 2026
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2027
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2028
	if (IS_ERR(ctx_obj)) {
2029
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2030
		return PTR_ERR(ctx_obj);
2031 2032
	}

2033
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2034 2035 2036 2037 2038
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2039
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2040 2041
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2042
		goto error_deref_obj;
2043 2044
	}

2045
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2046 2047
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2048
		goto error_ring_free;
2049 2050
	}

2051
	ce->ring = ring;
2052
	ce->state = vma;
2053
	ce->initialised = engine->init_context == NULL;
2054 2055

	return 0;
2056

2057
error_ring_free:
2058
	intel_ring_free(ring);
2059
error_deref_obj:
2060
	i915_gem_object_put(ctx_obj);
2061
	return ret;
2062
}
2063

2064
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2065
{
2066
	struct intel_engine_cs *engine;
2067
	struct i915_gem_context *ctx;
2068
	enum intel_engine_id id;
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2081
		for_each_engine(engine, dev_priv, id) {
2082 2083
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2084

2085 2086
			if (!ce->state)
				continue;
2087

2088 2089 2090 2091
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2092

2093 2094 2095
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2096

C
Chris Wilson 已提交
2097
			ce->state->obj->mm.dirty = true;
2098
			i915_gem_object_unpin_map(ce->state->obj);
2099

2100 2101 2102 2103
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2104 2105
	}
}