intel_lrc.c 66.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208

209 210 211
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

212
#define WA_TAIL_DWORDS 2
213
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
214

215
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
216
					    struct intel_engine_cs *engine);
217 218 219 220
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
221

222 223
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
224
 * @dev_priv: i915 device private
225 226 227
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
228
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
229 230 231
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
232
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
233
{
234 235 236
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
237
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
238 239
		return 1;

240
	if (INTEL_GEN(dev_priv) >= 9)
241 242
		return 1;

243 244 245
	if (enable_execlists == 0)
		return 0;

246 247
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
248
	    i915_modparams.use_mmio_flip >= 0)
249 250 251 252
		return 1;

	return 0;
}
253

254
/**
255 256 257
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
258
 * @engine: Engine the descriptor will be used with
259
 *
260 261 262 263 264
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
265 266
 * This is what a descriptor looks like, from LSB to MSB::
 *
267
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
268 269 270 271
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
272
 */
273
static void
274
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
275
				   struct intel_engine_cs *engine)
276
{
277
	struct intel_context *ce = &ctx->engine[engine->id];
278
	u64 desc;
279

280
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
281

282
	desc = ctx->desc_template;				/* bits  0-11 */
283
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
284
								/* bits 12-31 */
285
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
286

287
	ce->lrc_desc = desc;
288 289
}

290 291 292 293
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
294
{
295
	struct intel_engine_execlists * const execlists = &engine->execlists;
296 297 298 299
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

300
	if (unlikely(execlists->no_priolist))
301 302 303 304 305
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
306
	parent = &execlists->queue.rb_node;
307 308 309 310 311 312 313 314 315
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
316
			return p;
317 318 319 320
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
321
		p = &execlists->default_priolist;
322 323 324 325 326 327 328 329 330 331 332 333 334 335
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
336
			execlists->no_priolist = true;
337 338 339 340 341
			goto find_priolist;
		}
	}

	p->priority = prio;
342
	INIT_LIST_HEAD(&p->requests);
343
	rb_link_node(&p->node, rb, parent);
344
	rb_insert_color(&p->node, &execlists->queue);
345 346

	if (first)
347
		execlists->first = &p->node;
348

349
	return ptr_pack_bits(p, first, 1);
350 351
}

352 353 354 355 356 357 358 359 360
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

static void unwind_incomplete_requests(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *rq, *rn;
361 362
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
363 364 365 366 367 368 369 370 371 372 373 374

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

375 376 377 378 379 380 381 382 383 384 385
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
386 387 388
	}
}

389 390 391
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
392
{
393 394 395 396 397 398
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
399

400 401
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
402 403
}

404 405 406 407 408 409 410 411 412
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

413
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
414
{
415
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
416 417
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
418
	u32 *reg_state = ce->lrc_reg_state;
419

420
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
421

422 423 424 425 426
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
427
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
428
		execlists_update_context_pdps(ppgtt, reg_state);
429 430

	return ce->lrc_desc;
431 432
}

433
static void execlists_submit_ports(struct intel_engine_cs *engine)
434
{
435
	struct execlist_port *port = engine->execlists.port;
436
	u32 __iomem *elsp =
437 438
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
439

440
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
457

458 459 460
		writel(upper_32_bits(desc), elsp);
		writel(lower_32_bits(desc), elsp);
	}
461 462
}

463
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
464
{
465
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
466
		i915_gem_context_force_single_submission(ctx));
467
}
468

469 470 471 472 473
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
474

475 476
	if (ctx_single_port_submission(prev))
		return false;
477

478
	return true;
479 480
}

481 482 483 484 485 486 487 488 489 490 491
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

492
static void execlists_dequeue(struct intel_engine_cs *engine)
493
{
494
	struct drm_i915_gem_request *last;
495 496
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
497 498
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
499
	struct rb_node *rb;
500 501
	bool submit = false;

502
	last = port_request(port);
503 504 505
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
506
		 * as we resubmit the request. See gen8_emit_breadcrumb()
507 508 509 510
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
531
	 */
532

533
	spin_lock_irq(&engine->timeline->lock);
534 535
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
536
	while (rb) {
537 538 539 540 541 542 543 544 545 546 547 548 549 550
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
551
			 */
552 553 554 555 556 557
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
558
				if (port == last_port) {
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
583 584

				GEM_BUG_ON(port_isset(port));
585
			}
586

587 588
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;
589

590
			__i915_gem_request_submit(rq);
591
			trace_i915_gem_request_in(rq, port_index(port, execlists));
592 593
			last = rq;
			submit = true;
594
		}
595

596
		rb = rb_next(rb);
597
		rb_erase(&p->node, &execlists->queue);
598 599
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
600
			kmem_cache_free(engine->i915->priorities, p);
601
	}
602
done:
603
	execlists->first = rb;
604
	if (submit)
605
		port_assign(port, last);
606
	spin_unlock_irq(&engine->timeline->lock);
607

608 609
	if (submit)
		execlists_submit_ports(engine);
610 611
}

612 613
static void
execlist_cancel_port_requests(struct intel_engine_execlists *execlists)
614
{
615 616
	struct execlist_port *port = execlists->port;
	unsigned int num_ports = ARRAY_SIZE(execlists->port);
617

618
	while (num_ports-- && port_isset(port)) {
619 620 621 622 623
		struct drm_i915_gem_request *rq = port_request(port);

		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
		i915_gem_request_put(rq);

624 625 626
		memset(port, 0, sizeof(*port));
		port++;
	}
627 628
}

629 630
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
631
	struct intel_engine_execlists * const execlists = &engine->execlists;
632 633 634 635 636 637 638
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
639
	execlist_cancel_port_requests(execlists);
640 641 642 643 644 645 646 647 648

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
649
	rb = execlists->first;
650 651 652 653 654 655 656 657 658 659 660 661
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
662
		rb_erase(&p->node, &execlists->queue);
663 664 665 666 667 668 669
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

670

671 672
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
673
	GEM_BUG_ON(port_isset(execlists->port));
674 675 676 677 678 679 680 681 682 683 684 685

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

686
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
687
{
688
	const struct execlist_port *port = engine->execlists.port;
B
Ben Widawsky 已提交
689

690
	return port_count(&port[0]) + port_count(&port[1]) < 2;
B
Ben Widawsky 已提交
691 692
}

693
/*
694 695 696
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
697
static void intel_lrc_irq_handler(unsigned long data)
698
{
699 700 701
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
702
	struct drm_i915_private *dev_priv = engine->i915;
703

704 705 706 707 708 709 710 711 712
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

713
	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
714

715 716 717 718 719
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
720 721 722
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
723
		unsigned int head, tail;
724

725
		/* However GVT emulation depends upon intercepting CSB mmio */
726
		if (unlikely(execlists->csb_use_mmio)) {
727 728
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
729
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
730 731
		}

732 733 734 735 736 737 738 739 740 741 742
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
743
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
744 745 746
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
747
			execlists->csb_head = head;
748 749 750 751 752
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

753
			head = execlists->csb_head;
754 755
			tail = READ_ONCE(buf[write_idx]);
		}
756

757
		while (head != tail) {
758
			struct drm_i915_gem_request *rq;
759
			unsigned int status;
760
			unsigned int count;
761 762 763

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
764

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

782
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
783 784 785
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

786
			/* Check the context/desc id for this event matches */
787
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
788

789 790 791
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
792
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
793 794 795 796 797
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
798

799
				execlists_port_complete(execlists, port);
800 801
			} else {
				port_set(port, port_pack(rq, count));
802
			}
803

804 805
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
806
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
807
		}
808

809 810
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
811 812 813
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
814 815
	}

816 817
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
818

819
	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
820 821
}

822 823 824 825 826 827 828 829
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
	if (ptr_unmask_bits(p, 1) && execlists_elsp_ready(engine))
830
		tasklet_hi_schedule(&engine->execlists.irq_tasklet);
831 832
}

833
static void execlists_submit_request(struct drm_i915_gem_request *request)
834
{
835
	struct intel_engine_cs *engine = request->engine;
836
	unsigned long flags;
837

838 839
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
840

841
	insert_request(engine, &request->priotree, request->priotree.priority);
842

843
	GEM_BUG_ON(!engine->execlists.first);
844 845
	GEM_BUG_ON(list_empty(&request->priotree.link));

846
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
847 848
}

849 850 851
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
852 853 854 855
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
856 857

	if (engine != locked) {
858 859
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
860 861 862 863 864 865 866
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
867
	struct intel_engine_cs *engine;
868 869 870 871
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

872 873
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

874 875 876
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

877 878
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

903 904 905 906 907 908 909
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
910 911
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
912
		}
913

914
		list_safe_reset_next(dep, p, dfs_link);
915 916
	}

917 918 919 920 921
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
922
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
923 924 925 926 927 928 929
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

930 931 932
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

933 934 935 936 937 938 939 940 941 942 943 944
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
945 946 947
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
948
		}
949 950
	}

951
	spin_unlock_irq(&engine->timeline->lock);
952 953 954 955

	/* XXX Do we need to preempt to make room for us and our deps? */
}

956 957 958
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
959
{
960
	struct intel_context *ce = &ctx->engine[engine->id];
961
	unsigned int flags;
962
	void *vaddr;
963
	int ret;
964

965
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
966

967 968
	if (likely(ce->pin_count++))
		goto out;
969
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
970

971 972 973 974 975
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
976
	GEM_BUG_ON(!ce->state);
977

978
	flags = PIN_GLOBAL | PIN_HIGH;
979 980
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
981 982

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
983
	if (ret)
984
		goto err;
985

986
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
987 988
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
989
		goto unpin_vma;
990 991
	}

992
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
993
	if (ret)
994
		goto unpin_map;
995

996
	intel_lr_context_descriptor_update(ctx, engine);
997

998 999
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1000
		i915_ggtt_offset(ce->ring->vma);
1001

C
Chris Wilson 已提交
1002
	ce->state->obj->mm.dirty = true;
1003

1004
	i915_gem_context_get(ctx);
1005 1006
out:
	return ce->ring;
1007

1008
unpin_map:
1009 1010 1011
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1012
err:
1013
	ce->pin_count = 0;
1014
	return ERR_PTR(ret);
1015 1016
}

1017 1018
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1019
{
1020
	struct intel_context *ce = &ctx->engine[engine->id];
1021

1022
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1023
	GEM_BUG_ON(ce->pin_count == 0);
1024

1025
	if (--ce->pin_count)
1026
		return;
1027

1028
	intel_ring_unpin(ce->ring);
1029

1030 1031
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1032

1033
	i915_gem_context_put(ctx);
1034 1035
}

1036
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1037 1038 1039
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1040
	u32 *cs;
1041 1042
	int ret;

1043 1044
	GEM_BUG_ON(!ce->pin_count);

1045 1046 1047 1048 1049 1050
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1051
	cs = intel_ring_begin(request, 0);
1052 1053
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1054 1055 1056 1057

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
1058
			return ret;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1090 1091
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1092
{
1093 1094 1095 1096 1097 1098 1099 1100 1101
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1102 1103 1104 1105
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1106 1107 1108 1109 1110 1111 1112

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1113 1114
}

1115 1116 1117 1118 1119 1120
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1121
 *
1122 1123
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1124
 *
1125 1126 1127 1128
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1129
 */
1130
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1131
{
1132
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1133
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1134

1135
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1136 1137
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1138

1139 1140
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1141 1142 1143 1144 1145 1146 1147
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1148

1149
	/* Pad to end of cacheline */
1150 1151
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1152 1153 1154 1155 1156 1157 1158

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1159
	return batch;
1160 1161
}

1162 1163 1164
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1165
 *
1166
 *  The number of DWORDS written are returned using this field.
1167 1168 1169 1170
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1171
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1172
{
1173
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1174 1175
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
1176

1177
	return batch;
1178 1179
}

1180
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1181
{
1182
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1183
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1184

1185
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1186 1187 1188 1189 1190
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1191

1192 1193
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1194
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1195 1196 1197 1198 1199 1200 1201
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1202
	}
1203

1204
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1219 1220 1221 1222 1223 1224
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1225 1226
	}

1227
	/* Pad to end of cacheline */
1228 1229
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1230

1231
	return batch;
1232 1233
}

1234 1235 1236
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1237
{
1238 1239 1240
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1241

1242
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1243 1244
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1245

1246
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1247 1248 1249
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1250 1251
	}

1252 1253 1254 1255 1256
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1257
	return 0;
1258 1259 1260 1261

err:
	i915_gem_object_put(obj);
	return err;
1262 1263
}

1264
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1265
{
1266
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1267 1268
}

1269 1270
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1271
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1272
{
1273
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1274 1275 1276
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1277
	struct page *page;
1278 1279
	void *batch, *batch_ptr;
	unsigned int i;
1280
	int ret;
1281

1282 1283
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1284

1285
	switch (INTEL_GEN(engine->i915)) {
1286 1287
	case 10:
		return 0;
1288 1289
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1290
		wa_bb_fn[1] = NULL;
1291 1292 1293 1294 1295 1296 1297
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1298
		return 0;
1299
	}
1300

1301
	ret = lrc_setup_wa_ctx(engine);
1302 1303 1304 1305 1306
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1307
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1308
	batch = batch_ptr = kmap_atomic(page);
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1321 1322
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1323
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1324 1325
	}

1326 1327
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1328 1329
	kunmap_atomic(batch);
	if (ret)
1330
		lrc_destroy_wa_ctx(engine);
1331 1332 1333 1334

	return ret;
}

1335 1336 1337 1338 1339 1340 1341 1342
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1343
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1344
{
1345
	struct drm_i915_private *dev_priv = engine->i915;
1346
	struct intel_engine_execlists * const execlists = &engine->execlists;
1347 1348 1349 1350 1351
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1352

1353
	intel_engine_reset_breadcrumbs(engine);
1354
	intel_engine_init_hangcheck(engine);
1355

1356 1357
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1358
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1359 1360 1361
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1362

1363
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1378
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1379
	execlists->csb_head = -1;
1380

1381
	/* After a GPU reset, we may have requests to replay */
1382 1383
	if (!i915_modparams.enable_guc_submission && execlists->first)
		tasklet_schedule(&execlists->irq_tasklet);
1384

1385
	return 0;
1386 1387
}

1388
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1389
{
1390
	struct drm_i915_private *dev_priv = engine->i915;
1391 1392
	int ret;

1393
	ret = gen8_init_common_ring(engine);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1407
	return init_workarounds_ring(engine);
1408 1409
}

1410
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1411 1412 1413
{
	int ret;

1414
	ret = gen8_init_common_ring(engine);
1415 1416 1417
	if (ret)
		return ret;

1418
	return init_workarounds_ring(engine);
1419 1420
}

1421 1422 1423
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1424
	struct intel_engine_execlists * const execlists = &engine->execlists;
1425
	struct intel_context *ce;
1426
	unsigned long flags;
1427

1428 1429
	spin_lock_irqsave(&engine->timeline->lock, flags);

1430 1431 1432 1433 1434 1435 1436 1437 1438
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1439
	execlist_cancel_port_requests(execlists);
1440

1441
	/* Push back any incomplete requests for replay after the reset. */
1442
	unwind_incomplete_requests(engine);
1443

1444
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1456
	if (!request || request->fence.error != -EIO)
1457
		return;
1458

1459 1460 1461 1462 1463 1464 1465
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1466
	ce = &request->ctx->engine[engine->id];
1467 1468 1469
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1470
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1471 1472
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1473
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1474

1475 1476 1477
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1478
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1479
	unwind_wa_tail(request);
1480 1481
}

1482 1483 1484
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1485
	struct intel_engine_cs *engine = req->engine;
1486
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1487 1488
	u32 *cs;
	int i;
1489

1490 1491 1492
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1493

1494
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1495
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1496 1497
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1498 1499 1500 1501
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1502 1503
	}

1504 1505
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1506 1507 1508 1509

	return 0;
}

1510
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1511
			      u64 offset, u32 len,
1512
			      const unsigned int flags)
1513
{
1514
	u32 *cs;
1515 1516
	int ret;

1517 1518 1519 1520
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1521 1522
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1523
	if (req->ctx->ppgtt &&
1524 1525 1526 1527 1528 1529
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1530

1531
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1532 1533
	}

1534 1535 1536
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1537 1538

	/* FIXME(BDW): Address space and security selectors. */
1539 1540 1541
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1542 1543 1544 1545
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1546 1547 1548 1549

	return 0;
}

1550
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1551
{
1552
	struct drm_i915_private *dev_priv = engine->i915;
1553 1554 1555
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1556 1557
}

1558
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1559
{
1560
	struct drm_i915_private *dev_priv = engine->i915;
1561
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1562 1563
}

1564
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1565
{
1566
	u32 cmd, *cs;
1567

1568 1569 1570
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1571 1572 1573

	cmd = MI_FLUSH_DW + 1;

1574 1575 1576 1577 1578 1579 1580
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1581
	if (mode & EMIT_INVALIDATE) {
1582
		cmd |= MI_INVALIDATE_TLB;
1583
		if (request->engine->id == VCS)
1584
			cmd |= MI_INVALIDATE_BSD;
1585 1586
	}

1587 1588 1589 1590 1591
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1592 1593 1594 1595

	return 0;
}

1596
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1597
				  u32 mode)
1598
{
1599
	struct intel_engine_cs *engine = request->engine;
1600 1601
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1602
	bool vf_flush_wa = false, dc_flush_wa = false;
1603
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1604
	int len;
1605 1606 1607

	flags |= PIPE_CONTROL_CS_STALL;

1608
	if (mode & EMIT_FLUSH) {
1609 1610
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1611
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1612
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1613 1614
	}

1615
	if (mode & EMIT_INVALIDATE) {
1616 1617 1618 1619 1620 1621 1622 1623 1624
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1625 1626 1627 1628
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1629
		if (IS_GEN9(request->i915))
1630
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1631 1632 1633 1634

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1635
	}
1636

M
Mika Kuoppala 已提交
1637 1638 1639 1640 1641 1642 1643 1644
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1645 1646 1647
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1648

1649 1650
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1651

1652 1653 1654
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1655

1656
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1657

1658 1659
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1660

1661
	intel_ring_advance(request, cs);
1662 1663 1664 1665

	return 0;
}

1666 1667 1668 1669 1670
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1671
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1672
{
1673 1674 1675
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1676
}
1677

1678
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1679
{
1680 1681
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1682

1683 1684 1685 1686 1687 1688 1689
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1690
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1691

1692
	gen8_emit_wa_tail(request, cs);
1693
}
1694

1695 1696
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1697
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1698
					u32 *cs)
1699
{
1700 1701 1702
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1703 1704 1705 1706
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1707 1708 1709 1710 1711 1712
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1713
	/* We're thrashing one dword of HWS. */
1714 1715 1716 1717
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1718
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1719

1720
	gen8_emit_wa_tail(request, cs);
1721 1722
}

1723 1724
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1725
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1726 1727 1728
{
	int ret;

1729
	ret = intel_ring_workarounds_emit(req);
1730 1731 1732
	if (ret)
		return ret;

1733 1734 1735 1736 1737 1738 1739 1740
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1741
	return i915_gem_render_state_emit(req);
1742 1743
}

1744 1745
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1746
 * @engine: Engine Command Streamer.
1747
 */
1748
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1749
{
1750
	struct drm_i915_private *dev_priv;
1751

1752 1753 1754 1755
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1756 1757
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
		tasklet_kill(&engine->execlists.irq_tasklet);
1758

1759
	dev_priv = engine->i915;
1760

1761 1762
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1763
	}
1764

1765 1766
	if (engine->cleanup)
		engine->cleanup(engine);
1767

1768
	intel_engine_cleanup_common(engine);
1769

1770
	lrc_destroy_wa_ctx(engine);
1771
	engine->i915 = NULL;
1772 1773
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1774 1775
}

1776
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1777
{
1778
	engine->submit_request = execlists_submit_request;
1779
	engine->cancel_requests = execlists_cancel_requests;
1780
	engine->schedule = execlists_schedule;
1781
	engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1782 1783
}

1784
static void
1785
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1786 1787
{
	/* Default vfuncs which can be overriden by each engine. */
1788
	engine->init_hw = gen8_init_common_ring;
1789
	engine->reset_hw = reset_common_ring;
1790 1791 1792 1793

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1794 1795
	engine->request_alloc = execlists_request_alloc;

1796
	engine->emit_flush = gen8_emit_flush;
1797
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1798
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1799 1800

	engine->set_default_submission = execlists_set_default_submission;
1801

1802 1803
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1804
	engine->emit_bb_start = gen8_emit_bb_start;
1805 1806
}

1807
static inline void
1808
logical_ring_default_irqs(struct intel_engine_cs *engine)
1809
{
1810
	unsigned shift = engine->irq_shift;
1811 1812
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1813 1814
}

1815 1816 1817 1818 1819 1820
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1821 1822
	intel_engine_setup_common(engine);

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1838
	engine->execlists.fw_domains = fw_domains;
1839

1840
	tasklet_init(&engine->execlists.irq_tasklet,
1841 1842 1843 1844 1845 1846
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1847
static int logical_ring_init(struct intel_engine_cs *engine)
1848 1849 1850
{
	int ret;

1851
	ret = intel_engine_init_common(engine);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1862
int logical_render_ring_init(struct intel_engine_cs *engine)
1863 1864 1865 1866
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1867 1868
	logical_ring_setup(engine);

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1879
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1880
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1881

1882
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1897
	return logical_ring_init(engine);
1898 1899
}

1900
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1901 1902 1903 1904
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1905 1906
}

1907
static u32
1908
make_rpcs(struct drm_i915_private *dev_priv)
1909 1910 1911 1912 1913 1914 1915
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1916
	if (INTEL_GEN(dev_priv) < 9)
1917 1918 1919 1920 1921 1922 1923 1924
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1925
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1926
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1927
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1928 1929 1930 1931
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1932
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1933
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1934
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1935 1936 1937 1938
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1939 1940
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1941
			GEN8_RPCS_EU_MIN_SHIFT;
1942
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1943 1944 1945 1946 1947 1948 1949
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1950
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1951 1952 1953
{
	u32 indirect_ctx_offset;

1954
	switch (INTEL_GEN(engine->i915)) {
1955
	default:
1956
		MISSING_CASE(INTEL_GEN(engine->i915));
1957
		/* fall through */
1958 1959 1960 1961
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1975
static void execlists_init_reg_state(u32 *regs,
1976 1977 1978
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1979
{
1980 1981
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2012 2013
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2014 2015 2016
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2017
		if (wa_ctx->indirect_ctx.size) {
2018
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2019

2020
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2021 2022
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2023

2024
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2025
				intel_lr_indirect_ctx_offset(engine) << 6;
2026 2027 2028 2029 2030
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2031

2032
			regs[CTX_BB_PER_CTX_PTR + 1] =
2033
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2034
		}
2035
	}
2036 2037 2038 2039

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2040
	/* PDP values well be assigned later if needed */
2041 2042 2043 2044 2045 2046 2047 2048
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2049

2050
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2051 2052 2053 2054
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2055
		ASSIGN_CTX_PML4(ppgtt, regs);
2056 2057
	}

2058 2059 2060 2061
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2062 2063

		i915_oa_init_reg_state(engine, ctx, regs);
2064
	}
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2088
	ctx_obj->mm.dirty = true;
2089 2090 2091 2092 2093 2094

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2095

2096
	i915_gem_object_unpin_map(ctx_obj);
2097 2098 2099 2100

	return 0;
}

2101
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2102
					    struct intel_engine_cs *engine)
2103
{
2104
	struct drm_i915_gem_object *ctx_obj;
2105
	struct intel_context *ce = &ctx->engine[engine->id];
2106
	struct i915_vma *vma;
2107
	uint32_t context_size;
2108
	struct intel_ring *ring;
2109 2110
	int ret;

2111
	WARN_ON(ce->state);
2112

2113
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2114

2115 2116 2117 2118 2119
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2120

2121
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2122
	if (IS_ERR(ctx_obj)) {
2123
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2124
		return PTR_ERR(ctx_obj);
2125 2126
	}

2127
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2128 2129 2130 2131 2132
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2133
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2134 2135
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2136
		goto error_deref_obj;
2137 2138
	}

2139
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2140 2141
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2142
		goto error_ring_free;
2143 2144
	}

2145
	ce->ring = ring;
2146
	ce->state = vma;
2147
	ce->initialised |= engine->init_context == NULL;
2148 2149

	return 0;
2150

2151
error_ring_free:
2152
	intel_ring_free(ring);
2153
error_deref_obj:
2154
	i915_gem_object_put(ctx_obj);
2155
	return ret;
2156
}
2157

2158
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2159
{
2160
	struct intel_engine_cs *engine;
2161
	struct i915_gem_context *ctx;
2162
	enum intel_engine_id id;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2174
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2175
		for_each_engine(engine, dev_priv, id) {
2176 2177
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2178

2179 2180
			if (!ce->state)
				continue;
2181

2182 2183 2184 2185
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2186

2187 2188 2189
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2190

C
Chris Wilson 已提交
2191
			ce->state->obj->mm.dirty = true;
2192
			i915_gem_object_unpin_map(ce->state->obj);
2193

2194
			intel_ring_reset(ce->ring, 0);
2195
		}
2196 2197
	}
}