intel_lrc.c 82.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227 228
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
229

230 231
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
232

233 234 235 236 237 238
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
239
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 241 242
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
243 244
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
245 246
	WARN_ON(i915.enable_ppgtt == -1);

247 248 249 250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

253 254 255
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

256 257 258
	if (enable_execlists == 0)
		return 0;

259 260
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
261 262 263 264
		return 1;

	return 0;
}
265

266
static void
267
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268
{
269
	struct drm_device *dev = engine->dev;
270

271
	if (IS_GEN8(dev) || IS_GEN9(dev))
272
		engine->idle_lite_restore_wa = ~0;
273

274
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276
					(engine->id == VCS || engine->id == VCS2);
277

278 279
	engine->ctx_desc_template = GEN8_CTX_VALID;
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280 281
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
282 283
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284 285 286 287 288 289 290

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291 292
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 294
}

295
/**
296 297
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
298
 *
299 300
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
301
 *
302 303 304 305 306 307 308 309 310 311
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
 *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
 *    bits 52-63:    reserved, may encode the engine ID (for GuC)
312
 */
313 314
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
315
				   struct intel_engine_cs *engine)
316
{
317
	uint64_t lrca, desc;
318

319
	lrca = ctx->engine[engine->id].lrc_vma->node.start +
320
	       LRC_PPHWSP_PN * PAGE_SIZE;
321

322
	desc = engine->ctx_desc_template;			   /* bits  0-11 */
323 324
	desc |= lrca;					   /* bits 12-31 */
	desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325

326
	ctx->engine[engine->id].lrc_desc = desc;
327 328
}

329
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330
				     struct intel_engine_cs *engine)
331
{
332
	return ctx->engine[engine->id].lrc_desc;
333
}
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx: Context to get the ID for
 * @ring: Engine to get the ID for
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * The context ID is a portion of the context descriptor, so we can
 * just extract the required part from the cached descriptor.
 *
 * Return: 20-bits globally unique context ID.
 */
u32 intel_execlists_ctx_id(struct intel_context *ctx,
352
			   struct intel_engine_cs *engine)
353
{
354
	return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355 356
}

357 358
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
359
{
360

361
	struct intel_engine_cs *engine = rq0->engine;
362
	struct drm_device *dev = engine->dev;
363
	struct drm_i915_private *dev_priv = dev->dev_private;
364
	uint64_t desc[2];
365

366
	if (rq1) {
367
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368 369 370 371
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
372

373
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374
	rq0->elsp_submitted++;
375

376
	/* You must always write both descriptors in the order below. */
377 378
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379

380
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381
	/* The context is automatically loaded after the following */
382
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383

384
	/* ELSP is a wo register, use another nearby reg for posting */
385
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386 387
}

388 389 390 391 392 393 394 395 396 397
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
398
{
399
	struct intel_engine_cs *engine = rq->engine;
400
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402

403
	reg_state[CTX_RING_TAIL+1] = rq->tail;
404

405 406 407 408 409 410 411
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
412 413
}

414 415
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
416
{
417
	struct drm_i915_private *dev_priv = rq0->i915;
418
	unsigned int fw_domains = rq0->engine->fw_domains;
419

420
	execlists_update_context(rq0);
421

422
	if (rq1)
423
		execlists_update_context(rq1);
424

425
	spin_lock_irq(&dev_priv->uncore.lock);
426
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427

428
	execlists_elsp_write(rq0, rq1);
429

430
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431
	spin_unlock_irq(&dev_priv->uncore.lock);
432 433
}

434
static void execlists_context_unqueue(struct intel_engine_cs *engine)
435
{
436
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437
	struct drm_i915_gem_request *cursor, *tmp;
438

439
	assert_spin_locked(&engine->execlist_lock);
440

441 442 443 444
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
445
	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446

447
	/* Try to read in pairs */
448
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449 450 451
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
452
		} else if (req0->ctx == cursor->ctx) {
453 454
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
455
			cursor->elsp_submitted = req0->elsp_submitted;
456
			list_move_tail(&req0->execlist_link,
457
				       &engine->execlist_retired_req_list);
458 459 460
			req0 = cursor;
		} else {
			req1 = cursor;
461
			WARN_ON(req1->elsp_submitted);
462 463 464 465
			break;
		}
	}

466 467 468
	if (unlikely(!req0))
		return;

469
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470
		/*
471 472 473 474 475 476
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
477
		 */
478
		struct intel_ringbuffer *ringbuf;
479

480
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
481 482
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
483 484
	}

485
	execlists_submit_requests(req0, req1);
486 487
}

488
static unsigned int
489
execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490
{
491
	struct drm_i915_gem_request *head_req;
492

493
	assert_spin_locked(&engine->execlist_lock);
494

495
	head_req = list_first_entry_or_null(&engine->execlist_queue,
496
					    struct drm_i915_gem_request,
497 498
					    execlist_link);

499 500
	if (!head_req)
		return 0;
501

502
	if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503 504 505 506 507 508 509 510
		return 0;

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

	list_move_tail(&head_req->execlist_link,
511
		       &engine->execlist_retired_req_list);
512

513
	return 1;
514 515
}

516
static u32
517
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518
		   u32 *context_id)
B
Ben Widawsky 已提交
519
{
520
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
521
	u32 status;
B
Ben Widawsky 已提交
522

523 524
	read_pointer %= GEN8_CSB_ENTRIES;

525
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526 527 528

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
529

530
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531 532 533
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
534 535
}

536
/**
537
 * intel_lrc_irq_handler() - handle Context Switch interrupts
538
 * @engine: Engine Command Streamer to handle.
539 540 541 542
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
543
static void intel_lrc_irq_handler(unsigned long data)
544
{
545
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
547
	u32 status_pointer;
548
	unsigned int read_pointer, write_pointer;
549 550
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
551 552
	unsigned int submit_contexts = 0;

553
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554

555
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556

557
	read_pointer = engine->next_context_status_buffer;
558
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559
	if (read_pointer > write_pointer)
560
		write_pointer += GEN8_CSB_ENTRIES;
561 562

	while (read_pointer < write_pointer) {
563 564 565 566 567 568
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
569

570 571 572 573 574 575 576 577
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

578
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579 580 581 582 583 584 585

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
586 587 588 589 590
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

591
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 593
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
594
				execlists_check_remove_request(engine, csb[i][1]);
595 596
	}

597
	if (submit_contexts) {
598
		if (!engine->disable_lite_restore_wa ||
599 600
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
601
	}
602

603
	spin_unlock(&engine->execlist_lock);
604 605 606

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
607 608
}

609
static void execlists_context_queue(struct drm_i915_gem_request *request)
610
{
611
	struct intel_engine_cs *engine = request->engine;
612
	struct drm_i915_gem_request *cursor;
613
	int num_elements = 0;
614

615
	if (request->ctx != request->i915->kernel_context)
616
		intel_lr_context_pin(request->ctx, engine);
617

618 619
	i915_gem_request_reference(request);

620
	spin_lock_bh(&engine->execlist_lock);
621

622
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623 624 625 626
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
627
		struct drm_i915_gem_request *tail_req;
628

629
		tail_req = list_last_entry(&engine->execlist_queue,
630
					   struct drm_i915_gem_request,
631 632
					   execlist_link);

633
		if (request->ctx == tail_req->ctx) {
634
			WARN(tail_req->elsp_submitted != 0,
635
				"More than 2 already-submitted reqs queued\n");
636
			list_move_tail(&tail_req->execlist_link,
637
				       &engine->execlist_retired_req_list);
638 639 640
		}
	}

641
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
642
	if (num_elements == 0)
643
		execlists_context_unqueue(engine);
644

645
	spin_unlock_bh(&engine->execlist_lock);
646 647
}

648
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649
{
650
	struct intel_engine_cs *engine = req->engine;
651 652 653 654
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
655
	if (engine->gpu_caches_dirty)
656 657
		flush_domains = I915_GEM_GPU_DOMAINS;

658
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659 660 661
	if (ret)
		return ret;

662
	engine->gpu_caches_dirty = false;
663 664 665
	return 0;
}

666
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667 668
				 struct list_head *vmas)
{
669
	const unsigned other_rings = ~intel_engine_flag(req->engine);
670 671 672 673 674 675 676 677
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

678
		if (obj->active & other_rings) {
679
			ret = i915_gem_object_sync(obj, req->engine, &req);
680 681 682
			if (ret)
				return ret;
		}
683 684 685 686 687 688 689 690 691 692 693 694 695

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
696
	return logical_ring_invalidate_all_caches(req);
697 698
}

699
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700
{
D
Dave Gordon 已提交
701
	int ret = 0;
702

703
	request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704

705 706 707 708 709 710 711 712 713 714 715 716 717
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

D
Dave Gordon 已提交
718
	if (request->ctx != request->i915->kernel_context)
719
		ret = intel_lr_context_pin(request->ctx, request->engine);
D
Dave Gordon 已提交
720 721

	return ret;
722 723
}

724
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
725
				       int bytes)
726
{
727
	struct intel_ringbuffer *ringbuf = req->ringbuf;
728
	struct intel_engine_cs *engine = req->engine;
729
	struct drm_i915_gem_request *target;
730 731
	unsigned space;
	int ret;
732 733 734 735

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

736 737 738
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

739
	list_for_each_entry(target, &engine->request_list, list) {
740 741 742 743 744
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
745
		if (target->ringbuf != ringbuf)
746 747 748
			continue;

		/* Would completion of this request free enough space? */
749
		space = __intel_ring_space(target->postfix, ringbuf->tail,
750 751
					   ringbuf->size);
		if (space >= bytes)
752 753 754
			break;
	}

755
	if (WARN_ON(&target->list == &engine->request_list))
756 757
		return -ENOSPC;

758
	ret = i915_wait_request(target);
759 760 761
	if (ret)
		return ret;

762 763
	ringbuf->space = space;
	return 0;
764 765 766 767
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
768
 * @request: Request to advance the logical ringbuffer of.
769 770 771 772 773 774
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
775
static int
776
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
777
{
778
	struct intel_ringbuffer *ringbuf = request->ringbuf;
779
	struct drm_i915_private *dev_priv = request->i915;
780
	struct intel_engine_cs *engine = request->engine;
781

782 783
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
784

785 786 787 788 789 790 791 792 793
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
794

795
	if (intel_engine_stopped(engine))
796
		return 0;
797

798 799 800 801 802 803 804 805 806 807 808
	if (engine->last_context != request->ctx) {
		if (engine->last_context)
			intel_lr_context_unpin(engine->last_context, engine);
		if (request->ctx != request->i915->kernel_context) {
			intel_lr_context_pin(request->ctx, engine);
			engine->last_context = request->ctx;
		} else {
			engine->last_context = NULL;
		}
	}

809 810 811 812
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
813 814

	return 0;
815 816
}

817
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
818 819 820 821 822 823 824 825 826 827 828 829 830
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

831
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
832
{
833
	struct intel_ringbuffer *ringbuf = req->ringbuf;
834 835 836 837
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
838

839 840 841 842
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
843

844 845 846 847 848 849 850 851 852 853 854
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
855 856 857
			 * falls off the end. So don't need an immediate wrap
			 * and only need to effectively wait for the reserved
			 * size space from the start of ringbuffer.
858 859 860 861 862
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
863
		}
864 865
	}

866 867
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
868 869
		if (unlikely(ret))
			return ret;
870 871 872

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
873 874 875 876 877 878 879 880
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
881
 * @req: The request to start some new work for
882 883 884 885 886 887 888 889 890
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
891
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
892
{
893
	struct drm_i915_private *dev_priv;
894 895
	int ret;

896
	WARN_ON(req == NULL);
897
	dev_priv = req->i915;
898

899 900 901 902 903
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

904
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
905 906 907
	if (ret)
		return ret;

908
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
909 910 911
	return 0;
}

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

927 928 929 930 931 932 933 934 935 936
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
937
 * @dispatch_flags: translated execbuffer call flags.
938 939 940 941 942 943
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
944
int intel_execlists_submission(struct i915_execbuffer_params *params,
945
			       struct drm_i915_gem_execbuffer2 *args,
946
			       struct list_head *vmas)
947
{
948
	struct drm_device       *dev = params->dev;
949
	struct intel_engine_cs *engine = params->engine;
950
	struct drm_i915_private *dev_priv = dev->dev_private;
951
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
952
	u64 exec_start;
953 954 955 956 957 958 959 960 961 962
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
963
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

988
	ret = execlists_move_to_gpu(params->request, vmas);
989 990 991
	if (ret)
		return ret;

992
	if (engine == &dev_priv->engine[RCS] &&
993
	    instp_mode != dev_priv->relative_constants_mode) {
994
		ret = intel_logical_ring_begin(params->request, 4);
995 996 997 998 999
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1000
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
1001 1002 1003 1004 1005 1006
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

1007 1008 1009
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

1010
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1011 1012 1013
	if (ret)
		return ret;

1014
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1015

1016
	i915_gem_execbuffer_move_to_active(vmas, params->request);
1017
	i915_gem_execbuffer_retire_commands(params);
1018

1019 1020 1021
	return 0;
}

1022
void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1023
{
1024
	struct drm_i915_gem_request *req, *tmp;
1025 1026
	struct list_head retired_list;

1027 1028
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
	if (list_empty(&engine->execlist_retired_req_list))
1029 1030 1031
		return;

	INIT_LIST_HEAD(&retired_list);
1032
	spin_lock_bh(&engine->execlist_lock);
1033
	list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1034
	spin_unlock_bh(&engine->execlist_lock);
1035 1036

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1037 1038
		struct intel_context *ctx = req->ctx;
		struct drm_i915_gem_object *ctx_obj =
1039
				ctx->engine[engine->id].state;
1040

1041
		if (ctx_obj && (ctx != req->i915->kernel_context))
1042
			intel_lr_context_unpin(ctx, engine);
1043

1044
		list_del(&req->execlist_link);
1045
		i915_gem_request_unreference(req);
1046 1047 1048
	}
}

1049
void intel_logical_ring_stop(struct intel_engine_cs *engine)
1050
{
1051
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
1052 1053
	int ret;

1054
	if (!intel_engine_initialized(engine))
1055 1056
		return;

1057
	ret = intel_engine_idle(engine);
1058
	if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
1059
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1060
			  engine->name, ret);
1061 1062

	/* TODO: Is this correct with Execlists enabled? */
1063 1064 1065
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1066 1067
		return;
	}
1068
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1069 1070
}

1071
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1072
{
1073
	struct intel_engine_cs *engine = req->engine;
1074 1075
	int ret;

1076
	if (!engine->gpu_caches_dirty)
1077 1078
		return 0;

1079
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1080 1081 1082
	if (ret)
		return ret;

1083
	engine->gpu_caches_dirty = false;
1084 1085 1086
	return 0;
}

1087
static int intel_lr_context_do_pin(struct intel_context *ctx,
1088
				   struct intel_engine_cs *engine)
1089
{
1090
	struct drm_device *dev = engine->dev;
1091
	struct drm_i915_private *dev_priv = dev->dev_private;
1092 1093
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
	struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1094
	struct page *lrc_state_page;
1095
	uint32_t *lrc_reg_state;
1096
	int ret;
1097

1098
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1099

1100 1101 1102 1103
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
		return ret;
1104

1105 1106 1107 1108 1109 1110
	lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
	if (WARN_ON(!lrc_state_page)) {
		ret = -ENODEV;
		goto unpin_ctx_obj;
	}

1111
	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1112 1113
	if (ret)
		goto unpin_ctx_obj;
1114

1115 1116
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
1117 1118
	lrc_reg_state = kmap(lrc_state_page);
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1119
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1120
	ctx_obj->dirty = true;
1121

1122 1123 1124
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1125

1126 1127 1128 1129
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1130 1131 1132 1133

	return ret;
}

1134 1135
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
1136 1137 1138
{
	int ret = 0;

1139 1140
	if (ctx->engine[engine->id].pin_count++ == 0) {
		ret = intel_lr_context_do_pin(ctx, engine);
1141 1142
		if (ret)
			goto reset_pin_count;
1143 1144

		i915_gem_context_reference(ctx);
1145 1146 1147
	}
	return ret;

1148
reset_pin_count:
1149
	ctx->engine[engine->id].pin_count = 0;
1150 1151 1152
	return ret;
}

1153 1154
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
1155
{
1156
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1157

1158
	WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1159 1160 1161
	if (--ctx->engine[engine->id].pin_count == 0) {
		kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
		intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1162
		i915_gem_object_ggtt_unpin(ctx_obj);
1163 1164 1165
		ctx->engine[engine->id].lrc_vma = NULL;
		ctx->engine[engine->id].lrc_desc = 0;
		ctx->engine[engine->id].lrc_reg_state = NULL;
1166 1167

		i915_gem_context_unreference(ctx);
1168 1169 1170
	}
}

1171
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1172 1173
{
	int ret, i;
1174
	struct intel_engine_cs *engine = req->engine;
1175
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1176
	struct drm_device *dev = engine->dev;
1177 1178 1179
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1180
	if (w->count == 0)
1181 1182
		return 0;

1183
	engine->gpu_caches_dirty = true;
1184
	ret = logical_ring_flush_all_caches(req);
1185 1186 1187
	if (ret)
		return ret;

1188
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1189 1190 1191 1192 1193
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1194
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1195 1196 1197 1198 1199 1200
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1201
	engine->gpu_caches_dirty = true;
1202
	ret = logical_ring_flush_all_caches(req);
1203 1204 1205 1206 1207 1208
	if (ret)
		return ret;

	return 0;
}

1209
#define wa_ctx_emit(batch, index, cmd)					\
1210
	do {								\
1211 1212
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1213 1214
			return -ENOSPC;					\
		}							\
1215
		batch[__index] = (cmd);					\
1216 1217
	} while (0)

V
Ville Syrjälä 已提交
1218
#define wa_ctx_emit_reg(batch, index, reg) \
1219
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1237
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1238 1239 1240 1241 1242
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1243 1244 1245 1246 1247 1248
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1249
	if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1250 1251
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1252
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1253
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1254
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1255
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1256 1257 1258
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1259
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1270
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1271
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1272
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1273
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1274
	wa_ctx_emit(batch, index, 0);
1275 1276 1277 1278

	return index;
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1317
 *
1318 1319 1320 1321 1322 1323 1324 1325
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1326
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1327 1328 1329 1330
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1331
	uint32_t scratch_addr;
1332 1333
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1334
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1335
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1336

1337
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1338 1339
	if (IS_BROADWELL(engine->dev)) {
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1340 1341 1342
		if (rc < 0)
			return rc;
		index = rc;
1343 1344
	}

1345 1346
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1347
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1358

1359 1360
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1361
		wa_ctx_emit(batch, index, MI_NOOP);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1379
 * @batch: page in which WA are loaded
1380 1381 1382 1383 1384 1385 1386 1387 1388
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1389
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1390 1391 1392 1393 1394 1395
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1396
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1397
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1398

1399
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1400 1401 1402 1403

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1404
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1405 1406 1407 1408
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1409
	int ret;
1410
	struct drm_device *dev = engine->dev;
1411 1412
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1413
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1414
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1415
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1416
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1417

1418
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1419
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1420 1421 1422 1423
	if (ret < 0)
		return ret;
	index = ret;

1424 1425 1426 1427 1428 1429 1430
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1431
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1432 1433 1434 1435
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1436
	struct drm_device *dev = engine->dev;
1437 1438
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1439
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1440
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1441
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1442
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1443
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1444 1445 1446 1447 1448
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	/* WaClearTdlStateAckDirtyBits:bxt */
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1468
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1469
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1470
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1471 1472
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1473 1474 1475 1476 1477
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1478
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1479 1480 1481
{
	int ret;

1482 1483 1484
	engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
						   PAGE_ALIGN(size));
	if (!engine->wa_ctx.obj) {
1485 1486 1487 1488
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

1489
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1490 1491 1492
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1493
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1494 1495 1496 1497 1498 1499
		return ret;
	}

	return 0;
}

1500
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1501
{
1502 1503 1504 1505
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1506 1507 1508
	}
}

1509
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1510 1511 1512 1513 1514
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1515
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1516

1517
	WARN_ON(engine->id != RCS);
1518

1519
	/* update this when WA for higher Gen are added */
1520
	if (INTEL_INFO(engine->dev)->gen > 9) {
1521
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1522
			  INTEL_INFO(engine->dev)->gen);
1523
		return 0;
1524
	}
1525

1526
	/* some WA perform writes to scratch page, ensure it is valid */
1527 1528
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1529 1530 1531
		return -EINVAL;
	}

1532
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1533 1534 1535 1536 1537
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1538
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1539 1540 1541
	batch = kmap_atomic(page);
	offset = 0;

1542 1543
	if (INTEL_INFO(engine->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(engine,
1544 1545 1546 1547 1548 1549
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1550
		ret = gen8_init_perctx_bb(engine,
1551 1552 1553 1554 1555
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1556 1557
	} else if (INTEL_INFO(engine->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(engine,
1558 1559 1560 1561 1562 1563
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1564
		ret = gen9_init_perctx_bb(engine,
1565 1566 1567 1568 1569
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1570 1571 1572 1573 1574
	}

out:
	kunmap_atomic(batch);
	if (ret)
1575
		lrc_destroy_wa_ctx_obj(engine);
1576 1577 1578 1579

	return ret;
}

1580 1581 1582 1583 1584 1585 1586 1587 1588
static void lrc_init_hws(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->dev->dev_private;

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1589
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1590
{
1591
	struct drm_device *dev = engine->dev;
1592
	struct drm_i915_private *dev_priv = dev->dev_private;
1593
	unsigned int next_context_status_buffer_hw;
1594

1595
	lrc_init_hws(engine);
1596

1597 1598 1599
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1600

1601
	I915_WRITE(RING_MODE_GEN7(engine),
1602 1603
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1604
	POSTING_READ(RING_MODE_GEN7(engine));
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1615 1616
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1617
	 */
1618
	next_context_status_buffer_hw =
1619
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1620 1621 1622 1623 1624 1625 1626 1627 1628

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1629 1630
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1631

1632
	intel_engine_init_hangcheck(engine);
1633 1634 1635 1636

	return 0;
}

1637
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1638
{
1639
	struct drm_device *dev = engine->dev;
1640 1641 1642
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1643
	ret = gen8_init_common_ring(engine);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1657
	return init_workarounds_ring(engine);
1658 1659
}

1660
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1661 1662 1663
{
	int ret;

1664
	ret = gen8_init_common_ring(engine);
1665 1666 1667
	if (ret)
		return ret;

1668
	return init_workarounds_ring(engine);
1669 1670
}

1671 1672 1673
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1674
	struct intel_engine_cs *engine = req->engine;
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1687 1688
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1689
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1690 1691
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1692 1693 1694 1695 1696 1697 1698 1699 1700
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1701
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1702
			      u64 offset, unsigned dispatch_flags)
1703
{
1704
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1705
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1706 1707
	int ret;

1708 1709 1710 1711
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1712 1713
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1714
	if (req->ctx->ppgtt &&
1715
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1716 1717
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1718 1719 1720 1721
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1722

1723
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1724 1725
	}

1726
	ret = intel_logical_ring_begin(req, 4);
1727 1728 1729 1730
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1731 1732 1733 1734
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1735 1736 1737 1738 1739 1740 1741 1742
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1743
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1744
{
1745
	struct drm_device *dev = engine->dev;
1746 1747 1748
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1749
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1750 1751 1752
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1753 1754 1755 1756
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1757 1758 1759 1760 1761 1762
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1763
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1764
{
1765
	struct drm_device *dev = engine->dev;
1766 1767 1768 1769
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1770 1771 1772
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1773 1774 1775 1776
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1777
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1778 1779 1780
			   u32 invalidate_domains,
			   u32 unused)
{
1781
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1782
	struct intel_engine_cs *engine = ringbuf->engine;
1783
	struct drm_device *dev = engine->dev;
1784 1785 1786 1787
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1788
	ret = intel_logical_ring_begin(request, 4);
1789 1790 1791 1792 1793
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1794 1795 1796 1797 1798 1799 1800 1801 1802
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1803
		if (engine == &dev_priv->engine[VCS])
1804
			cmd |= MI_INVALIDATE_BSD;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1818
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1819 1820 1821
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1822
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1823
	struct intel_engine_cs *engine = ringbuf->engine;
1824
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1825
	bool vf_flush_wa = false;
1826 1827 1828 1829 1830 1831 1832 1833
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1834
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1835
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1848 1849 1850 1851
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1852
		if (IS_GEN9(engine->dev))
1853 1854
			vf_flush_wa = true;
	}
1855

1856
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1857 1858 1859
	if (ret)
		return ret;

1860 1861 1862 1863 1864 1865 1866 1867 1868
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1880
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1881
{
1882
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1883 1884
}

1885
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1886
{
1887
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1888 1889
}

1890
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1902
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1903 1904
}

1905
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1906
{
1907
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1908 1909

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1910
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1911 1912
}

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1925
static int gen8_emit_request(struct drm_i915_gem_request *request)
1926
{
1927
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1928 1929
	int ret;

1930
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1931 1932 1933
	if (ret)
		return ret;

1934 1935
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1936 1937

	intel_logical_ring_emit(ringbuf,
1938 1939
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1940
				hws_seqno_address(request->engine) |
1941
				MI_FLUSH_DW_USE_GTT);
1942
	intel_logical_ring_emit(ringbuf, 0);
1943
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1944 1945
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1946 1947
	return intel_logical_ring_advance_and_submit(request);
}
1948

1949 1950 1951 1952
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1953

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
	if (ret)
		return ret;

	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1967
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1968 1969 1970 1971
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	return intel_logical_ring_advance_and_submit(request);
1972 1973
}

1974
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1975 1976 1977 1978
{
	struct render_state so;
	int ret;

1979
	ret = i915_gem_render_state_prepare(req->engine, &so);
1980 1981 1982 1983 1984 1985
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1986
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1987
				       I915_DISPATCH_SECURE);
1988 1989 1990
	if (ret)
		goto out;

1991
	ret = req->engine->emit_bb_start(req,
1992 1993 1994 1995 1996
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1997
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1998 1999 2000 2001 2002 2003

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

2004
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
2005 2006 2007
{
	int ret;

2008
	ret = intel_logical_ring_workarounds_emit(req);
2009 2010 2011
	if (ret)
		return ret;

2012 2013 2014 2015 2016 2017 2018 2019
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2020
	return intel_lr_context_render_state_init(req);
2021 2022
}

2023 2024 2025 2026 2027 2028
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
2029
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2030
{
2031
	struct drm_i915_private *dev_priv;
2032

2033
	if (!intel_engine_initialized(engine))
2034 2035
		return;

2036 2037 2038 2039 2040 2041 2042
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

2043
	dev_priv = engine->dev->dev_private;
2044

2045 2046 2047
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2048
	}
2049

2050 2051
	if (engine->cleanup)
		engine->cleanup(engine);
2052

2053 2054
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
2055

2056 2057 2058
	if (engine->status_page.obj) {
		kunmap(sg_page(engine->status_page.obj->pages->sgl));
		engine->status_page.obj = NULL;
2059
	}
2060

2061 2062 2063
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
2064

2065 2066
	lrc_destroy_wa_ctx_obj(engine);
	engine->dev = NULL;
2067 2068
}

2069 2070
static void
logical_ring_default_vfuncs(struct drm_device *dev,
2071
			    struct intel_engine_cs *engine)
2072 2073
{
	/* Default vfuncs which can be overriden by each engine. */
2074 2075 2076 2077 2078 2079
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
2080 2081
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
2082
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2083
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
2084
		engine->set_seqno = bxt_a_set_seqno;
2085 2086 2087
	}
}

2088
static inline void
2089
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2090
{
2091 2092
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2093 2094
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
static void
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
	struct page *page;

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
	page = i915_gem_object_get_page(dctx_obj, LRC_PPHWSP_PN);
	engine->status_page.page_addr = kmap(page);
	engine->status_page.obj = dctx_obj;
}

2109
static int
2110
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2111
{
2112 2113 2114
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_context *dctx = dev_priv->kernel_context;
	enum forcewake_domains fw_domains;
2115 2116 2117
	int ret;

	/* Intentionally left blank. */
2118
	engine->buffer = NULL;
2119

2120 2121 2122 2123 2124
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	init_waitqueue_head(&engine->irq_queue);
2125

2126 2127 2128 2129
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->execlist_retired_req_list);
	spin_lock_init(&engine->execlist_lock);
2130

2131 2132 2133
	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

2134
	logical_ring_init_platform_invariants(engine);
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2150
	ret = i915_cmd_parser_init_ring(engine);
2151
	if (ret)
2152
		goto error;
2153

2154
	ret = intel_lr_context_deferred_alloc(dctx, engine);
2155
	if (ret)
2156
		goto error;
2157 2158

	/* As this is the default context, always pin it */
2159
	ret = intel_lr_context_do_pin(dctx, engine);
2160 2161 2162
	if (ret) {
		DRM_ERROR(
			"Failed to pin and map ringbuffer %s: %d\n",
2163
			engine->name, ret);
2164
		goto error;
2165
	}
2166

2167 2168 2169
	/* And setup the hardware status page. */
	lrc_setup_hws(engine, dctx->engine[engine->id].state);

2170 2171 2172
	return 0;

error:
2173
	intel_logical_ring_cleanup(engine);
2174
	return ret;
2175 2176 2177 2178 2179
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2180
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2181
	int ret;
2182

2183 2184 2185 2186 2187
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->guc_id = GUC_RENDER_ENGINE;
	engine->mmio_base = RENDER_RING_BASE;
2188

2189
	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2190
	if (HAS_L3_DPF(dev))
2191
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2192

2193
	logical_ring_default_vfuncs(dev, engine);
2194 2195

	/* Override some for render ring. */
2196
	if (INTEL_INFO(dev)->gen >= 9)
2197
		engine->init_hw = gen9_init_render_ring;
2198
	else
2199 2200 2201 2202 2203
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2204

2205
	engine->dev = dev;
2206

2207
	ret = intel_init_pipe_control(engine);
2208 2209 2210
	if (ret)
		return ret;

2211
	ret = intel_init_workaround_bb(engine);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2222
	ret = logical_ring_init(dev, engine);
2223
	if (ret) {
2224
		lrc_destroy_wa_ctx_obj(engine);
2225
	}
2226 2227

	return ret;
2228 2229 2230 2231 2232
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2233
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2234

2235 2236 2237 2238 2239
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE;
	engine->mmio_base = GEN6_BSD_RING_BASE;
2240

2241 2242
	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2243

2244
	return logical_ring_init(dev, engine);
2245 2246 2247 2248 2249
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2250
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2251

2252 2253 2254 2255 2256
	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE2;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2257

2258 2259
	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2260

2261
	return logical_ring_init(dev, engine);
2262 2263 2264 2265 2266
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2267
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2268

2269 2270 2271 2272 2273
	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
	engine->guc_id = GUC_BLITTER_ENGINE;
	engine->mmio_base = BLT_RING_BASE;
2274

2275 2276
	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2277

2278
	return logical_ring_init(dev, engine);
2279 2280 2281 2282 2283
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2284
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2285

2286 2287 2288 2289 2290
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
	engine->mmio_base = VEBOX_RING_BASE;
2291

2292 2293
	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2294

2295
	return logical_ring_init(dev, engine);
2296 2297
}

2298 2299 2300 2301 2302
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2303
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2304 2305 2306 2307
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2344
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2345
cleanup_blt_ring:
2346
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2347
cleanup_bsd_ring:
2348
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2349
cleanup_render_ring:
2350
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2351 2352 2353 2354

	return ret;
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2398
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2399 2400 2401
{
	u32 indirect_ctx_offset;

2402
	switch (INTEL_INFO(engine->dev)->gen) {
2403
	default:
2404
		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2419 2420
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2421 2422
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2423
{
2424
	struct drm_device *dev = engine->dev;
2425
	struct drm_i915_private *dev_priv = dev->dev_private;
2426
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2427 2428 2429 2430
	struct page *page;
	uint32_t *reg_state;
	int ret;

2431 2432 2433
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2450
	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2451 2452 2453 2454 2455 2456 2457
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2458
	reg_state[CTX_LRI_HEADER_0] =
2459 2460 2461
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2462 2463
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2464 2465
					  (HAS_RESOURCE_STREAMER(dev) ?
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2466 2467 2468 2469
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2470 2471 2472
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2473 2474 2475 2476
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2477
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2478 2479 2480 2481 2482 2483
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2484
		       RING_BB_PPGTT);
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2500 2501 2502 2503 2504 2505 2506
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2507
				intel_lr_indirect_ctx_offset(engine) << 6;
2508 2509 2510 2511 2512

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2513
	}
2514
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2515 2516
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2517
	/* PDP values well be assigned later if needed */
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2534

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2547
		execlists_update_context_pdps(ppgtt, reg_state);
2548 2549
	}

2550
	if (engine->id == RCS) {
2551
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2552 2553
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2554 2555 2556 2557 2558 2559 2560 2561
	}

	kunmap_atomic(reg_state);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2562 2563 2564 2565 2566 2567 2568 2569
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2570 2571
void intel_lr_context_free(struct intel_context *ctx)
{
2572 2573
	int i;

2574
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2575
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2576
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2577

D
Dave Gordon 已提交
2578 2579
		if (!ctx_obj)
			continue;
2580

D
Dave Gordon 已提交
2581 2582 2583
		if (ctx == ctx->i915->kernel_context) {
			intel_unpin_ringbuffer_obj(ringbuf);
			i915_gem_object_ggtt_unpin(ctx_obj);
2584
		}
D
Dave Gordon 已提交
2585 2586 2587 2588

		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2589 2590 2591
	}
}

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2606
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2607 2608 2609
{
	int ret = 0;

2610
	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2611

2612
	switch (engine->id) {
2613
	case RCS:
2614
		if (INTEL_INFO(engine->dev)->gen >= 9)
2615 2616 2617
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2628 2629
}

2630
/**
2631
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2632 2633 2634 2635 2636 2637 2638 2639 2640
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2641
 * Return: non-zero on error.
2642
 */
2643 2644

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2645
				    struct intel_engine_cs *engine)
2646
{
2647
	struct drm_device *dev = engine->dev;
2648 2649
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2650
	struct intel_ringbuffer *ringbuf;
2651 2652
	int ret;

2653
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2654
	WARN_ON(ctx->engine[engine->id].state);
2655

2656
	context_size = round_up(intel_lr_context_size(engine), 4096);
2657

2658 2659 2660
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2661
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2662 2663 2664
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2665 2666
	}

2667
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2668 2669
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2670
		goto error_deref_obj;
2671 2672
	}

2673
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2674 2675
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2676
		goto error_ringbuf;
2677 2678
	}

2679 2680
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2681

2682
	if (ctx != ctx->i915->kernel_context && engine->init_context) {
2683
		struct drm_i915_gem_request *req;
2684

2685
		req = i915_gem_request_alloc(engine, ctx);
2686 2687 2688
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
			DRM_ERROR("ring create req: %d\n", ret);
2689
			goto error_ringbuf;
2690 2691
		}

2692
		ret = engine->init_context(req);
2693 2694 2695 2696 2697 2698 2699
		if (ret) {
			DRM_ERROR("ring init context: %d\n",
				ret);
			i915_gem_request_cancel(req);
			goto error_ringbuf;
		}
		i915_add_request_no_flush(req);
2700
	}
2701
	return 0;
2702

2703 2704
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2705
error_deref_obj:
2706
	drm_gem_object_unreference(&ctx_obj->base);
2707 2708
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2709
	return ret;
2710
}
2711 2712 2713 2714 2715

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2716
	struct intel_engine_cs *engine;
2717

2718
	for_each_engine(engine, dev_priv) {
2719
		struct drm_i915_gem_object *ctx_obj =
2720
				ctx->engine[engine->id].state;
2721
		struct intel_ringbuffer *ringbuf =
2722
				ctx->engine[engine->id].ringbuf;
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
2733
		page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}